Triarylsilyl(Meth)Acryloyl-Containing Polymers for Marine Coating Compositions

Total Page:16

File Type:pdf, Size:1020Kb

Triarylsilyl(Meth)Acryloyl-Containing Polymers for Marine Coating Compositions Europäisches Patentamt *EP001479737A1* (19) European Patent Office Office européen des brevets (11) EP 1 479 737 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C09D 5/16 24.11.2004 Bulletin 2004/48 (21) Application number: 04291279.0 (22) Date of filing: 19.05.2004 (84) Designated Contracting States: • Abrams, Michael B. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Philadelphia, Pennsylvania 19128 (US) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Silverman, Gary S. Designated Extension States: Chadds Ford, Pennsylvania 19317 (US) AL HR LT LV MK • Mountz, David A. King of Prussia, Pennsylvania 19406 (US) (30) Priority: 21.05.2003 US 442461 • Obiols, Jérome 10.11.2003 US 705693 69003 Lyon (FR) (71) Applicant: Atofina Chemicals, Inc. (74) Representative: Treuil, Claude Philadelphia, PA 19103-3222 (US) Atofina Département Propriété Industrielle (72) Inventors: 4-8 cours Michelet • Aubart, Mark A. La Défense 10 Malvern, Pennsylvania 19355 (US) 92091 Paris La Défense Cedex (FR) • Kuo-Shu Tseng, Kenneth Lawrenceville, New Jersey 08648 (US) (54) Triarylsilyl(meth)acryloyl-containing polymers for marine coating compositions (57) Polymers containing triarylsilyl(meth)acryloyl units are erodible in seawater and can be used to formulate antifouling marine paints. The polymers are characterized by low levels of triarylsilyl(meth) acrylate units and an erosion rate in seawater of 2 to about 15 µm per month. EP 1 479 737 A1 Printed by Jouve, 75001 PARIS (FR) EP 1 479 737 A1 Description FIELD OF THE INVENTION 5 [0001] This invention relates to polymers for self-polishing marine antifouling paints. More particularly, the invention relates to polymer binders, which provide an erosion rate in seawater that is suitable for use in marine antifouling paints. These polymer binders contain pendant triarylsilyl(meth)acryloyl group at lower levels than previously believed nec- essary to achieve an erosion rate in seawater that is suitable for use in marine antifouling paints. The polymers are characterized by an erosion rate in seawater of about 2 to about 15 µm/month. 10 BACKGROUND OF THE INVENTION [0002] The polymers widely used at present to fabricate self-polishing marine antifouling paints are polymers that contain pendant organotin ester (e.g., acrylate) groups. Indeed, marine antifouling paints based on organotin acrylate 15 polymers have dominated the market for over 20 years. The organotin acrylate-containing polymers, when formulated into a paint and applied to the bottom (i.e., hull) of a marine vessel, hydrolyze in seawater to release an organotin compound (usually tributyltin oxide) that is an active antifoulant preventing marine plants and other organisms from adhering to the vessel bottom. This fouling (i.e., undesirable attachment of organisms to a marine surface) results in increased drag which can significantly increase fuel consumption and, therefore, operating costs. In addition, movement 20 of the vessel through water erodes the paint surface to constantly expose a fresh polymer surface to the hydrolytic effect of seawater. This constant erosion of the paint surface results in the development and maintenance of a smooth surface on the immersed exterior of the marine vessel, which also contributes to reduced drag and greater efficiency. [0003] Further, these paints, properly formulated and applied, have the ability to remain effective for 5 years. This is important because large vessels (e.g., oil tankers and container ships) are dry-docked at 5-year intervals for routine 25 maintenance and inspection; it is most convenient to repaint the hull exterior during these periodic maintenance epi- sodes. [0004] Although effective, the use of organotin-containing polymers in antifouling marine paints has come under attack due to the adverse effect that organotin compounds are believed to have upon the marine environment. The U. S. Environmental Protection Agency (EPA) has significantly restricted the continued use of organotin compounds and 30 the Marine Environmental Protection Committee (MEPC) of the International Maritime Organization (IMO), a unit of the United Nations, has recently approved a resolution to phase out and eventually prohibit the use of organotin- containing materials in antifouling paints. [0005] As a result, there is a need in the art for improved erodible antifouling paint compositions comprising film- forming polymers that are free of tin, while retaining the good antifouling and self-polishing properties as well as the 35 longevity of the organotin-containing antifouling paints. [0006] U.S. Patent 4,593,055 discloses that silylacrylate copolymers of formula 40 45 50 where X is H or CH3 R is selected from the group consisting of -SiR'nR"3-n or -Si(OR'nR"3-n)3 wherein R' and R" are independently straight or branched chain alkyl C1-C10 or phenyl and n = 0-3 are useful to formulate marine antifoulant coatings. The organosilylacrylate component is present in the Examples in amounts ranging from 20 to 40 mole percent. 55 [0007] U.S. Patent 5,436,284 discloses that copolymers containing silylacrylate units are useful to formulate marine antifoulant coating compositions. The Examples (Monomer A4 in Table 3) show arylsilylacrylate copolymers containing 45 and 50 percent by weight of arylsilylacrylate component. [0008] EP 1 127 925 A1 discloses polymeric binders for marine antifoulant paints that contain triarylsilylacrylate 2 EP 1 479 737 A1 groups. The patent teaches that the polymer contains from 20 to 70 percent by weight of triarylsilyl(meth)acrylate, preferably from 30 to 65 percent by weight, and more preferably from 50 to 60 percent by weight. [0009] U.S. Patent 5,795,374 discloses marine antifoulant paints formulated from polymers containing triorganosilyl groups; Monomer M4 is diphenyl-t-butylsilyl acrylate, which is employed in an amount of 10 wt% to make polymer S4. 5 This weight represents about 3 mole%, which, as will be seen from the data, is too low for proper erosion of the polymer film. [0010] U.S. Patent 4,593,055 discloses that marine antifouling paints can be formulated from copolymers containing a hydrolysable triorganosilyl residue, including an arylsilyl residue. The preferred level of triorganosilyl acrylate or methacrylate in the copolymer is from 25 to 40 mole percent. 10 [0011] WO91/14743 discloses erodible marine antifoulant paints with polymeric binders having organosilyl functional groups with the paint having increased storage stability when containing antifouling agents containing copper or zinc. Increased paint storage stability is obtained by using monoamine and quaternary ammonium compounds which inhibit gelation associated with such binders and copper or zinc containing antifouling agents. [0012] Additional patents that concern triorganosilyl containing polymers as binders for marine antifouling paints are: 15 JP 63-057676 which discloses adding a polymethyl silsesquioxane powder for stability when the paint has copper containing antifoulant compounds ; EP 714 957 B1 which discloses a copolymer containing a triorganosilylacrylate and as an essential ingredient a monomer containing an acryloyloxy, a methacryloyloxy, maleinoyloxy or fumaroyloxy group ; EP 802 243 B1 which discloses a marine antifouling paint having an organosilylacrylate based polymeric binder and a rosin compound to improve the erosion rate of the paint; 20 [0013] The following listed patents and applications further disclose terpolymers comprising triorganosily(meth) acry- loyl pendant groups useful as binders in marine antifouling coatings: EP 646 630 B1, EP 775 733 A1, EP 1 016 681 A2, EP 1 127 925 A1, JP 8-269389A, US 4,594,365, US 5,436,284, US 5,795,374, WO 84/02915, WO 91/14743, WO 00/77102A1. 25 BRIEF DESCRIPTION OF THE DRAWINGS [0014] Figure 1 illustrates the relationship between mole percent triphenylsilyl(meth)acrylate residue in a polymer and the erosion rate in seawater of the polymer and compares those erosion rates with that of a triorganotin-based polymer. Each phenyl group can be substituted or un-substituted or a heterocyclic aromatic group and each can be 30 the same or different. [0015] Figures 2 and 3 illustrate the rotor test apparatus used to determine erosion rate. SUMMARY OF THE INVENTION 35 [0016] The present invention relates to the discovery that triarylsilyl(meth)acrylate-containing polymers, where the triarylsilyl(meth)acrylate component is present at surprisingly low levels, are useful to produce marine antifouling paints that have self polishing properties. [0017] In one aspect, the invention relates to seawater-erodible polymers comprising the residue of triarylsilyl(meth) acrylate monomer and the residue of two or more ethylenically unsaturated monomers copolymerizable with said tri- 40 arylsilyl(meth)acrylate monomer, said polymer characterized by an erosion rate in seawater of 2 to 15 µm/month. [0018] As used herein, the term "copolymer" includes polymers comprising two or more different monomeric units, e.g. polymers containing three different monomeric units, also known as terpolymers. Also, in practicing the present invention, mixtures of polymers may be used in antifouling paint compositions with the proviso that the total of the triarylsilyl(meth)acrylate is greater than 9 mole percent and less than 20 mole percent for the mixture of polymers even 45 though each individual polymer may be outside the mole percent range of greater than 9 mole percent and less than 20 mole percent. [0019] In another embodiment, the present invention relates to a self-polishing antifouling marine coating which comprises a triarylsilyl(meth)acrylate-containing polymer and a toxicant, the triarylsilyl(meth)acrylate-containing poly- mer containing from above 9 to about 20 mole percent of triarylsilyl(meth)acryloyl component and characterized by an 50 erosion rate in seawater of from about 2 to about 15 µm/month. [0020] In another embodiment, the invention relates to triarylsilyl(meth)acrylate-containing polymers wherein the mole percentage of the triarylsilyl(meth)acryloyl component is in the range of from above 9 to about 20 mole percent.
Recommended publications
  • Poly( Ethylene-Co-Methyl Acrylate)-Solvent- Cosolvent Phase Behaviour at High Pressures
    Poly( ethylene-co-methyl acrylate)-solvent- cosolvent phase behaviour at high pressures Melchior A. Meilchen, Bruce M. Hasch, Sang-Ho Lee and Mark A. McHugh* Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21278, USA (Received 5 April 7991; accepted 75 July 1997 ) Cloud-point data to 160°C and 2000 bar are presented showing the effect of cosolvents on the phase behaviour of poly(ethylene-co-methyl acrylate) (EMA) (64 mo1%/36 mol%) with propane and chlorodifluoromethane (F22). Ethanol shifts the EMA-propane cloud-point curves to lower temperatures and pressures, but above _ 10 wt% ethanol, the copolymer becomes insoluble. Up to 40 wt% acetone monotonically shifts the EMA-propane cloud-point curves to lower temperatures and pressures. Acetone and ethanol both shift the cloud-point curves of EMA-F22 mixtures in the same monotonic manner for cosolvent concentrations of up to 40 wt%. (Keywords: copolymer; cosolvent; high pressures) INTRODUCTION or diethyl ether, so it is necessary to operate at elevated temperatures and pressures to dissolve high molecular Within the past 20 years there has been a great deal of weight polystyrene in either solvent. Adding acetone to effort invested in trying to understand and model the PS-diethyl ether mixtures monotonically reduces the solubility behaviour of polar polymers in liquid cosolvent pressure needed at a given temperature to obtain a single mixtures’-9. Polymer solubility is usually related to phase. whether the cosolvent preferentially solvates or adsorbs There has also been a number of viscometric and light to certain segments of the polymer chain as determined scattering studies on the solution behaviour of polar by light scattering, viscosity measurements or cloud- copolymers in liquid cosolvent mixtures’4*‘5.
    [Show full text]
  • Reversible Deactivation Radical Polymerization: State-Of-The-Art in 2017
    Chapter 1 Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017 Sivaprakash Shanmugam and Krzysztof Matyjaszewski* Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States *E-mail: [email protected]. This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specifc focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, Downloaded via CARNEGIE MELLON UNIV on August 17, 2020 at 15:07:44 (UTC). electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the feld of complex See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized. Introduction The overarching goal of this chapter is to provide an overall summary of the recent achievements in reversible-deactivation radical polymerization (RDRP), primarily in atom transfer radical polymerization (ATRP), and also in reversible addition-fragmentation chain transfer (RAFT) polymerization, tellurium mediated © 2018 American Chemical Society Matyjaszewski et al.; Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies ACS Symposium Series; American Chemical Society: Washington, DC, 2018.
    [Show full text]
  • Living Free Radical Polymerization with Reversible Addition – Fragmentation
    Polymer International Polym Int 49:993±1001 (2000) Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT) Graeme Moad,* John Chiefari, (Bill) YK Chong, Julia Krstina, Roshan TA Mayadunne, Almar Postma, Ezio Rizzardo and San H Thang CSIRO Molecular Science, Bag 10, Clayton South 3169, Victoria, Australia Abstract: Free radical polymerization with reversible addition±fragmentation chain transfer (RAFT polymerization) is discussed with a view to answering the following questions: (a) How living is RAFT polymerization? (b) What controls the activity of thiocarbonylthio compounds in RAFT polymeriza- tion? (c) How do rates of polymerization differ from those of conventional radical polymerization? (d) Can RAFT agents be used in emulsion polymerization? Retardation, observed when high concentra- tions of certain RAFT agents are used and in the early stages of emulsion polymerization, and how to overcome it by appropriate choice of reaction conditions, are considered in detail. Examples of the use of thiocarbonylthio RAFT agents in emulsion and miniemulsion polymerization are provided. # 2000 Society of Chemical Industry Keywords: living polymerization; controlled polymerization; radical polymerization; dithioester; trithiocarbonate; transfer agent; RAFT; star; block; emulsion INTRODUCTION carbonylthio compounds 2 by addressing the following In recent years, considerable effort1,2 has been issues: expended to develop free radical processes that display (a) How living is RAFT polymerization?
    [Show full text]
  • Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature
    polymers Article Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature Aziz Ben-Miled 1 , Afshin Nabiyan 2 , Katrin Wondraczek 3, Felix H. Schacher 2,4 and Lothar Wondraczek 1,* 1 Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, D-07743 Jena, Germany; [email protected] 2 Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany; [email protected] (A.N.); [email protected] (F.H.S.) 3 Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745 Jena, Germany; [email protected] 4 Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743 Jena, Germany * Correspondence: [email protected]; Tel.: +49-3641-9-48500 Abstract: A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate-co-spiropyran acrylate) (P (TEGA-co-SPA)) copolymer containing 12–14% of spiropyran at the silica–water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA-co-SPA)-rich wetting layer growing on the sensor, Citation: Ben-Miled, A.; Nabiyan, A.; from which we deduced the characteristic coil-to-globule transition temperature, corresponding to Wondraczek, K.; Schacher, F.H.; the lower critical solution temperature (LCST) of the PTEGA part.
    [Show full text]
  • ICSHAM Acrylic Esters Safe Handling Guide
    ACRYLATE ESTERS A SUMMARY OF SAFETY AND HANDLING 3RD EDITION Compiled by ATOFINA Chemicals, Inc. BASF Corporation Celanese, Ltd. The Dow Chemical Company ROHM AND HAAS2002 COMPANY TABLE OF CONTENTS 1 INTRODUCTION.....................................................................................................................................................................1 2 NAMES AND GENERAL INFORMATION......................................................................................................................2 2.1 ODOR..............................................................................................................................................................................................2 2.2 REACTIVITY.....................................................................................................................................................................................2 3 PROPERTIES AND CHARACTERISTICS OF ACRYLATES........................................................................................3 4 SAFETY AND HANDLING MANAGEMENT TRAINING..........................................................................................5 4.1 GENERAL CONSIDERATIONS.......................................................................................................................................................5 4.2 SAFETY, HEALTH AND ENVIRONMENTAL REVIEWS...................................................................................................................5 4.3 WRITTEN OPERATING PROCEDURES...........................................................................................................................................5
    [Show full text]
  • Visible-Light-Mediated, Additive-Free, and Open-To-Air Controlled Radical Polymerization Cite This: Polym
    Polymer Chemistry View Article Online PAPER View Journal | View Issue Visible-light-mediated, additive-free, and open-to-air controlled radical polymerization Cite this: Polym. Chem., 2019, 10, 1585 of acrylates and acrylamides† Jessica R. Lamb, K. Peter Qin and Jeremiah A. Johnson * Oxygen tolerance in controlled radical polymerizations has been an active field of study in recent years. Herein, we report a photocontrolled, additive-free iniferter polymerization that operates in completely open vials utilizing the “polymerizing through oxygen” mechanism. Trithiocarbonates are directly activated with high intensity 450 nm light to produce narrowly dispersed (Mw/Mn = 1.1–1.6) polyacrylates and poly- acrylamides. Living behavior is demonstrated through chain extension, block copolymer synthesis, and control over molecular weight through varying the monomer : iniferter ratio. A slight increase in induction Received 7th January 2019, period is observed for the open vial polymerization compared to the air-free reaction, but polymers with Accepted 7th February 2019 similar Mn and Mw/Mn values are produced after 30–60 minutes of irradiation. This system will provide a Creative Commons Attribution 3.0 Unported Licence. DOI: 10.1039/c9py00022d convenient platform for living additive manufacturing because of its fast reaction time, air tolerance, wide rsc.li/polymers monomer scope, and lack of any additives beyond the monomer, iniferter, and DMSO solvent. Introduction generally avoided by performing the polymerizations under inert conditions; however, degassing techniques such as freeze– Controlled radical polymerization (CRP) techniques have trans- pump–thaw cycles, sparging, or performing experiments in a formed macromolecular synthesis by enabling access to poly- glovebox can be impractical for certain applications.
    [Show full text]
  • Adhesion to Plastic
    Adhesion to Plastic Marcus Hutchins Scientist I TS&D Industrial Coatings-Radcure Cytec Smyrna, GA USA Abstract A plastic can be described as a mixture of polymer or polymers, plasticizers, fillers, pigments, and additives which under temperature and pressure can be molded into various items1. Plastic materials have become a staple of our everyday life in applications ranging from food packaging to home construction. In automotive applications alone, over four billion pounds2 of plastic were used in cars and light trucks and that figure is expected to grow 30 percent by 2011. The demand for plastic is growing at a rate faster than metal because of advantages such as reduced weight, reduced material cost, corrosion resistance and increased durability over metal. As the demand for plastic increases, the need to effectively and efficiently coat plastic parts will also increase. For most plastics, that will mean starting with a good primer coating. This paper will present three new ultraviolet (UV) curable resins that may be used to formulate primers for a variety of plastic substrates. ©RadTech e|5 2006 Technical Proceedings Introduction Once a plastic part is formed, a coating is usually applied for decorative or protective purposes. Typically, that starts with a primer coating. There are many factors that positively affect the adhesion of the primer to the substrate, and several will be discussed here. One of the more important properties in achieving adhesion is the ability of the coating to wet the substrate3. In order for wetting to occur, the surface tension of the coating must be less than the surface energy of the substrate.
    [Show full text]
  • Methyl Acrylate
    METHYL ACRYLATE Data were last reviewed in IARC (1986) and the compound was classified in IARC Monographs Supplement 7 (1987). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 96-33-3 Chem. Abstr. Name: 2-Propenoic acid, methyl ester IUPAC Systematic Name: Acrylic acid, methyl ester Synonym: Methyl propenoate 1.1.2 Structural and molecular formulae and relative molecular mass O H2 C CH C O CH3 C4H6O2 Relative molecular mass: 86.09 1.1.3 Chemical and physical properties of the pure substance (a) Description: Liquid with an acrid odour (Budavari, 1996) (b) Boiling-point: 80.6°C (American Conference of Governmental Industrial Hygienists, 1992) (c) Melting-point: –76.5°C (Budavari, 1996) (d) Solubility: Slightly soluble in water (6 g/100 mL at 20°C, 5 g/100 mL at 40°C); soluble in ethanol, diethyl ether, acetone and benzene (American Conference of Governmental Industrial Hygienists, 1992) (e) Vapour pressure: 9.3 kPa at 20°C; relative vapour density (air = 1), 3.0 (Ver- schueren, 1996) ( f ) Flash point: –2.8°C, closed cup; 6.7°C, open cup (American Conference of Governmental Industrial Hygienists, 1992) (g) Explosive limits: upper, 25%; lower, 2.8% by volume in air (American Con- ference of Governmental Industrial Hygienists, 1992) (h) Conversion factor: mg/m3 = 3.52 × ppm –1489– 1490 IARC MONOGRAPHS VOLUME 71 1.2 Production and use Production of methyl acrylate in the United States was reported to be 14 100 tonnes in 1983 (United States National Library of Medicine, 1997).
    [Show full text]
  • Red List Microplastic Ingredients
    Products on this list have been found to contain ingredients which are commonly considered to be microplastic ingredients. These include but are not limited to Polyethylene (PE), Polypropylene (PP), Polymethyl methacrylate (PMMA), Nylon (PA), Polyurethane, and Acrylates Copolymer. No. Polymer Source 1 Acetophenone/Oxymethylene Copolymer ECHA 2 Acetylenediurea/Formaldehyde/Tosylamide Crosspolymer ECHA 3 Acrolein/Acrylic Acid Copolymer ECHA 4 Acrylamide/Ammonium Acrylate Copolymer ECHA 5 Acrylamide/Ethalkonium Chloride Acrylate Copolymer ECHA 6 Acrylamide/Ethyltrimonium Chloride Acrylate/Ethalkonium Chloride ECHA Acrylate Copolymer 7 Acrylamide/Sodium Acrylate Copolymer ECHA 8 Acrylamide/Sodium Acryloyldimethyltaurate Copolymer ECHA 9 Acrylamide/Sodium Acryloyldimethyltaurate/Acrylic Acid Copolymer ECHA 10 Acrylamides/DMAPA Acrylates/Methoxy PEG Methacrylate Copolymer ECHA 11 Acrylamidopropyltrimonium Chloride/Acrylates Copolymer ECHA 12 Acrylates Copolymer ECHA; UNEP; 13 Acrylates Crosspolymer ECHA 14 Acrylates Crosspolymer-3 ECHA 15 Acrylates Crosspolymer-4 ECHA 16 Acrylates/Acetoacetoxyethyl Methacrylate Copolymer ECHA 17 Acrylates/Acrylamide Copolymer ECHA 18 Acrylates/Aminoacrylates/C10-30 Alkyl PEG-20 Itaconate Copolymer ECHA 19 Acrylates/Ammonium Methacrylate Copolymer ECHA 20 Acrylates/Beheneth-25 Methacrylate Copolymer ECHA 21 Acrylates/Beheneth-25 Methacrylate/Steareth-30 Methacrylate ECHA Copolymer 22 Acrylates/Behenyl Acrylate/Dimethicone Methacrylate Copolymer ECHA 23 Acrylates/Behenyl Methacrylate/Dimethicone Methacrylate
    [Show full text]
  • Stereochemistry of Acrylate Polymerization in Toluene Using N-Buli
    Polymer Journal. Vol. 31, No.5. pp 479-481 (1999) NOTES Stereochemistry of Acrylate Polymerization in Toluene Using n-BuLi Weihong Lru,t Tamaki NAKANO,* and Yoshio 0KAMOTo*-tt Joint Research C'emer for Precision Polymeri::.ation (JRC' P P)-Japan Chemical Innovation Institute (JC'Il), Graduate School of EnJ;ineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan *Department of Applied Chemistry, Graduate School of Engineerin[;, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan (Received November 18, 1998) KEY WORDS Anionic Polymerization / Tacticity I Acrylate I Methacrylate I Lithium Hydroxide / Stereospecific Polymerization / The stereostructure of a vinyl polymer often sig­ our previous reports. 13· 14 nificantly affects its physical and chemical properties. Therefore, stereocontrol of vinyl polymerizations is an RESULTS AND DISCUSSION important topic in macromolecular science, and various stereospecific polymerizations using Ziegler-Natta, me­ Temperature Effect tallocene. or anionic catalysts (initiators) have been The conditions and results of the polymerizations are examined. 1 •2 As to anionic polymerization, methacrylate summarized in Table I. In the MA polymerization, the polymerization has been most systematically investigat­ yield of the MeOH-insoluble polymer decreased as re­ ed, and both highly isotactic and syndiotactic polymers action temperature increased, while in the tBA polym­ have been synthesized. 2 •3 However, the stereocontrol of erizations, polymer yield was over 90% at all temper­ acrylate polymerization is generally difficult probably atures. This suggests that some side reactions including because of the absence of the ex-methyl group which may the carbonyl attack, which is less likely for tBA having a greatly contribute to the formation of a propagation bulky side group, took place in the MA polymeriza­ center with a high stereospecificity.
    [Show full text]
  • An Injectable Thiol-Acrylate Poly(Ethylene Glycol) Hydrogel for Sustained Release of Methylprednisolone Sodium Succinate
    Biomaterials 32 (2011) 587e597 Contents lists available at ScienceDirect Biomaterials journal homepage: www.elsevier.com/locate/biomaterials An injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of methylprednisolone sodium succinate Christopher D. Pritchard a,*, Timothy M. O’Shea b, Daniel J. Siegwart a, Eliezer Calo c, Daniel G. Anderson a, Francis M. Reynolds d, John A. Thomas e, Jonathan R. Slotkin e, Eric J. Woodard f, Robert Langer a,b a Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA d InVivo Therapeutics Corporation, Cambridge, MA 02142, USA e Department of Neurosurgery, The Washington Brain and Spine Institute, Washington, DC 20010, USA f Department of Neurosurgery, New England Baptist Hospital, Cambridge, MA 02120, USA article info abstract Article history: Clinically available injectable hydrogels face technical challenges associated with swelling after injection Received 4 August 2010 and toxicity from unreacted constituents that impede their performance as surgical biomaterials. To Accepted 27 August 2010 overcome these challenges, we developed a system where chemical gelation was controlled by Available online 28 September 2010 a conjugate Michael addition between thiol and acrylate in aqueous media, with 97% monomer conversion and 6 wt.% sol fraction. The hydrogel exhibited syneresis on equilibration, reducing to 59.7% Keywords: of its initial volume. It had mechanical properties similar to soft human tissue with an elastic modulus of Cell adhesion 189.8 kPa.
    [Show full text]
  • Influence of Acrylic Acid on Kinetics of UV-Induced Cotelomerization
    materials Article Influence of Acrylic Acid on Kinetics of UV-Induced Cotelomerization Process and Properties of Obtained Pressure-Sensitive Adhesives Agnieszka Kowalczyk * , Mateusz Weisbrodt, Beata Schmidt and Konrad Gziut Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, 70-322 Szczecin, Poland; [email protected] (M.W.); [email protected] (B.S.); [email protected] (K.G.) * Correspondence: [email protected] Received: 6 November 2020; Accepted: 8 December 2020; Published: 11 December 2020 Abstract: A new environmentally friendly method of photoreactive pressure-sensitive adhesives (PSAs) preparation was demonstrated. PSAs based on n-butyl acrylate (BA), acrylic acid (AA) and 4-acryloyloxy benxophenone (ABP) were prepared via the UV-induced cotelomerization process in the presence of a radical photoinitiator (acylphosphine oxide) and telogen (tetrabromomethane). Hydroxyterminated polybutadiene was used as a crosslinking agent. Influence of AA concentration (0–10 wt %) on kinetics of the cotelomerization process was investigated using a photodifferential scanning calorimetry method, selected physicochemical features of obtained photoreactive BA/AA/ABP cotelomers (molecular masses, polydispersity, monomers conversion and dynamic viscosity) and self-adhesive properties of obtained PSAs (adhesion, tack and cohesion) were studied, as well. It turned out that AA content is the important factor that influences monomers conversion (thereby the volatile parts content in prepolymer) and PSAs’ properties. As the acrylic acid content increases, the reaction rate increases, but the total monomers conversion and the solid content of the prepolymer decreases. Additionally, the adhesion and cohesion of PSAs were grown up, and their tackiness decreased.
    [Show full text]