Neurotechnology and Dynamic Flow

Total Page:16

File Type:pdf, Size:1020Kb

Neurotechnology and Dynamic Flow NEUROTECHNOLOGY AND DYNAMIC FLOW THE INFLUENCE OF BRAIN STIMULATION TECHNOLOGIES AND NEUROFEEDBACK ON THE SELF AND SELF-UNDERSTANDING Irene C. Molthof s1248618 May 13th, 2016 Master Thesis Philosophy of Science, Technology and Society Track: Philosophy of Technology UNIVERSITY OF TWENTE Supervisor: Dr. Johnny Hartz Søraker Examinator: Dr. Saskia Nagel Neurotechnology and Dynamic Flow: The Influence of Brain Stimulation Technologies and Neurofeedback on the Self and Self-Understanding Neurotechnology and Dynamic Flow The Influence of Brain Stimulation Technologies and Neurofeedback on the Self and Self- Understanding A Thesis by IRENE C. MOLTHOF Submitted to the Educational Affairs office of the faculty of Behavioural, Management and Social Sciences UNIVERSITY OF TWENTE in fulfillment of the degree of Master of Science May 13th, 2016 Philosophy of Science, Technology and Society With as technology of choice: Neurotechnology 2 Neurotechnology and Dynamic Flow: The Influence of Brain Stimulation Technologies and Neurofeedback on the Self and Self-Understanding ABSTRACT In recent years, several technologies have been brought on the market that have the ability to increase or decrease brain activity in specific areas of the brain. Among these are brain stimulation technologies such as deep brain stimulation (DBS) and transcranial direct current stimulation (tDCS), but also neurofeedback training. Such neurotechnologies raise important philosophical, anthropological and ethical questions. Neurotechnologies can for example raise concerns in the areas of authenticity, responsibility or privacy. In my research I focus on the self as one of the potential aspects of consciousness that can be affected by neurotechnology. With ‘self’ I mean in this research the organizational structure of consciousness that determines how experiences are perceived by an individual. In order to schematically analyze in what ways the self could be influenced via brain stimulation technologies and neurofeedback, I propose a theoretical apparatus that describes the self and exists out of some of the aspects through which the self is constituted. These aspects are first determined and explored on a phenomenological level, followed by supporting contemporary empirical findings and neurophysiological explanations. One aspect of consciousness that I discuss in particular is self-understanding, a post-reflective aspect of self that describes as what one understand oneself and one’s brain. The analysis shows that while neurotechnologies are already employed in clinical settings, much of the underlying neurological pathways are still unknown. Furthermore, neurophysiological research shows that activity in specific brain areas is can be associated with self-specific stimuli. This lends credence to the suspicion that neurotechnologies can influence the self by increasing or decreasing brain activity in these areas. On a phenomenological level, I exhibit how the self can be changed through influence on the various mechanisms that constitute the self. I suggest that it is important for practitioners to be aware of the effects of the information that is provided to subjects, and that these effects should also be included in the context of policy-making. I furthermore argue that it should be taken into account that on a societal level, neurofeedback and brain stimulation technologies can lead to a change in existing viewpoints towards the self and the brain. 3 Neurotechnology and Dynamic Flow: The Influence of Brain Stimulation Technologies and Neurofeedback on the Self and Self-Understanding ACKNOWLEDGEMENTS It is strange to finally be able to say that the period of my life that covered writing this thesis, is almost over. Especially the last couple of months were difficult. It was challenging to walk the line between pushing myself to go on, and knowing when to stop. I think in the end I can honestly say that I gave it my all, while also having continued doing the things that I like and that would contribute to student activism at campus, such as being on the board of Ideefiks, achieving an orange belt in Jiu Jitsu with Arashi and guiding a ‘doegroep’ during the Kick-In. For these and many more reasons I feel like I had a very full and joyous student life. First of all I would like to thank my supervisor Johnny Hartz Søraker for his guidance and encouragement. His interesting questions, advice and ideas have kept me sharp and motivated during this process. I also want to thank Saskia Nagel, for her expertise on my technology of choice, and for making the time to invest some of this expertise into making me a more critical writer. Furthermore, I would like to thank all of the professors in our department for the classes they have taught, class discussions they have initiated and numerous new perspectives they have provided me with throughout the years. I would also like to thank my family. My mom, for the warmest heartfelt support at exactly the right times. My dad, for always being there for me with a never depleted pool of words of wisdom. Both of my sisters Helle and Dionne, for their unconditional compassion during this process. I also want to thank my fellow members and friends at Ideefiks and of course my fellow board members Tom, Joeri, Wouter, Karin and Niels with whom I had great times that I would not have missed for the world. My friends at Arashi, who taught me that it’s okay to fall down sometimes, but also that you are always capable of more than you know. I also want to thank Leonie, Eline, Metta, Chiron, Alex and many others, that have made my student time in Enschede so lively, not only during the final years but also during my Biology and Medical Laboratory research bachelor. Finally my thankfulness goes out to Paul, for being my best friend through all this, and also my most sincere critic, both things that I am really glad to have had beside me in achieving this goal. 4 Neurotechnology and Dynamic Flow: The Influence of Brain Stimulation Technologies and Neurofeedback on the Self and Self-Understanding TABLE OF CONTENTS List of Abbreviations .................................................................................................................. 7 Introduction ................................................................................................................................ 8 Neurotechnology and its Potential to Change Brain Activity: A Basic Introduction .............. 12 A Basic Introduction to Neurotechnology ................................................................. 12 Fundamental issues in Neuroscience ......................................................................... 25 Neurotechnological Implications: Two Exemplary Cases and the Questions They Raise 27 Can we Believe the Promised Effects of Neurotechnologies? .................................. 30 Conclusion ................................................................................................................. 33 How Neurotechnology Can Be Understood In View of Existing Neuroscientific Issues and Conceptions .............................................................................................................................. 35 Neuroplasticity ........................................................................................................... 36 The Unnaturalness of Neurotechnological Applications ........................................... 37 The Differences between Neurofeedback and Brain Stimulation Technologies ....... 43 A Comparison between Neurotechnologies and Drug Use ....................................... 46 Conclusion ................................................................................................................. 52 Consciousness and the Self ...................................................................................................... 54 A Conceptualization of Consciousness ..................................................................... 55 Theories of the Self: Unified Consciousness or a Bundle of Perceptions? ............... 59 The Stream of Consciousness .................................................................................... 63 Conclusion ................................................................................................................. 65 A Neurophysiological Explanation of Consciousness, the Self, and Self-Perspectival Organization ............................................................................................................................. 67 The Dynamic Organization of Consciousness ........................................................... 68 The Dynamic Organization of Consciousness: A Neurophysiological Approach .... 71 A Post-Reflective Self: Self-Understanding .............................................................. 77 Conclusion ................................................................................................................. 85 In What Way May Changes in Aspects of Dynamic Flow Contribute to a Change in Self and Self-understanding under the Influence of Neurotechnology? ................................................ 87 5 Neurotechnology and Dynamic Flow: The Influence of Brain Stimulation Technologies and Neurofeedback on the Self and Self-Understanding To What Extent Can the Effects of Brain Stimulation Technologies and Neurofeedback be Predicted and Analyzed? ........................................................................ 87 Possible Consequences of BST’s That May Be Expected .......................................
Recommended publications
  • Neural Dust: Ultrasonic Biological Interface
    Neural Dust: Ultrasonic Biological Interface Dongjin (DJ) Seo Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2018-146 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-146.html December 1, 2018 Copyright © 2018, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Neural Dust: Ultrasonic Biological Interface by Dongjin Seo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michel M. Maharbiz, Chair Professor Elad Alon Professor John Ngai Fall 2016 Neural Dust: Ultrasonic Biological Interface Copyright 2016 by Dongjin Seo 1 Abstract Neural Dust: Ultrasonic Biological Interface by Dongjin Seo Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Michel M. Maharbiz, Chair A seamless, high density, chronic interface to the nervous system is essential to enable clinically relevant applications such as electroceuticals or brain-machine interfaces (BMI). Currently, a major hurdle in neurotechnology is the lack of an implantable neural interface system that remains viable for a patient's lifetime due to the development of biological response near the implant.
    [Show full text]
  • Neurotechnologies and Brain Computer Interface
    From Technologies to Market Sample Neurotechnologies and brain computer interface Market and Technology analysis 2018 LIST OF COMPANIES MENTIONED IN THIS REPORT 240+ slides of market and technology analysis Abbott, Ad-tech, Advanced Brain Monitoring, AdvaStim, AIST, Aleva Neurotherapeutics, Alphabet, Amazon, Ant Group, ArchiMed, Artinis Medical Systems, Atlas Neuroengineering, ATR, Beijing Pins Medical, BioSemi, Biotronik, Blackrock Microsystems, Boston Scientific, Brain products, BrainCo, Brainscope, Brainsway, Cadwell, Cambridge Neurotech, Caputron, CAS Medical Systems, CEA, Circuit Therapeutics, Cirtec Medical, Compumedics, Cortec, CVTE, Cyberonics, Deep Brain Innovations, Deymed, Dixi Medical, DSM, EaglePicher Technologies, Electrochem Solutions, electroCore, Elmotiv, Endonovo Therapeutics, EnerSys, Enteromedics, Evergreen Medical Technologies, Facebook, Flow, Foc.us, G.Tec, Galvani Bioelectronics, General Electric, Geodesic, Glaxo Smith Klein, Halo Neurosciences, Hamamatsu, Helius Medical, Technologies, Hitachi, iBand+, IBM Watson, IMEC, Integer, Integra, InteraXon, ISS, Jawbone, Kernel, LivaNova, Mag and More, Magstim, Magventure, Mainstay Medical, Med-el Elektromedizinische Geraete, Medtronic, Micro Power Electronics, Micro Systems Technologies, Micromed, Microsoft, MindMaze, Mitsar, MyBrain Technologies, Natus, NEC, Nemos, Nervana, Neurable, Neuralink, NeuroCare, NeuroElectrics, NeuroLutions, NeuroMetrix, Neuronetics, Neuronetics, Neuronexus, Neuropace, Neuros Medical, Neuroscan, NeuroSigma, NeuroSky, Neurosoft, Neurostar, Neurowave,
    [Show full text]
  • Quantitative EEG (QEEG) Analysis of Emotional Interaction Between Abusers and Victims in Intimate Partner Violence: a Pilot Study
    brain sciences Article Quantitative EEG (QEEG) Analysis of Emotional Interaction between Abusers and Victims in Intimate Partner Violence: A Pilot Study Hee-Wook Weon 1, Youn-Eon Byun 2 and Hyun-Ja Lim 3,* 1 Department of Brain & Cognitive Science, Seoul University of Buddhism, Seoul 08559, Korea; [email protected] 2 Department of Youth Science, Kyonggi University, Suwon 16227, Korea; [email protected] 3 Department of Community Health & Epidemiology, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada * Correspondence: [email protected] Abstract: Background: The perpetrators of intimate partner violence (IPV) and their victims have different emotional states. Abusers typically have problems associated with low self-esteem, low self-awareness, violence, anger, and communication, whereas victims experience mental distress and physical pain. The emotions surrounding IPV for both abuser and victim are key influences on their behavior and their relationship. Methods: The objective of this pilot study was to examine emotional and psychological interactions between IPV abusers and victims using quantified electroencephalo- gram (QEEG). Two abuser–victim case couples and one non-abusive control couple were recruited from the Mental Image Recovery Program for domestic violence victims in Seoul, South Korea, from Citation: Weon, H.-W.; Byun, Y.-E.; 7–30 June 2017. Data collection and analysis were conducted using BrainMaster and NeuroGuide. Lim, H.-J. Quantitative EEG (QEEG) The emotional pattern characteristics between abuser and victim were examined and compared to Analysis of Emotional Interaction those of the non-abusive couple. Results: Emotional states and reaction patterns were different for between Abusers and Victims in the non-abusive and IPV couples.
    [Show full text]
  • Towards a UK Neurotechnology Strategy
    Towards a UK Neurotechnology Strategy A UK ecosystem for Neurotechnology: Development, commercial exploitation and societal adoption Prof. Keith Mathieson (Chair) | Prof. Tim Denison (Co-chair) | Dr. Charlie Winkworth-Smith 1 Towards a UK Neurotechnology Strategy Towards a UK Neurotechnology Strategy Contents Executive Summary 05 A UK Eco-System for Neurotechnology: Development, Commercial Exploitation and Societal Adoption 06 The UK 08 Our Proposed Approach 12 Case Study: Retinal Prosthetics 15 Uses of Neurotechnology 18 Bioelectronic Medicine 18 Brain-Computer Interfaces 19 Human Cognitive Augmentation 21 Development of New Neurotechnologies Provides Non-Pharmaceutical Alternatives to Chronic Pain Relief 22 Overview of the UK Neurotechnology Landscape 24 Opportunities for the UK 29 Steering Group 30 We will create a shared vision for the UK to be a world leader in neurotechnology. 2 1 https://www.internationalbraininitiative.org/ 3 Executive Summary Recent funding initiatives have changed the global neurotechnology landscape, with the US, China, Japan, the EU, Canada and Australia all investing at scale in 10 year+ programmes. In particular, the US has seen an investment of $1.7 billion since 2014 in their national programme1. The resultant rapid maturation of the academic research has led to sophisticated clinical devices capable of treating neurodegenerative conditions in patients and to a burgeoning commercial sector. The UK, with its outstanding neuroscience, medical and engineering expertise, has an exciting opportunity to make a valuable contribution to the leadership of this international effort. Vision: In response to this opportunity our vision is to bring together the existing strengths and form a cohesive UK eco-system to accelerate commercial and economic opportunities from neurotechnology science and engineering research.
    [Show full text]
  • Selected Topics in Neuroplastic & Reconstructive Surgery
    CONTINUING MEDICAL EDUCATION Fifth Annual Selected Topics in Neuroplastic & Reconstructive Surgery: An International Symposium on Cranioplasty and Implantable Neurotechnology with Cadaver Lab Presented by: Department of Plastic-Reconstructive Surgery & Department of Neurosurgery Section of Neuroplastic & Reconstructive Surgery Johns Hopkins University School of Medicine Jointly Provided by: Society of Neuroplastic Surgery November 2-3, 2019 General Session – November 2 Hands-on Lab – November 3 The Rotunda Boston Bioskills Lab Joseph B. Martin Conference Center Boston, Massachusetts at Harvard Medical School Boston, Massachusetts This activity endorsed by: American Society of Maxillofacial Surgeons NEW American Society of Plastic Surgeons THIS YEAR! Oral Abstract Congress of Neurological Surgeons Session Global Neuro Society of Neuroplastic Surgery This activity has been approved for AMA PRA Category 1 Credits™. DESCRIPTION Modern-day cranioplasty, along with the burgeoning field of Neuroplastic and Reconstructive Surgery, is undergoing a significant paradigm shift related to various techniques, surgical advancements, implantable neurotechnology, and improved biomaterials. These changes have stimulated us to assemble premier thought leaders in various specialties including neurosurgery, neuroplastic surgery, craniofacial surgery, and plastic surgery to meet for the FIFTH annual symposium dedicated to the subjects of “cranioplasty”, “implantable neurotechnology”, and “neuroplastic surgery”—to be hosted this year at the Joseph B. Martin Conference Center at Harvard Medical School in Boston, Massachusetts. The faculty will gather to present evidence-based data on surgical approaches and state-of-the-art materials, engage and network within a broad array of colleagues and experts, and share high-yield experiences to help attendees improve their patient outcomes. Interactive panel discussions following each lecture will offer the opportunity to debate the evidence, exchange ideas, and gain invaluable insight to assist with the most challenging cases.
    [Show full text]
  • Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities Valentina Castagnola
    Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities Valentina Castagnola To cite this version: Valentina Castagnola. Implantable microelectrodes on soft substrate with nanostructured active sur- face for stimulation and recording of brain activities. Micro and nanotechnologies/Microelectronics. Universite Toulouse III Paul Sabatier, 2014. English. tel-01137352 HAL Id: tel-01137352 https://hal.archives-ouvertes.fr/tel-01137352 Submitted on 31 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 18/12/2014 par : Valentina CASTAGNOLA Implantable Microelectrodes on Soft Substrate with Nanostructured Active Surface for Stimulation and Recording of Brain Activities JURY M. Frédéric MORANCHO Professeur d’Université Président de jury M. Blaise YVERT Directeur de recherche Rapporteur Mme Yael HANEIN Professeur d’Université Rapporteur M. Pascal MAILLEY Directeur de recherche Examinateur M. Christian BERGAUD Directeur de recherche Directeur de thèse Mme Emeline DESCAMPS Chargée de Recherche Directeur de thèse École doctorale et spécialité : GEET : Micro et Nanosystèmes Unité de Recherche : Laboratoire d’Analyse et d’Architecture des Systèmes (UPR 8001) Directeur(s) de Thèse : M.
    [Show full text]
  • Use of Neurotechnology in Normal Brain Aging and Alzheimer
    Use of Neurotechnology in Normal Brain Aging and Alzheimer’s Disease (AD) and AD-Related Dementias (ADRD) NIA Virtual Workshop Division of Neuroscience April 27, 2020 Final June 1, 2020 This meeting summary was prepared by Dave Frankowski, Rose Li and Associates, Inc., under contract to the National Institute on Aging (NIA). The views expressed in this document reflect both individual and collective opinions of the focus group participants an d not necessarily those of NIA. Review of earlier versions of this meeting summary by the following individuals is gratefully acknowledged: Ali Abedi, Ed Boyden, Dana Carluccio, Monica Fabiani, Mariana Figueiro, Jay Gupta, Ben Hampstead, Marie Hayes, Abhishek Rege, Fiza Singh, Nancy Tuvesson, Shuai Xu. Neurotechnology in Normal Brain Aging, AD, and ADRD April 27, 2020 Table of Contents Executive Summary ............................................................................................................... 1 Meeting Summary ................................................................................................................. 3 Welcome and Opening Remarks .............................................................................................................. 3 Using Non-invasive Sensory Stimulation to Ameliorate Alzheimer’s Disease Pathology and Symptoms 3 Flipping the Switch: How to Use Light to Improve the Lives and Health of Persons with Alzheimer’s Disease and Related Dementias ..............................................................................................................
    [Show full text]
  • 9.123 Lecture 1 Introduction to Neurotechnology Notes
    NEUROTECHNOLOGY IN ACTION 9.123/20.203 Courtesy of digitalbob8 on Flickr. License CC BY. 1 life before neurotechnology… Image is in public domain. Image is in public domain. The Iconographic Encyclopaedia of Science, Literature and Art, 1851, via Wikimedia Commons. 2 modern optics and staining: delineation of the neuron! Zeiss ! microscope 1870 Golgi stain (1873)! Ramon y Cajal neural microanatomy (1894)! Image is in public domain. Image is in public domain. 3 electrophysiology: electrical behavior of neurons Hodgkin-Huxley model (1952) Image is in public domain. © Nobel Media AB. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 4 brain imaging: noninvasive studies of structure and function X-ray CT (1971) MRI (1973)! Courtesy of the Laboratory of Neuro Imaging and Martinos Center for Biomedical Imaging, Consortium of the Human Connectome Project - www.humanconnectomeproject.org. PET (1975) Image is in public domain. Image is in public domain. 5 continuing innovation rapid growth (diversity wanted) © All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. 6 National Academy of Engineering. Accessed October 14, 2010. http://www.nationalacademies.org. The WHITEHOUSE. "Brain Initiative." Accessed April 2, 2013. https://www.whitehouse.gov/BRAIN. Human Brain Project. https://www.humanbrainproject.eu/. 7 the scale of the brain… numerous brain regions macroscale to nanoscale 1011 neurons 1014 synapses Courtesy of Allan Ajifo on Flickr. CC license BY. 8 “forest” of cell types the complexity of the brain… complex interconnectivity cellular and subcellular features Image of neural signaling is in public domain.
    [Show full text]
  • Introduction. Advances and Future Directions in Brain Mapping In
    NEUROSURGICAL FOCUS Neurosurg Focus 48 (2):E1, 2020 INTRODUCTION Advances and future directions in brain mapping in neurosurgery Alexandra J. Golby, MD,1 Eric C. Leuthardt, MD, FNAI,2 Hugues Duffau, MD, PhD,3 and Mitchel S. Berger, MD4 1Department of Neurosurgery, Department of Radiology, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts; 2Department of Neurological Surgery, Division of Neurotechnology, Washington University, St. Louis, Missouri; 3Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, National Institute for Health and Medical Research (INSERM), U1051 Laboratory, Institute for Neurosciences of Montpellier, France; and 4Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California EUROSURGEONS have been directly involved with guide glioma surgery, whereas Fernández et al. provide an brain mapping efforts for well over a century. Di- in-depth investigation of the white matter associated with rect access to the functioning human brain during Heschl’s gyrus. Three papers focus on a variety of aspects surgeryN for intrinsic brain tumors, epilepsy, and functional related to functional MRI (fMRI): Catalino et al. review neurosurgical procedures both requires individual func- the use of resting fMRI for surgical planning, Nolan et tional brain mapping and presents an opportunity to pre- al. studied a patient with a heterotopia, and Stopa et al. cisely map human brain function. Several papers in this surveyed clinicians regarding their use of fMRI. Finally, issue of Neurosurgical Focus extend our current under- two papers, one by Azad and Duffau and the other by Ellis standing of cerebral organization with detailed examina- et al., discuss mapping using noninvasive methods such tion of specific regions.
    [Show full text]
  • Motor Imagery with Brain- Computer Interface Neurotechnology
    In: Motor Imagery ISBN: 978-1-63483-125-3 Editor: Brandon M. Garcia © 2015 Nova Science Publishers, Inc. Chapter 4 Motor Imagery with Brain- Computer Interface Neurotechnology Christoph Guger∗1, Christoph Kapeller1, Rupert Ortner1 and Kyousuke Kamada2 1g.tec medical engineering GmbH, Guger Technologies OG, g.tec medical engineering Spain SL, g.tec neurotechnology USA Inc., Sierningstrasse, Schiedlberg. 2Department of Neurosurgery, School of Medicine, Asahikawa Medical University, Hokkaido, Japan Abstract A brain-computer interface (BCI) analyzes brain activity in real-time to convey information or control an external device. BCI systems often consist of a biosignal amplifier for EEG data acquisition, parameter estimation, and classification to make decisions in real-time. Many BCIs are controlled via motor imagery (through imagined movements), which modulates the EEG in certain frequency bands and regions. Motor imagery based BCIs are used for various applications like cursor control, ∗ [email protected] 62 Christoph Guger, Christoph Kapeller, Rupert Ortner et al. robotic and avatar control, stroke rehabilitation, cognitive assessment, training, and communication. This article presents key scientific experiments and applications, including some of the newest results. Keywords: Brain-computer interface, BCI, motor imagery, event-related desynchronization, ERD, rehabilitation, assessment, control applications Introduction What Is a BCI? Brain-computer interfaces typically use the Electroencephalogram (EEG) or the Electrocorticogram (ECoG) to generate a control signal in real-time. Figure 1 illustrates the basic components of such a system. EEG based systems can easily be used with healthy subjects or patients, since the EEG is measured with active surface electrodes placed on the head, which may be dry electrodes or require electrode gel, saltwater, or other materials to ensure a good contact with the scalp.
    [Show full text]
  • Brain-Computer Interfaces: U.S. Military Applications and Implications, an Initial Assessment
    BRAIN- COMPUTER INTERFACES U.S. MILITARY APPLICATIONS AND IMPLICATIONS AN INITIAL ASSESSMENT ANIKA BINNENDIJK TIMOTHY MARLER ELIZABETH M. BARTELS Cover design: Peter Soriano Cover image: Adobe Stock/Prostock-studio Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions.html. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. R® is a registered trademark. For more information on this publication, visit www.rand.org/t/RR2996. Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0523-4 © Copyright 2020 RAND Corporation Summary points of failure, adversary access to new informa- tion, and new areas of exposure to harm or avenues Brain-computer interface (BCI) represents an emerg- of influence of service members. It also underscores ing and potentially disruptive area of technology institutional vulnerabilities that may arise, includ- that, to date, has received minimal public discussion ing challenges surrounding a deficit of trust in BCI in the defense and national security policy commu- technologies, as well as the potential erosion of unit nities. This research considered key areas in which cohesion, unit leadership, and other critical inter- future BCI technologies might be relevant for the personal military relationships.
    [Show full text]
  • Real-World Neuroimaging Technologies
    Received February 1, 2013, accepted April 2, 2013, published May 10, 2013. Digital Object Identifier 10.1109/ACCESS.2013.2260791 Real-World Neuroimaging Technologies KALEB MCDOWELL (Senior Member, IEEE)1, CHIN-TENG LIN (Fellow, IEEE)2, KELVIN S. OIE1, TZYY-PING JUNG (Senior Member, IEEE)3, STEPHEN GORDON (Member, IEEE)4, KEITH W. WHITAKER1, SHIH-YU LI2, SHAO-WEI LU2, and W. DAVID HAIRSTON1 1Translational Neuroscience Branch, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA 2Department of Electrical Engineering and the Brain Research Center, National Chiao Tung University, Hsinchu 30010, Taiwan 3Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California at San Diego, La Jolla, CA 92093, USA 4DCS Corporation, Alexandria, VA 22310, USA Corresponding author: K. McDowell ([email protected]) This work was supported by the U.S. Army Research Laboratory and, in part, under Cooperative Agreement W911NF-10-2-0022. ABSTRACT Decades of heavy investment in laboratory-based brain imaging and neuroscience have led to foundational insights into how humans sense, perceive, and interact with the external world. However, it is argued that fundamental differences between laboratory-based and naturalistic human behavior may exist. Thus, it remains unclear how well the current knowledge of human brain function translates into the highly dynamic real world. While some demonstrated successes in real-world neurotechnologies are observed, particularly in the area of brain-computer interaction technologies, innovations and developments to date are limited to a small science and technology community. We posit that advancements in real- world neuroimaging tools for use by a broad-based workforce will dramatically enhance neurotechnology applications that have the potential to radically alter human–system interactions across all aspects of everyday life.
    [Show full text]