EXPERIMENT 4 ABSORPTION SPECTROPHOTOMETRY: DIRECT-MEASUREMENT OPTION This Is a Group Experiment. People in Each Group Will Share
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laboratory Glassware N Edition No
Laboratory Glassware n Edition No. 2 n Index Introduction 3 Ground joint glassware 13 Volumetric glassware 53 General laboratory glassware 65 Alphabetical index 76 Índice alfabético 77 Index Reference index 78 [email protected] Scharlau has been in the scientific glassware business for over 15 years Until now Scharlab S.L. had limited its sales to the Spanish market. However, now, coinciding with the inauguration of the new workshop next to our warehouse in Sentmenat, we are ready to export our scientific glassware to other countries. Standard and made to order Products for which there is regular demand are produced in larger Scharlau glassware quantities and then stocked for almost immediate supply. Other products are either manufactured directly from glass tubing or are constructed from a number of semi-finished products. Quality Even today, scientific glassblowing remains a highly skilled hand craft and the quality of glassware depends on the skill of each blower. Careful selection of the raw glass ensures that our final products are free from imperfections such as air lines, scratches and stones. You will be able to judge for yourself the workmanship of our glassware products. Safety All our glassware is annealed and made stress free to avoid breakage. Fax: +34 93 715 67 25 Scharlab The Lab Sourcing Group 3 www.scharlab.com Glassware Scharlau glassware is made from borosilicate glass that meets the specifications of the following standards: BS ISO 3585, DIN 12217 Type 3.3 Borosilicate glass ASTM E-438 Type 1 Class A Borosilicate glass US Pharmacopoeia Type 1 Borosilicate glass European Pharmacopoeia Type 1 Glass The typical chemical composition of our borosilicate glass is as follows: O Si 2 81% B2O3 13% Na2O 4% Al2O3 2% Glass is an inorganic substance that on cooling becomes rigid without crystallising and therefore it has no melting point as such. -
White Paper Absorbance Or Fluorescence: Which Is the Best
WHITE PAPER No. 40 Absorbance or Fluorescence: Which Is the Best Way to Quantify Nucleic Acids? Natascha Weiß1, Martin Armbrecht1 ¹Eppendorf AG, Hamburg, Germany Executive Summary When performing molecular experiments on nucleic acids, it is a basic requirement to determine the concentration as well as the quality of the sample. The standard method which serves this purpose is UV-Vis spectrophotometry – but is it always the right choice? In the present White Paper, the advantages and disadvantages of this technique will be described and it will be compared with nucleic acid quantification via fluorescence. In this context, it will be discussed which situations warrant the use of which one of the two methods. The decision will generally depend on the condition of the sample as well as on the requirements of downstream applications. Since the advantages of both methods complement each other well, it is most practical to have the ability to perform both methods on a single instrument in a flexible manner. Introduction Experiments involving nucleic acids are a mainstay in any evaluated by measuring the sample at additional wave molecular laboratory. DNA and RNA are isolated from micro- lengths (230 nm, 280 nm) and calculating the purity ratios, organisms and from cells of higher order organisms in order i.e. the ratios of the values obtained at 260/230 nm and at to be employed in a broad variety of processing steps and 260/280 nm, respectively. In this way, it will be evident analyses. It is crucial for any type of downstream applica- whether cellular debris or remainders of reagent used during tion that a defined amount of nucleic acid is used and that purification such as proteins, sugar molecules, certain salts the sample is free from contaminations that may impact the or phenols, are present in the solution, as these will generate experiments. -
On Food, Spectrophotometry, and Measurement Data Processing (Keynote Lecture)
12th IMEKO TC1 & TC7 Joint Symposium on Man Science & Measurement September, 3–5, 2008, Annecy, France ON FOOD, SPECTROPHOTOMETRY, AND MEASUREMENT DATA PROCESSING (KEYNOTE LECTURE) Roman Z. Morawski Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Radioelectronics Warsaw, Poland [email protected] Abstract: Spectrophotometry is getting more and more Despite philosophical abnegation of food issues, the often the method of choice not only in laboratory analysis of practice of food preparation and refinement has flourished (bio)chemical substances, but also in the off-laboratory for centuries, and inspired research-and-invention-oriented identification and testing of physical properties of various minds. Today, we may speak about a fully developed products, in particular – of various organic mixtures discipline of science and technology. Enough to say that the including food products and ingredients. Specialized Institute of Food Technologists – the largest international, spectrophotometers, called spectrophotometric analyzers are non-profit professional organization involved in the designed for such applications. This keynote lecture is on advancement of food science and technology – is the state of the art and developmental trends in the domain encompassing 23 000 members worldwide. Its Committee of spectrophotometric analyzers of food with particular on Higher Education provided the following definition of emphasis on wine analyzers. The following issues are food science: "Food science is the discipline in which the covered: philosophical and methodological background of engineering, biological, and physical sciences are used to food analysis, physical and metrological principles of study the nature of foods, the causes of deterioration, the spectrophotometry, the role of measurement data processing principles underlying food processing, and the improvement in spectrophotometry, food analyzers on the market and of foods for the consuming public" [1]. -
Environmental Chemistry Method Methoxyfenozide & Degradates In
Dow AgroSciences LLC Study ID: 110356 Page 12 Method Validation Study for the Detennination of Residues of Methoxyfenozide and its A-ring • Phenol Metabolite and B-ring Mono Acid Metabolite in Surface Water, Ground Water and Drinking Water by Liquid Chromatography with Tandem Mass Spectrometry INTRODUCTION J This method is applicable for the quantitative detennination of residues of methoxyfenozide and its A-ring phenol metabolite and B-ring mono acid metabolite in surface, ground and drinking water. The method was validated over the concentration range of 0.05-1.0 µg/L with a validated limit of quantitation of 0.05 µg/L. Common names, chemical names, and molecular formulas for the analytes are given in Table I. This study was conducted to fulfill data requirements outlined in the EPA Residue Chemistry Test Guidelines, OPPTS 850. 7100 (/). The validation will also comply with the requirements of EU Council Regulation (EC) No. 1107/2009 with particular regard to Section 3 of SANCO/3029/99 rev.4 and Section 3 of SANCO/825/00 rev.8.1 as well as PMRA Regulatory Directive Dir98-02 (2-4). The validation was conducted following Dow AgroSciences SOP ECL-24 with exceptions noted in the protocol or by protocol amendment. Method Principle Residues of methoxyfenozide, its A-ring phenol metabolite and its B-ring mono acid metabolite • are extracted from water samples by taking a l 0.0-mL aliquot and placing in an I I -dram (45-mL) glass vial equipped with a PTFE-lined cap or a 50-mL polypropylene centrifuge tube equipped with a cap. -
Absorption Spectroscopy and Imaging from the Visible Through Mid-Infrared with 20 Nm Resolution
Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Aaron M. Katzenmeyer,1 Glenn Holland,1 Kevin Kjoller2 and Andrea Centrone1* 1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States. *E-mail: [email protected] 2Anasys Instruments, Inc., 325 Chapala Street, Santa Barbara, California 93101, United States. Abstract Absorption spectroscopy and mapping from visible through mid-IR wavelengths has been achieved with spatial resolution exceeding the limit imposed by diffraction, via the photothermal induced resonance technique. Correlated vibrational (chemical), and electronic properties are obtained simultaneously with topography with a wavelength-independent resolution of ≈ 20 nm using a single laboratory-scale instrument. This marks the highest resolution reported for PTIR, as determined by comparing height and PTIR images, and its first extension to near-IR and visible wavelengths. Light-matter interaction enables scientists to characterize materials and biological samples across a large range of energies. Visible (VIS) and near-infrared (NIR) light (from 400 nm to 2.5 µm) probes electronic transitions in materials [1], providing information regarding band gap, defects, and energy transfer which is crucial for the semiconductor and optoelectronic industries and for understanding processes such as photosynthesis. Mid-infrared (mid-IR) light (from 2.5 µm to 15 µm) probes vibrational transitions and provides rich chemical and structural information enabling materials identification [2]. Spectral maps can be obtained by coupling a light source and a spectrometer with an optical microscope [3]. However, light diffraction limits the lateral resolution achievable with conventional microscopic techniques to approximately half the wavelength of light [4]. -
ELISA Plate Reader
applications guide to microplate systems applications guide to microplate systems GETTING THE MOST FROM YOUR MOLECULAR DEVICES MICROPLATE SYSTEMS SALES OFFICES United States Molecular Devices Corp. Tel. 800-635-5577 Fax 408-747-3601 United Kingdom Molecular Devices Ltd. Tel. +44-118-944-8000 Fax +44-118-944-8001 Germany Molecular Devices GMBH Tel. +49-89-9620-2340 Fax +49-89-9620-2345 Japan Nihon Molecular Devices Tel. +06-6399-8211 Fax +06-6399-8212 www.moleculardevices.com ©2002 Molecular Devices Corporation. Printed in U.S.A. #0120-1293A SpectraMax, SoftMax Pro, Vmax and Emax are registered trademarks and VersaMax, Lmax, CatchPoint and Stoplight Red are trademarks of Molecular Devices Corporation. All other trademarks are proprty of their respective companies. complete solutions for signal transduction assays AN EXAMPLE USING THE CATCHPOINT CYCLIC-AMP FLUORESCENT ASSAY KIT AND THE GEMINI XS MICROPLATE READER The Molecular Devices family of products typical applications for Molecular Devices microplate readers offers complete solutions for your signal transduction assays. Our integrated systems γ α β s include readers, washers, software and reagents. GDP αs AC absorbance fluorescence luminescence GTP PRINCIPLE OF CATCHPOINT CYCLIC-AMP ASSAY readers readers readers > Cell lysate is incubated with anti-cAMP assay type SpectraMax® SpectraMax® SpectraMax® VersaMax™ VMax® EMax® Gemini XS LMax™ ATP Plus384 190 340PC384 antibody and cAMP-HRP conjugate ELISA/IMMUNOASSAYS > nucleus Single addition step PROTEIN QUANTITATION cAMP > λEX 530 nm/λEM 590 nm, λCO 570 nm UV (280) Bradford, BCA, Lowry For more information on CatchPoint™ assay NanoOrange™, CBQCA kits, including the complete procedure for this NUCLEIC ACID QUANTITATION assay (MaxLine Application Note #46), visit UV (260) our web site at www.moleculardevices.com. -
Laboratory Equipment Reference Sheet
Laboratory Equipment Stirring Rod: Reference Sheet: Iron Ring: Description: Glass rod. Uses: To stir combinations; To use in pouring liquids. Evaporating Dish: Description: Iron ring with a screw fastener; Several Sizes Uses: To fasten to the ring stand as a support for an apparatus Description: Porcelain dish. Buret Clamp/Test Tube Clamp: Uses: As a container for small amounts of liquids being evaporated. Glass Plate: Description: Metal clamp with a screw fastener, swivel and lock nut, adjusting screw, and a curved clamp. Uses: To hold an apparatus; May be fastened to a ring stand. Mortar and Pestle: Description: Thick glass. Uses: Many uses; Should not be heated Description: Heavy porcelain dish with a grinder. Watch Glass: Uses: To grind chemicals to a powder. Spatula: Description: Curved glass. Uses: May be used as a beaker cover; May be used in evaporating very small amounts of Description: Made of metal or porcelain. liquid. Uses: To transfer solid chemicals in weighing. Funnel: Triangular File: Description: Metal file with three cutting edges. Uses: To scratch glass or file. Rubber Connector: Description: Glass or plastic. Uses: To hold filter paper; May be used in pouring Description: Short length of tubing. Medicine Dropper: Uses: To connect parts of an apparatus. Pinch Clamp: Description: Glass tip with a rubber bulb. Uses: To transfer small amounts of liquid. Forceps: Description: Metal clamp with finger grips. Uses: To clamp a rubber connector. Test Tube Rack: Description: Metal Uses: To pick up or hold small objects. Beaker: Description: Rack; May be wood, metal, or plastic. Uses: To hold test tubes in an upright position. -
Absorption Spectroscopy
World Bank & Government of The Netherlands funded Training module # WQ - 34 Absorption Spectroscopy New Delhi, February 2000 CSMRS Building, 4th Floor, Olof Palme Marg, Hauz Khas, DHV Consultants BV & DELFT HYDRAULICS New Delhi – 11 00 16 India Tel: 68 61 681 / 84 Fax: (+ 91 11) 68 61 685 with E-Mail: [email protected] HALCROW, TAHAL, CES, ORG & JPS Table of contents Page 1 Module context 2 2 Module profile 3 3 Session plan 4 4 Overhead/flipchart master 5 5 Evaluation sheets 22 6 Handout 24 7 Additional handout 29 8 Main text 31 Hydrology Project Training Module File: “ 34 Absorption Spectroscopy.doc” Version 06/11/02 Page 1 1. Module context This module introduces the principles of absorption spectroscopy and its applications in chemical analyses. Other related modules are listed below. While designing a training course, the relationship between this module and the others, would be maintained by keeping them close together in the syllabus and place them in a logical sequence. The actual selection of the topics and the depth of training would, of course, depend on the training needs of the participants, i.e. their knowledge level and skills performance upon the start of the course. No. Module title Code Objectives 1. Basic chemistry concepts WQ - 02 • Convert units from one to another • Discuss the basic concepts of quantitative chemistry • Report analytical results with the correct number of significant digits. 2. Basic aquatic chemistry WQ - 24 • Understand equilibrium chemistry and concepts ionisation constants. • Understand basis of pH and buffers • Calculate different types of alkalinity. -
Enzyme Analysis by Spectrophotometry - Plate Reader Method
Enzyme Analysis by Spectrophotometry - Plate Reader method Enzyme Extraction Equipment and reagents: Machine/Product Reference (Company, Type, …) Centrifuge – cooled Eppendorf 5415R with F45-24-11 rotor Mixer Mill / Cryo Mill Retsch MM 400 with 2x PTFE Adapter rack for 10 reaction vials 1.5 and 2.0 ml. Microtube Vortex Ika Vortex 1 Plate reader BioTek PowerWave HT with Gen 5 software Microcentrifuge tubes Safe-lock, 1.5 and 2.0 ml Pipettes (+Multistep / Multichannel) 1-5 ml; 0.1-1 ml; 5-100 µl 8-tube strip PCR tubes Crushed Ice Liquid Nitrogen (+ thermos jar) PVP (Polyvinylpyrrolidone, PVP40) Sigma PVP40T TRIS (Tris(hydroxymetyl)-aminoethane) -1 99 %, 121.14 g.mol Sigma T1378 Na 2-EDTA (disodium salt dehydrate) -1 99 %; 372.2 g.mol Sigma ED2SS DTT (1,4-Dithiothreitol) -1 ≥ 99 %; 154.24 g.mol Sigma 43815 Hydrochloric Acid concentrated HCl -1 -1 -1 37 %; 1,19 g.ml ; 36.46 g.mol = 12.08 mol.l VWR 20252.290 Most buffers can be prepared in advance and kept at 4°C Requirement: the samples must be collected in 1.5 or 2.0 ml Eppendorf tubes at harvest. Prepare reagent working solutions: Extraction buffer (0.1 M TRIS ; 1 mM Na 2-EDTA; 1 mM DTT, pH 7.8) Dissolve 12.114 g TRIS (121.14 g/mol) + 0.3722 mg EDTA (372 g/mol) + 0.1542 g DTT (154.2 g/mol) in 900 ml distilled water, adjust to pH 7.8 with HCl (use 5M HCl) and dilute to 1 liter. Keep the extraction buffer on ice. -
Microlab 500-Series
MicroLab 500-series Getting Started 2 Contents CHAPTER 1: Getting Started Connecting the Hardware…………………………………………………………………………….…...6 Installing the USB driver…………………….…………………………………………………...………..6 Installing the Software…………………………………………………………………………..………...8 Starting a new Experiment………………………………………………………………………..……….8 CHAPTER 2: Setting up a MicroLab Experiment Adding Input Sources Sensor Variables……………………………………………………………………………….…………10 Adding a Sensor ………………………………………………………………………………………….10 Calibrating a Sensor………………………………………………………………………………………11 The Calibration Module………………………………………………………………………………......11 Adding a Calibration Point……………………………………………………………………………….11 Correlating the Data……………………………………………………………………………………....12 Adding More Variables………………………………………………………………………………...…14 Formula Variables………………………………………………………………………………………...15 Designing an Experiment The Programming Steps………………………………………………………………………..………..17 Displaying the Data…………………………………………………………………………..…….……..17 Controlling an Experiment Starting the Experiment…………………………………………………………………….………..…..18 Stopping the Experiment…………………………………………………………………….………......18 Repeating an Experiment………………………………………………………………………………..18 Switches A & B……………………………………………………………………………………………19 Analyzing the Data Graph Analysis…………………………………………………………………………..………..………19 Add a Curve Fit………………………………………………………………………….....……19 Data Analysis…………………….…………………………………………………………………..……22 CHAPTER 3 - Spectrophotometry (522/516) Calibrating the Spectrophotometer Reading a Blank………...…………………………………………………………………………..…….23 3 Reading -
Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential
Sensors 2014, 14, 17275-17303; doi:10.3390/s140917275 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential Zhiyun Li 1, M. Jamal Deen 1,2,4,*, Shiva Kumar 2 and P. Ravi Selvaganapathy 1,3 1 School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada; E-Mails: [email protected] (Z.L.); [email protected] (P.R.S.) 2 Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1 Canada; E-Mail: [email protected] 3 Mechanical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada 4 Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +1-905-525-9140 (ext. 27137); Fax: +1-905-521-2922. Received: 1 July 2014; in revised form: 7 September 2014 / Accepted: 9 September 2014 / Published: 16 September 2014 Abstract: Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. -
Basics of Plasma Spectroscopy
Home Search Collections Journals About Contact us My IOPscience Basics of plasma spectroscopy This content has been downloaded from IOPscience. Please scroll down to see the full text. 2006 Plasma Sources Sci. Technol. 15 S137 (http://iopscience.iop.org/0963-0252/15/4/S01) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.35.1.48 This content was downloaded on 20/06/2014 at 16:07 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 15 (2006) S137–S147 doi:10.1088/0963-0252/15/4/S01 Basics of plasma spectroscopy U Fantz Max-Planck-Institut fur¨ Plasmaphysik, EURATOM Association Boltzmannstr. 2, D-85748 Garching, Germany E-mail: [email protected] Received 11 November 2005, in final form 23 March 2006 Published 6 October 2006 Online at stacks.iop.org/PSST/15/S137 Abstract These lecture notes are intended to give an introductory course on plasma spectroscopy. Focusing on emission spectroscopy, the underlying principles of atomic and molecular spectroscopy in low temperature plasmas are explained. This includes choice of the proper equipment and the calibration procedure. Based on population models, the evaluation of spectra and their information content is described. Several common diagnostic methods are presented, ready for direct application by the reader, to obtain a multitude of plasma parameters by plasma spectroscopy. 1. Introduction spectroscopy for purposes of chemical analysis are described in [11–14]. Plasma spectroscopy is one of the most established and oldest diagnostic tools in astrophysics and plasma physics 2.