Atomic Absorption Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Absorption Spectroscopy ATOMIC ABSORPTION SPECTROSCOPY Edited by Muhammad Akhyar Farrukh Atomic Absorption Spectroscopy Edited by Muhammad Akhyar Farrukh Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Anja Filipovic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright kjpargeter, 2011. DepositPhotos First published January, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Atomic Absorption Spectroscopy, Edited by Muhammad Akhyar Farrukh p. cm. ISBN 978-953-307-817-5 free online editions of InTech Books and Journals can be found at www.intechopen.com Contents Preface IX Chapter 1 Atomic Absorption Spectrometry (AAS) 1 R. García and A. P. Báez Chapter 2 State-of-the-Art and Trends in Atomic Absorption Spectrometry 13 Hélcio José Izário Filho, Rodrigo Fernando dos Santos Salazar, Maria da Rosa Capri, Ângelo Capri Neto, Marco Aurélio Kondracki de Alcântara and André Luís de Castro Peixoto Chapter 3 Elemental Profiling: Its Role and Regulations 37 Ajai Prakash Gupta and Suphla Gupta Chapter 4 Microextraction Techniques as a Sample Preparation Step for Metal Analysis 61 Pourya Biparva and Amir Abbas Matin Chapter 5 Application of Atomic Absorption for Determination of Metal Nanoparticles in Organic-Inorganic Nanocomposites 89 Roozbeh Javad Kalbasi and Neda Mosaddegh Chapter 6 Flame Spectrometry in Analysis of Refractory Oxide Single Crystals 105 T.V. Sheina and K.N. Belikov Chapter 7 Interference Effects of Excess Ca, Ba and Sr on Mg Absorbance During Flame Atomic Absorption Spectrometry: Characterization in Terms of a Simplified Collisional Rate Model 131 Mark F. Zaranyika, Albert T. Chirenje and Courtie Mahamadi Chapter 8 Nutritional Metals in Foods by AAS 143 Mary Millikan VI Contents Chapter 9 Comparative Assessment of the Mineral Content of a Latin American Raw Sausage Made by Traditional or Non-Traditional Processes 167 Roberto González-Tenorio, Ana Fernández-Diez, Irma Caro and Javier Mateo Chapter 10 Analysis of High Solid Content in Biological Samples by Flame Atomic Absorption Spectrometry 183 Lué-Merú Marcó Parra Chapter 11 Mineral Content and Physicochemical Properties in Female Rats Bone During Growing Stage 201 Margarita Hernández-Urbiola, Astrid L. Giraldo-Betancur, Daniel Jimenez-Mendoza, Esther Pérez-Torrero, Isela Rojas–Molina, María de los Angeles Aguilera-Barreiro, Carolina Muñoz-Torres and Mario E. Rodríguez-García Chapter 12 Activation of Bentonite and Talc by Acetic Acid as a Carbonation Feedstock for Mineral Storage of CO2 221 Petr Ptáček, Magdaléna Nosková, František Šoukal, Tomáš Opravil, Jaromír Havlica and Jiří Brandštetr Preface Spectroscopy is the study of absorption and emission of electromagnetic radiation due to the interaction between matter and energy, which depends on the wavelength of the respective radiation. Analytical Chemistry is the branch of chemistry that deals with the study of qualitative, as well as quantitative analysis, of samples. Different spectroscopic techniques like UV-Visible, Atomic Absorption, Flame Emission, Molecular Fluorescence, Phosphorescence, Chemiluminescence, Infrared, Nuclear Magnetic Resonance, Raman, X-Ray, Mass, Electron, Mössbauer are being used for this purpose. Atomic Absorption Spectroscopy (AAS) is one of the spectroscopic and analytical techniques, used for the qualitative and quantitative determination of elements employing the absorption of electromagnetic energy of a particular wavelength, usually ultraviolet or visible region, by free atoms in the gaseous state. The technique is being used for the determination of metals in different samples like food, drugs, nanomaterials, biomaterials, environmental, forensics and industrial wastes. There is a dire need to provide scholars all over the world with the recent advancements going on in research using analytical techniques. This book is an effort of the authors in the field of AAS, covering topics from basic to advanced levels. The chapters in this book have been organized to keep the sequence in reading. In the first two chapters, introduction, history and basic principle of AAS have been described with detail instrumentation of all parts and sample preparation. Chapter 3 deals with elemental profiling, functions, dietary source, biochemistry and potential toxicity of metals along with comparative techniques used for the analysis. As sample preparation techniques are the most beneficial for proper analysis, chapter 4 discusses the microextraction techniques which are characteristics for an ideal sample preparation. Keeping in view the importance of nanomaterials and refractory materials, chapter 5 and 6 highlight the ways to characterize these materials by using AAS. The interference effects between elements can be characterized using a simplified rate model and through thermodynamic equilibrium approach as explained in chapter 7. The importance of metals in food and biological samples and their characterization with AAS have been given in chapters 8-11. Carbon capture and X Preface mineral storage, leaching experiments and estimation of metal contents by comparative techniques have been explained in chapter 12. The book will provide a good resource for teaching and research purposes. Muhammad Akhyar Farrukh Department of Chemistry G.C. University Lahore Pakistan 1 Atomic Absorption Spectrometry (AAS) R. García and A. P. Báez Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City Mexico 1. Introduction Atomic Absorption Spectrometry (AAS) is a technique for measuring quantities of chemical elements present in environmental samples by measuring the absorbed radiation by the chemical element of interest. This is done by reading the spectra produced when the sample is excited by radiation. The atoms absorb ultraviolet or visible light and make transitions to higher energy levels. Atomic absorption methods measure the amount of energy in the form of photons of light that are absorbed by the sample. A detector measures the wavelengths of light transmitted by the sample, and compares them to the wavelengths which originally passed through the sample. A signal processor then integrates the changes in wavelength absorbed, which appear in the readout as peaks of energy absorption at discrete wavelengths. The energy required for an electron to leave an atom is known as ionization energy and is specific to each chemical element. When an electron moves from one energy level to another within the atom, a photon is emitted with energy E. Atoms of an element emit a characteristic spectral line. Every atom has its own distinct pattern of wavelengths at which it will absorb energy, due to the unique configuration of electrons in its outer shell. This enables the qualitative analysis of a sample. The concentration is calculated based on the Beer-Lambert law. Absorbance is directly proportional to the concentration of the analyte absorbed for the existing set of conditions. The concentration is usually determined from a calibration curve, obtained using standards of known concentration. However, applying the Beer-Lambert law directly in AAS is difficult due to: variations in atomization efficiency from the sample matrix, non-uniformity of concentration and path length of analyte atoms (in graphite furnace AA). The chemical methods used are based on matter interactions, i.e. chemical reactions. For a long period of time these methods were essentially empirical, involving, in most cases, great experimental skills. In analytical chemistry, AAS is a technique used mostly for determining the concentration of a particular metal element within a sample. AAS can be used to analyze the concentration of over 62 different metals in a solution. Although AAS dates to the nineteenth century, the modern form of this technique was largely developed during the 1950s by Alan Walsh and a team of Australian chemists working at the CSIRO (Commonwealth Science and Industry Research Organization) Division of Chemical Physics in Melbourne, Australia. Typically, the technique makes use of a flame to atomize
Recommended publications
  • Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
    Article Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals Pravin Kumar Tiwari 1,2, Nilesh Kumar Rai 3, Rohit Kumar 3, Christian G. Parigger 4 and Awadhesh Kumar Rai 2,* 1 Institute for Plasma Research, Gandhinagar, Gujarat-382428, India 2 Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India 3 CMP Degree College, Department of Physics, University of Allahabad, Pragyagraj-211002, India 4 Physics and Astronomy Department, University of Tennessee, University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700, USA * Correspondence: [email protected]; Tel.: +91-532-2460993 Received: 10 June 2019; Accepted: 10 July 2019; Published: 19 July 2019 Abstract: Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Keywords: paracetamol; laser-induced breakdown spectroscopy; cyanide; carbon swan bands; principal component analysis; Raman spectroscopy; Fourier-transform-infrared spectroscopy 1.
    [Show full text]
  • Absorption Spectroscopy and Imaging from the Visible Through Mid-Infrared with 20 Nm Resolution
    Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Aaron M. Katzenmeyer,1 Glenn Holland,1 Kevin Kjoller2 and Andrea Centrone1* 1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States. *E-mail: [email protected] 2Anasys Instruments, Inc., 325 Chapala Street, Santa Barbara, California 93101, United States. Abstract Absorption spectroscopy and mapping from visible through mid-IR wavelengths has been achieved with spatial resolution exceeding the limit imposed by diffraction, via the photothermal induced resonance technique. Correlated vibrational (chemical), and electronic properties are obtained simultaneously with topography with a wavelength-independent resolution of ≈ 20 nm using a single laboratory-scale instrument. This marks the highest resolution reported for PTIR, as determined by comparing height and PTIR images, and its first extension to near-IR and visible wavelengths. Light-matter interaction enables scientists to characterize materials and biological samples across a large range of energies. Visible (VIS) and near-infrared (NIR) light (from 400 nm to 2.5 µm) probes electronic transitions in materials [1], providing information regarding band gap, defects, and energy transfer which is crucial for the semiconductor and optoelectronic industries and for understanding processes such as photosynthesis. Mid-infrared (mid-IR) light (from 2.5 µm to 15 µm) probes vibrational transitions and provides rich chemical and structural information enabling materials identification [2]. Spectral maps can be obtained by coupling a light source and a spectrometer with an optical microscope [3]. However, light diffraction limits the lateral resolution achievable with conventional microscopic techniques to approximately half the wavelength of light [4].
    [Show full text]
  • Coresearch (1977)
    212##1977 A monthly pUblicationfor CSIRO staff January/February 1977 III New Chief Or IllN WllSH lOBEODME for Tropical Crops and INDUSTRY OONSUlTINJ Pastures Dr Alan Walsh-scientist, inventor and entrepreneur-retired from CSIRO on Dr E.F. (Ted) Henzell has been 5 January after 30 years of research, and 15 years as Assistant Chief, at the appointed the new Chief of the Division of Tropical Crops and Division of Chemical Physics. The Division has arranged a buffet dinner in his Pastures. honour at the Monash University Club on Saturday 26 February to which staff, Hew-ill take up his new duties on the retirement next month of their husbands/wives, and friends have been invited. the present Chief, Dr Mark 'I've been to so many farewell dinners recently that I'm beginning to acquire Hutton. a taste for wine,' Alan said, a little overwhelmed by the fuss being made of his Dr ... Henzcll. who has been the Division's Assistant Chief since departure. 1'970, . graduated B.Agr.Sc. from And Alan makes the point that he is not retiring from work. He intends the .. University of Queensland in taking a holiday for three months to recharge his batteries and then become a 1952. Dr Alan Walsh In the same year he was awarded private consultant to industry. a Rhodes Scholarship and under­ took research work at the De­ For unlike many other scientists ralia a head-start over the rest of Alan concedes that the research partment of Agriculture, Oxford A1an enjoys mixing with the cap· the world in the technique.
    [Show full text]
  • VACQUEYRAS ROUGE Cuvée Saint Roch
    Domaine Le Clos des Cazaux VACQUEYRAS ROUGE Cuvée Saint Roch Grape Variety : 70 % grenache, 25 % syrah, 5 % mourvèdre. Yield : 30 hl/ha Grapevines : old grapevines (more than 50 years old). Terroir : slopes consisting of sandstone and Miocene marl of Cazeaux. This Cuvée is made with grapes from old vines that are between 30 and 60 years old and are situated at the entry of the estate. The selection of terroirs, mainly consisting of clay-limestone marl and sandy-clay slopes, are identical each year. This kind of grape variety blend is a traditional one in Vacqueyras. Manual harvest. The different grape varieties are vinified separately to ensure that each has reached perfect maturity. After a partial destemming, the fermentation takes place in stainless steel tanks. Maceration lasts for about 4 weeks. Maturation in stainless steel and concrete tanks for 18 months. Description Colour : Dark garnet colour. Bouquet : Rich and complex bouquet with aromas of red fruits, pepper and cocoa. Taste : Generous flavour characteristic of Grenache wines, consistent attack with present and coated tannins, fresh finish on red fruits and pepper : a great classic of the appellation. Food pairing suggestions Starters : Sage seasoned meat terrine, pan-fried mushrooms in parsley, Lyon sausage. Main courses : Roasted quail with pumpkin, Daube Provençal, slow cooked 7-hour-lamb, Beef Bourguignon, Veal Orloff, Mont d'Or sausage. Chesses : ripened Saint-Marcellin, Saint Nectaire, Morbier, Comté (12 months). Serving temperature : 16-18C, best enjoyed at 5 to 8 years FAMILLE ARCHIMBAUD-VACHE - Propriétaires Récoltants à VACQUEYRAS Tél. 33 (0)4 90 65 85 83 - Fax : (0)4 90 41 75 32 email : [email protected] www.closdescazaux.fr .
    [Show full text]
  • Absorption Spectroscopy
    World Bank & Government of The Netherlands funded Training module # WQ - 34 Absorption Spectroscopy New Delhi, February 2000 CSMRS Building, 4th Floor, Olof Palme Marg, Hauz Khas, DHV Consultants BV & DELFT HYDRAULICS New Delhi – 11 00 16 India Tel: 68 61 681 / 84 Fax: (+ 91 11) 68 61 685 with E-Mail: [email protected] HALCROW, TAHAL, CES, ORG & JPS Table of contents Page 1 Module context 2 2 Module profile 3 3 Session plan 4 4 Overhead/flipchart master 5 5 Evaluation sheets 22 6 Handout 24 7 Additional handout 29 8 Main text 31 Hydrology Project Training Module File: “ 34 Absorption Spectroscopy.doc” Version 06/11/02 Page 1 1. Module context This module introduces the principles of absorption spectroscopy and its applications in chemical analyses. Other related modules are listed below. While designing a training course, the relationship between this module and the others, would be maintained by keeping them close together in the syllabus and place them in a logical sequence. The actual selection of the topics and the depth of training would, of course, depend on the training needs of the participants, i.e. their knowledge level and skills performance upon the start of the course. No. Module title Code Objectives 1. Basic chemistry concepts WQ - 02 • Convert units from one to another • Discuss the basic concepts of quantitative chemistry • Report analytical results with the correct number of significant digits. 2. Basic aquatic chemistry WQ - 24 • Understand equilibrium chemistry and concepts ionisation constants. • Understand basis of pH and buffers • Calculate different types of alkalinity.
    [Show full text]
  • Mixing Memoirs with Lore of Cooking
    THE NEW YORK TIMES, 'WEDNESDAY, OCTOBER 19, 1983 Mixing Memoirs With Lore of Cooking By FLORENCE FABRICANT — where Mrs. Rubinstein, who was bom in Lithuania, lived as a child_ £ £ BHM ELL me what you eat and I to Paris, Marbella, Spain, and New ■ ■ ■ will tell you what you are.” York. Brillat-Savarin’s aphorism The recipes are homey and savory. UB recognizes the menu as an­ Soups called barszcz (borscht), thropology, cultural history and biog­ mushroom-filled uszka pastries, raphy. Some new cookbooks also take kasha, the traditional Polish stew this approach. How certain foods, bigos and a fine dark chocolate cake styles of cooking and habits of dining are typical. Sweet and sour or just evolve is a subject for scholars in two plain sour are the flavors that fre­ of the books, and in two others, on a quently whet the Eastern .European highly personal level, it is the stuff of palate. Sour cream thickens, memoirs. These books are enjoyable smooths, garnishes and enriches. Un­ to read and interesting, if not always fortunately, in this book Maggi brand easy to use in the kitchen. extract is suggested to color many of the recipes too. This is essentially “Irish Traditional Food” by home cooking, but with a helping of. Theodora Fitzgibbon (St. Martin’s international sophistication. Press, $14.95) is a well-researched It is hard to tell whether “Alfredo volume that examines the origins and Viazzi’s Cucina e Nostalgia” (Ran­ traditions of Irish cooking with dom House, $17.95) began as a mem­ oir or a cookbook.
    [Show full text]
  • Atomic Spectroscopy
    Atomic Spectroscopy Reference Books: 1) Analytical Chemistry by Gary D. Christian 2) Principles of instrumental Analysis by Skoog, Holler, Crouch 3) Fundamentals of Analytical Chemistry by Skoog 4) Basic Concepts of analytical Chemistry by S. M. Khopkar We consider two types of optical atomic spectrometric methods that use similar techniques for sample introduction and atomization. The first is atomic absorption spectrometry (AAS), which for half a century has been the most widely used method for the determination of single elements in analytical samples. The second is atomic fluorescence spectrometry (AFS), which since the mid-1960s has been studied extensively. By contrast to the absorption method, atomic fluorescence has not gained widespread general use for routine elemental analysis. Thus, although several instrument makers have in recent years begun to offer special- purpose atomic fluorescence spectrometers, the vast majority of instruments are still of the atomic absorption type. Sample Atomization Techniques We first describe the two most common methods of sample atomization encountered in AAS and AFS, flame atomization, and electrothermal atomization. We then turn to three specialized atomization procedures used in both types of spectrometry. Flame Atomization In a flame atomizer, a solution of the sample is nebulized by a flow of gaseous oxidant, mixed with a gaseous fuel, and carried into a flame where atomization occurs. As shown in Figure, a complex set of interconnected processes then occur in the flame. The first step is desolvation, in which the solvent evaporates to produce a finely divided solid molecular aerosol. The aerosol is then volatilized to form gaseous molecules. Dissociation of most of these molecules produces an atomic gas.
    [Show full text]
  • Dict-En-Fr-Food V3
    Dictionnaire Anglais-Français de l’Alimentation English-French Food Dictionary Version 3.0 Pascal Médeville (CC BY-NC-ND 4.0) 1 This work is distributed under Creative Commons license CC BY-NC-ND 4.0. Please revise the information below and stay within the limits of the license. 2 Le présent travail est distribué dans le cadre de la licence Creative Commons CC BY-NC-ND 4.0. Veuillez lire les informations ci-dessous et respecter les limites imposées. 3 Sigles et abréviations utilisés dans ce dictionnaire : adj. : adjectif agr. : agriculture bot. : botanique ichtyol. : ichtyologie Ind. : Indonésie it. : Italie J : Japon microbiol. : microbiologie œnol. : œnologie p.ex. : par exemple UK : Royaume Uni US : États-Unis d’Amérique vét. : médecine vétérinaire zool. : zoologie Historique des versions/Version history : Date Objet No. de version Déc. 2008 Version initiale 1.0 Juin 2009 Corrections diverses ; Ajout de nouvelles sources ; Ajout de nouvelles 2.0 références bibliographiques Avril 2020 Ajout de nouvelles entrées ; Corrections diverses ; Ajout de nouvelles 3.0 sources ; Ajout de nouvelles references bibliographiques 4 Pour vos traductions anglais-français ou chinois-français dans le domaine de la gastronomie ou de l’agro-alimentaire, veuillez prendre contact avec Pascal Médeville à l’une des adresses suivantes : [email protected] ou [email protected]. For all your food and agrifood translation needs (English to French of Chinese to French), you can contact Pascal Médeville, at [email protected] or [email protected]. Pour toutes vos traductions et besoins de publication assistée par ordinateur en chinois ou d’autres langues asiatiques, n’hésitez pas à faire appel à Pascal Médeville ou à Parallels Translation Office : www.parallels-translation.net.
    [Show full text]
  • Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential
    Sensors 2014, 14, 17275-17303; doi:10.3390/s140917275 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential Zhiyun Li 1, M. Jamal Deen 1,2,4,*, Shiva Kumar 2 and P. Ravi Selvaganapathy 1,3 1 School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada; E-Mails: [email protected] (Z.L.); [email protected] (P.R.S.) 2 Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1 Canada; E-Mail: [email protected] 3 Mechanical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada 4 Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +1-905-525-9140 (ext. 27137); Fax: +1-905-521-2922. Received: 1 July 2014; in revised form: 7 September 2014 / Accepted: 9 September 2014 / Published: 16 September 2014 Abstract: Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals.
    [Show full text]
  • Basics of Plasma Spectroscopy
    Home Search Collections Journals About Contact us My IOPscience Basics of plasma spectroscopy This content has been downloaded from IOPscience. Please scroll down to see the full text. 2006 Plasma Sources Sci. Technol. 15 S137 (http://iopscience.iop.org/0963-0252/15/4/S01) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.35.1.48 This content was downloaded on 20/06/2014 at 16:07 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 15 (2006) S137–S147 doi:10.1088/0963-0252/15/4/S01 Basics of plasma spectroscopy U Fantz Max-Planck-Institut fur¨ Plasmaphysik, EURATOM Association Boltzmannstr. 2, D-85748 Garching, Germany E-mail: [email protected] Received 11 November 2005, in final form 23 March 2006 Published 6 October 2006 Online at stacks.iop.org/PSST/15/S137 Abstract These lecture notes are intended to give an introductory course on plasma spectroscopy. Focusing on emission spectroscopy, the underlying principles of atomic and molecular spectroscopy in low temperature plasmas are explained. This includes choice of the proper equipment and the calibration procedure. Based on population models, the evaluation of spectra and their information content is described. Several common diagnostic methods are presented, ready for direct application by the reader, to obtain a multitude of plasma parameters by plasma spectroscopy. 1. Introduction spectroscopy for purposes of chemical analysis are described in [11–14]. Plasma spectroscopy is one of the most established and oldest diagnostic tools in astrophysics and plasma physics 2.
    [Show full text]
  • Methods Employed in Optical Emission Spectroscopy Analysis: a Review
    Ingeniería y Ciencia ISSN:1794-9165 | ISSN-e: 2256-4314 ing. cienc., vol. 11, no. 21, pp. 239–267, enero-junio. 2015. http://www.eafit.edu.co/ingciencia This article is licensed under a Creative Commons Attribution 4.0 By Methods Employed in Optical Emission Spectroscopy Analysis: a Review D. M. Devia 1, L. V. Rodriguez-Restrepo 2and E. Restrepo-Parra 3 Received: 15-06-2014 | Acepted: 25-09-2014 | Onlínea: 01-30-2015 PACS: 52.25.Dg, 31.15.V- doi:10.17230/ingciencia.11.21.12 Abstract In this work, different methods employed for the analysis of emission spec- tra are presented. The proposal is to calculate the excitation temperature (Texc), electronic temperature (Te) and electron density (ne) for several plasma techniques used in the growth of thin films. Some of these tech- niques include magnetron sputtering and arc discharges. Initially, some fundamental physical principles that support the Optical Emission Spec- troscopy (OES) technique are described; then, some rules to consider dur- ing the spectral analysis to avoid ambiguities are listed. Finally, some of the more frequently used spectroscopic methods for determining the phy- sical properties of plasma are described. Key words: OES; plasma parameters; elemental determination; line intensity; broadening; shifting 1 Universidad Tecnológica de Pereira, Pereira, Colombia, [email protected]. 2 Universidad Nacional de Colombia, Sede Manizales, Colombia, [email protected] . 3 Universidad Nacional de Colombia, Sede Manizales, Colombia [email protected]. Universidad EAFIT 239j Methods Employed in Optical Emission Spectroscopy Analysis: a Review Métodos empleados en el análisis de espectroscopía óptica de emisión: una revisión Resumen En este trabajo se presentan diferentes métodos empleados para el análisis de espectros ópticos de emisión.
    [Show full text]
  • Atomic Spectroscopy 008044D 01 a Guide to Selecting The
    PerkinElmer has been at the forefront of The Most Trusted inorganic analytical technology for over 50 years. With a comprehensive product Name in Elemental line that includes Flame AA systems, high-performance Graphite Furnace AA Analysis systems, flexible ICP-OES systems and the most powerful ICP-MS systems, we can provide the ideal solution no matter what the specifics of your application. We understand the unique and varied needs of the customers and markets we serve. And we provide integrated solutions that streamline and simplify the entire process from sample handling and analysis to the communication of test results. With tens of thousands of installations worldwide, PerkinElmer systems are performing WORLD LEADER IN inorganic analyses every hour of every day. Behind that extensive network of products stands the industry’s largest and most-responsive technical service and support staff. Factory-trained and located in 150 countries, they have earned a reputation for consistently AA, ICP-OES delivering the highest levels of personalized, responsive service in the industry. AND ICP-MS PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs Copyright ©2008-2013, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners. Atomic Spectroscopy 008044D_01 A Guide to Selecting the Appropriate
    [Show full text]