Pictures of Central Venous Catheters

Total Page:16

File Type:pdf, Size:1020Kb

Pictures of Central Venous Catheters Pictures of Central Venous Catheters Below are examples of central venous catheters. This is not an all inclusive list of either type of catheter or type of access device. Tunneled Central Venous Catheters. Tunneled catheters are passed under the skin to a separate exit point. This helps stabilize them making them useful for long term therapy. They can have one or more lumens. Power Hickman® Multi-lumen Hickman® or Groshong® Tunneled Central Broviac® Long-Term Tunneled Central Venous Catheter Dialysis Catheters Venous Catheter © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Implanted Ports. Inplanted ports are also tunneled under the skin. The port itself is placed under the skin and accessed as needed. When not accessed, they only need an occasional flush but otherwise do not require care. They can be multilumen as well. They are also useful for long term therapy. ` Single lumen PowerPort® Vue Implantable Port Titanium Dome Port Dual lumen SlimPort® Dual-lumen RosenblattTM Implantable Port © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Non-tunneled Central Venous Catheters. Non-tunneled catheters are used for short term therapy and in emergent situations. MAHURKARTM Elite Dialysis Catheter Image provided courtesy of Covidien. MAHURKAR is a trademark of Sakharam D. Mahurkar, MD. © Covidien. All rights reserved. Peripherally Inserted Central Catheters. A “PICC” is inserted in a large peripheral vein, such as the cephalic or basilic vein, and then advanced until the tip rests in the distal superior vena cava or cavoatrial junction. Multi-lumen Peripherally Inserted Catheters PowerPICC® Catheter Groshong® Catheter © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc. Dialysis Catheters. A dialysis catheter is also tunneled into the superior vena cava. Arteriovenous fistulas are preferred over catheters. HemoSplit® Long-Term Dialysis Catheter © 2013 C. R. Bard, Inc. Used with permission. Bard, are trademarks and/or registered trademarks of C. R. Bard, Inc..
Recommended publications
  • Piccs, Ports and Lines: Clarifying the Options
    Current Concepts in Vascular Therapies 2011 Mid-Atlantic Conference PICCs, Ports and Lines: Clarifying the Options Babatunde Almaroof, MD April 2, 2011 Objectives • State the indications for central venous access • Discuss types of central venous catheters • “Clarifying the options”/indications for each kind of catheter. Need for central vascular access • There is an increasing need for vascular access as medical care has become more complex. • Most inpatients are able to get their needs served by a peripheral i.v access • Sometimes however, a central access will be needed due to limitations of a peripheral access – Infiltration, extravasation, thrombosis – Infection and sclerosis • This makes central venous access, the preferred choice for long term use as they allow a higher flow and tolerate hyperosmolar solutions not tolerated by peripheral veins Indications for central venous access • TPN • Chemotherapy • Long term antibiotics – Osteomyelitis, endocarditis, fungal infections • Patients with difficult peripheral vein access • Hemodynamic monitoring • Temporary hemodialysis access • Plasmapheresis Historical Background • The first i.v infusion was performed using a cannula made from quill in 1657 • First successful human blood transfusion was performed in 1667 • Seldinger described his technique for catheter insertion in 1953 • Percutaneous placement of a subclavian vein catheter was reported in 1956 Sites of central venous access • Internal Jugular vein • Subclavian vein – Higher risk of pneumothorax • Femoral vein – Higher risk of
    [Show full text]
  • Renovascular Hypertension
    z RENOGRAM INIS-mf —11322 RENOVASCULAR HYPERTENSION G.G. Geyskes STELLINGEN Behorende bij het proefschrift THE RENOGRAM IN RENOVASCULAR HYPERTENSION door G.G. Geyskes \ "n. it f 1 VII Het captopril renogratn kan de diagnostische PTA zoals door Maxwell Paranormale geneeskunde bij patiënten met hypertensie heeft meer bepleit vrijwel vervangen. subjectieve dan objectieve effecten. M.H. Maxwell. A.V. Walu. Hyptritnsion 1914.6:589-392. II VIII Bij dubbelzijdige nierarteriestenose geeft ncfrectomie van een kleine Het lijkt mogelijk de ontwikkeling van diabetische nefropathie af te nier in combinatie met PTA van de contralaterale nier vaak verbetering remmen door medicamenteuze antihypertensieve therapie, speciaal met van de totale nierfunktie. converting enzyme inhibitors. Ill IX Onderdrukking van de PRA is een antihyperteniief mechanisme van Het roken van sigaretten kan een oorzaak van renovaculaire hyperten- betaMokkers. sie zijn. G.G. Geyskts. J. Vos. P. Boer. E.J. Dorhoul Mets. Lmcei 1976:1049-1051. CE. Grimm el al. Nrphron 1986. 44 SI: 96-100. IV Contractie van het extracellulair volume is een antihyperteniief mecha- Het metaiodobenzylguanidine scintigram is een aanwinst bij de diag- nisme van diuretka. nostiek van het feochromocytoom. De opname van deze stof kan ook U.A.M. van Seht». G.G. Geyskti. J.C. Hom. El Dorhoul Mees. therapeutische consequenties hebben. CKn Phorm è Vier 1986. 39:6044, XI Bij veroordeling voor een /.waar misdrijf kan men 't best een levenslange Het clonidine withdrawal syndroom is een vrij sterke contraindicatie tegen het gebruik van dit antihyptttensivum. strul geven die verkort wordt bij verbetering van de mentaliteit. G.G. Geyskts. P. Boer. E.J.
    [Show full text]
  • Home Dialysis
    Have you thought about DIALYSIS at There is more than one HOME? way to treat kidney failure. Choosing your treatment is about helping you live your life. GETTING INVOLVED REALLY MATTERS You’ll feel more in charge if you take an active role in the decision. Your kidney team should tell you about all treatment options and the pros and What are the first steps? cons of each. But you make Learn about the different options for treatment of kidney failure. the choice based on your n Talk to the professionals who are treating you. needs, lifestyle, medical n Ask questions: conditions, and current • What treatments are done at home? level of kidney function. In • Am I eligible for home treatments? • How will my choice of treatment affect my order to make this decision, health and lifestyle? you need to learn about all • At this point in my kidney disease, is one choice better than another? the treatments. • Will one treatment better protect my remaining kidney function? Which one? 2 Where can you learn about your options? When you have kidney disease, a team of professionals (your kidney team) will help you understand how your choice will affect your life. Ask questions to be sure what the right option is for you. Discuss the things that are most important to you and any concerns or worries you may have. Visit the National Kidney Foundation website at www.kidney.org for helpful resources. You can also call the NKF Cares patient help line toll-free at 1.855.NKF.CARES (1.855.653.2273) or email [email protected].
    [Show full text]
  • An Interesting Presentation of Invasive Bladder Carcinoma As Pseudo
    An interesting presentation of invasive bladder carcinoma as pseudo renal failure Uma apresentação interessante do carcinoma invasivo de bexiga como pseudo insuficiência renal ABSTRACT RESUMO Authors Ascites and oliguria with an increasing Ascite e oligúria com um nível crescente Ashwin Shekar1 serum creatinine level are often observed de creatinina sérica são frequentemente 1 Anuj Dumra in patients with acute renal failure. observadas em pacientes com insuficiência 1 Dinesh Reddy However, these symptoms are also renal aguda. Entretanto, esses sintomas 1 Hardik Patel noted in individuals with intraperitoneal também são notados em indivíduos com urinary leakage and can be mistaken for extravasamento urinário intraperitoneal acute renal failure. This rise in creatinine e podem ser diagnosticados como lesão 1 Sri Sathya Sai Institute of Higher in such patients is called pseudo renal renal aguda erroneamente. Este aumento Medical Sciences, Department of Urology, Prashantigram, failure and it happens by a process of de creatinina em tais pacientes é chamado Puttaparthi, Andhra Pradesh reverse peritoneal dialysis. In literature, de pseudo insuficiência renal e ocorre por 515134, India. the most commonly described condition um processo de diálise peritoneal reversa. that leads to this clinical picture is Na literatura, a condição mais comumente following a spontaneous or missed descrita que leva a este quadro clínico se dá bladder perforation. We, herein, report após uma perfuração vesical espontânea ou a case of carcinoma of the bladder that perdida. Relatamos aqui um caso de carcinoma presented with features resembling acute de bexiga que apresentou características renal failure, which later turned out to be semelhantes à insuficiência renal aguda, e pseudo renal failure due to intraperitoneal mais tarde se revelou uma pseudo insuficiência urinary extravasation from a forniceal renal devido a extravasamento urinário rupture.
    [Show full text]
  • Dynamic Renogram
    Dynamic Renogram What is a dynamic renogram scan? measure the number of gamma ray counts over time and plot the uptake, excretion and clearance Water soluble substances are predominantly data on a graph to form an objective analysis. cleared from the body via the kidneys. The rate at which waste products are cleared is a reflection of But injecting different chemical tracers that are the efficiency of the kidney and referred to as excreted in different ways by the kidney, we can kidney function. infer information about different aspects of kidney function i.e. DTPA is filtered and used to assess Many conditions can affect this function. Without filtration function; MAG3 is secreted by the kidney being able to clear waste products the body would tubular cells and used to assess tubular function eventually deteriorate and eventually one organ (and indirectly assess filtration function) and OIH system after another with begin to fail. It is combines both of these and allows us the assess a imperative that we are able to assess renal parameter called the effective renal plasma flow. clearance or function so that we can intervene and These parameters are all very important for your act in a timeous fashion. doctor. In patients with renal failure it also allows us to see What can I expect to happen? when dialysis will become necessary. In patients with kidney transplants it allows us to see when the Many things can affect kidney function that can transplant starts to deteriorate and oftentimes tell give spurious results. These include: us what is causing the deterioration.
    [Show full text]
  • Infusaport Insertion in Patients with Haemophilia
    Infusaport insertion in patients with haemophilia PURPOSE This guideline is designed to assist medical and nursing staff in the management of children with haemophilia having an infusaport inserted at the Royal Children’s Hospital. DEFINITIONS Infusaport or portacath is an implantable Central Venous Access Device. BACKGROUND Most children with severe haemophilia (<1% Factor VIII or IX) will require prophylactic intravenous clotting factor administration 2-3 times per week to prevent spontaneous bleeding. Accessing peripheral veins can be difficult and traumatic for children and in particular infants/toddlers where veins are often difficult to identify. A number of boys develop significant behavioural issues around treatment after traumatic experiences in their early years. Approximately 80% of children with severe haemophilia treated at the Royal Children’s Hospital will require an infusaport for venous access. Most families report that insertion of a “port” dramatically improves their quality of life in that venous access is no longer fearful and difficult and parents are able to administer clotting factor to their child at home for both prevention and treatment of bleeds. Ports are removed as soon as parents are able to administer clotting factor peripherally. In general ports are removed prior to commencement of primary school. PROCEDURE Once the need for a port has been identified and discussed with the family a referral is made. Mr Joe Crameri performs the majority of infusaport surgery in haemophilia patients at the Royal Children’s Hospital. Many families appreciate the opportunity to see a port (there is one in the haemophilia centre) and to speak with a family whose child is established on home prophylaxis via a port.
    [Show full text]
  • Venous Access and Ports
    Venous Access and Ports Helen Starosta Venous access and ports Peripheral IV access Arterio-Venous Fistula Central venous access Peripherally Inserted Central Catheter (PICC) Non Tunnelled Central Venous Catheter (CVC) Tunnelled (e.g. Hickman) Central Venous Access Device Implanted Central Venous Access Device e.g. Infusaport Jesse’s Story Charles’s Story Vein Training Why do we need venous access Treatment for bleeding disorders involves intravenous therapy Therefore reliable venous access is essential to make effective treatment possible The choices for IV access Peripheral IV access Arterio-Venous Fistula Central venous access Peripherally Inserted Central Catheter (PICC) Non Tunnelled Central Venous Catheter (CVC) Tunnelled (e.g. Hickman) Central Venous Access Device Implanted Central Venous Access Device e.g. Infusaport Peripheral Venous Access Butterfly & IV Short term (days) or intermittent therapy Short catheters generally placed in forearm, hand or scalp veins Arterio-Venous Fistula Can last many years Connects an artery directly to a vein → results in more blood flow to the vein → the vein grows larger and stronger Fistula takes a while after surgery to develop (as long as 24 months) Properly formed fistula is less likely than other kinds of vascular access to form clots or become infected Peripherally Inserted Central Catheters (PICC) Short term use (days to several weeks) Peripheral central venous catheter inserted at or above the antecubital space and the distal tip of the catheter is positioned
    [Show full text]
  • Office Cystoscopy Urinary Tract Infection Rate and Cost Before And
    www.auajournals.org/journal/urpr Office Cystoscopy Urinary Tract Infection Rate and Cost before and after Implementing New Handling and Storage Practices Vincent Roth, Pedro Espino-Grosso, Carl H. Henriksen and Benjamin K. Canales* From the Department of Urology (VR, PE-G, CHH, BKC), University of Florida, Gainesville, Florida, Department of Surgery (VR, PE-G, BKC), Division of Urology, Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida Abstract Abbreviations Introduction: Based on 2010 American Urological Association recommendations our practice and Acronyms fl transitioned from sterile to high level disinfection exible cystoscope reprocessing and from sterile AUA ¼ American to clean handling practices. We examined symptomatic urinary tract infection rate and cost before Urological Association and after policy implementation. GU ¼ genitourinary Methods: We retrospectively reviewed 30-day outcomes following 1,888 simple cystoscopy en- HLD ¼ high level counters that occurred from 2007 to 2010 (sterile, 905) and 2012 to 2015 (high level disinfection, disinfection 983) at the Malcom Randall Veterans Affairs Medical Center. We excluded veterans who had recent ¼ instrumentation, active or recent urinary tract infection, performed intermittent catheterization, or had SUNA Society of complicated cystoscopy (dilation, biopsy etc). Patient/procedural factors and cost were collected and Urologic Nurses and Associates compared between groups. UTI ¼ urinary tract Results: Both cohorts had similar age (mean 68 years), race (Caucasian, 82%), comorbidities infection (cancer history, 62%; diabetes mellitus, 36%; tobacco use, 24.5%), and cystoscopy procedural indications (cancer surveillance, 50%; hematuria, 34%). Urological complication rate was low between groups (1.43%) with no significant difference in symptomatic urinary tract infection events (0.99% sterile vs 0.51% high level disinfection, p¼0.29) or unplanned clinic/emergency department visits (0.66% sterile vs 0.71% high level disinfection, p¼0.91).
    [Show full text]
  • Hemodialysis Central Venous Catheter Scrub-The-Hub Protocol
    Hemodialysis Central Venous Catheter Scrub-the-Hub Protocol This protocol outlines a suggested approach to preparing 4. Always handle the catheter hubs aseptically. Once catheter hubs prior to accessing the catheter for hemodialysis. disinfected, do not allow the catheter hubs to touch It is based on evidence where available and incorporates nonsterile surfaces. theoretical rationale when published evidence is unavailable. 5. Attach sterile syringe, unclamp the catheter, withdraw blood, and flush per facility protocol. Definitions: 6. Repeat for other limb (this might occur in parallel). Catheter refers to a central venous catheter (CVC) or a 7. Connect the ends of the blood lines to the catheter central line aseptically. Hub refers to the end of the CVC that connects to the 8. Remove gloves and perform hand hygiene. blood lines or cap Cap refers to a device that screws on to and occludes Disconnection Steps: the hub 1. Perform hand hygiene and don new clean gloves. Limb refers to the catheter portion that extends from the patient’s body to the hub 2. Clamp the catheter (Note: Always clamp the catheter before disconnecting. Never leave an uncapped catheter Blood lines refer to the arterial and venous ends of the unattended). extracorporeal circuit that connect the patient’s catheter 3. Disinfect the catheter hub before applying the new cap to the dialyzer using an appropriate antiseptic (see notes). a. (Optional) Disinfect the connection prior to disconnection. If this is done, use a separate antiseptic Catheter Connection and Disconnection pad for the subsequent disinfection of the hub. Steps: b. Disconnect the blood line from the catheter and Connection Steps disinfect the hub with a new antiseptic pad.
    [Show full text]
  • Guidelines for Nurses
    Guidelines for Nurses 17 Gauge third lumen indicated for intravenous therapy, power injection Enhanced Acute Dialysis Care of contrast media, and central The Power-Trialysis* Short-Term Dialysis Catheter, with venous pressure monitoring a third internal lumen for intravenous therapy, power CHECK FOR PATENCY injection of contrast media, and central venous pressure PRIOR TO POWER INJECTIONS monitoring, is indicated for use in attaining short-term (less than 30 days) vascular access for hemodialysis, hemoperfusion, WARNING: Power injector machine pressure limit- Aspirate for adequate blood and apheresis treatments. The catheter is intended to be ing feature may not prevent over-pressurization of return and rigorously ush the an occluded catheter, which may lead to catheter inserted in the jugular, femoral, or subclavian vein as required. catheter with at least 10 ml of The maximum recommended infusion rate is 5 ml/sec for power failure. 9. Disconnect the power injection device. sterile normal saline. injection of contrast media. 10. Flush the catheter with 10 ml of sterile normal saline, using a 10 ml or larger syringe. In addition, WARNING: Failure to ensure patency of catheter prior to power injection studies lock the lumen marked “Power Injectable” per may result in catheter failure. What’s di erent about the Power-Trialysis* institution protocol for central lines. Usually one ml catheter? is adequate. 11. Close clamp and replace end capcap/needleless The Power-Trialysis* catheter is the rst dialysis catheter with a connector on the catheter. third lumen indicated for power injection of contrast media during Flushing and locking procedure for non-dialysis third lumen CECT scans.
    [Show full text]
  • An Economic Assessment of Contemporary Kidney Transplant Practice
    Received: 12 October 2017 | Revised: 28 January 2018 | Accepted: 28 January 2018 DOI: 10.1111/ajt.14702 ORIGINAL ARTICLE An economic assessment of contemporary kidney transplant practice David A. Axelrod1 | Mark A. Schnitzler2 | Huiling Xiao2 | William Irish3 | Elizabeth Tuttle-Newhall3 | Su-Hsin Chang4 | Bertram L. Kasiske5,6 | Tarek Alhamad7 | Krista L. Lentine2 1Department of Transplantation, Lahey Hospital and Health System, Burlington, Kidney transplantation is the optimal therapy for end- stage renal disease, prolonging MA, USA survival and reducing spending. Prior economic analyses of kidney transplantation, 2 Center for Abdominal Transplantation, Saint using Markov models, have generally assumed compatible, low- risk donors. The eco- Louis University School of Medicine, St. Louis, MO, USA nomic implications of transplantation with high Kidney Donor Profile Index (KDPI) de- 3Department of Surgery, East Carolina ceased donors, ABO incompatible living donors, and HLA incompatible living donors University, Greenville, NC, USA have not been assessed. The costs of transplantation and dialysis were compared with 4Division of Public Health Sciences, Department of Surgery, Washington the use of discrete event simulation over a 10- year period, with data from the United University School of Medicine, St. Louis, States Renal Data System, University HealthSystem Consortium, and literature review. MO, USA Graft failure rates and expenditures were adjusted for donor characteristics. All trans- 5Hennepin County Medical Center, Minneapolis, MN,
    [Show full text]
  • Laboratory Services Manual, February 2020
    LABORATORY SERVICES MANUAL TABLE OF CONTENTS I LABRegOP7900 GENERAL INFORMATION I Laboratory Services at SHA Regina Sites .......................................................... 1 II Hours of Operation ....................................................................................... 2 III Laboratory Administration.............................................................................. 2 IV Phlebotomy Services ...................................................................................... 3 V Laboratory Requisitions.................................................................................. 4 VI Test Priority ................................................................................................... 6 VII Test Order Entry ............................................................................................ 7 VIII Requisition Test Add-Ons or Changes .............................................................. 7 IX Specimen Requirements..................................................................................8 X Specimen Collection 1. Client Identification .............................................................................. 9 2. Transfusion Service Bands..................................................................... 10 3. Collection of Blood Specimens .............................................................. 10 4. Specimen Labelling ............................................................................ 11 XI Transporting Specimens to the lab ................................................................
    [Show full text]