Red List Microplastic Ingredients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAKIMOUSSE COMPOSITION INCI Name SODIUM POLYACRYLATE STARCH
MAKIMOUSSE COMPOSITION INCI Name SODIUM POLYACRYLATE STARCH TEXTURING AGENT TEXTURING AGENT TEXTURING AGENT SELF-REGULATING SELF-REGULATING SELF-REGULATING RHEOLOGICAL RHEOLOGICAL RHEOLOGICAL AGENT AGENT AGENT SMOOTH SILKY BULKY SILKY SILKY MOUSSE = NON MOUSSE = NON NON MAKIMOUSSE CHOCOLATE MAKIMOUSSE CHANTILLY MAKIMOUSSE FASTER STICKY 25 STICKY STICKY 12 MOUSSE 7 SWELLING AFTERFEEL MOUSSE AFTERFEEL AFTERFEEL TYPE TYPE MATTE SMOOTH SMOOTH FROSTED FROSTED GLOSSY GEL GEL WAVE TYPE GEL swelled hand mixer swelled hand mixer swelled hand mixer 1% gels were prepared by different methods (swelling, by hand, with a mixer): Low shear achieves frosted aspect, high shear reduces frosted aspect with immediate ultimate volume Influence of shear on the gel formation: aspect and spreadability 0,5% gels were poured into a mould. The aspect was observed 5 minutes after demoulding: swelled hand mixer swelled hand mixer swelled hand mixer Particle size 100µm 100µm 100µm Mean particle size = 25 µm Mean particle size = 12 µm Mean particle size = 7 µm Formulation Gel formation MAKIMOUSSE CONVENTIONAL • Swells in water witout agitation or by manual or THICKENER mechanical stirring • pH: stable over a pH range of 4 to 10 • Alcohols: compatible up to 40% with ethanol • Salts: swelling capacity decreases in presence of salts. A higher polymer concentration is required to reach the same Water viscosity compared to a salt-free medium. Water • Urea: compatible • Surfactants: compatible with anionics and nonionics but only up to 1% with cationic, (higher polymer concentration -
Biocompatible Non-Covalent Complexes of Chitosan and Different Polymers: Characteristics and Application in Drug Delivery
Arh. farm. 2020; 70: 173 – 197 Review article/Pregledni rad Biocompatible non-covalent complexes of chitosan and different polymers: characteristics and application in drug delivery Ana Ćirić1*, Danina Krajišnik1, Bojan Čalija1, Ljiljana Đekić1 1 University of Belgrade - Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia *Corresponding author: Ana Ćirić, E-mail: [email protected] Abstract The formulation of biocompatible drug carriers based on cationic biopolymer chitosan and natural or synthetic polymers represents an important research interest. Therefore, this review aims to perceive their potential in drug delivery. The most investigated chitosan-based polymer blends are polyelectrolyte complexes (PECs) obtained by establishing ionic interactions with biocompatible polyanions as alginates, pectin, xanthan gum, carrageenan, carboxymethylcellulose, and collagen. Depending on the preparation conditions, PECs could be prepared in versatile forms including membranes/films, hydrogel beads, nanoparticles, and microparticles, to achieve controlled (e.g., extended, delayed, colon-specific and pH-dependent) drug delivery. PECs can encapsulate hydrophilic and lipophilic drug substances with different molecular weights. Drug encapsulation allows the preservation of their structure, activity, improvement in absorption efficiency, reduction in adverse effects and long-term stability in vitro and in vivo. The biocompatible structures as non-covalent chitosan-based complexes could be formed also by establishing hydrogen bonds, for example with poly(vinyl alcohol). The swelling of these complexes is not pH-dependent and encapsulated drug substances are often released by already known types of diffusion. Moreover, grafted chitosan derivatives (e.g., carboxymethyl chitosan, trimethyl chitosan, acrylated chitosan) are synthesized to improve water solubility at a wide pH range and enhance the encapsulation capacity of promising PEC-based drug carriers. -
Effects of Sodium Polyacrylate and Potassium Polymer on Growth and Physiological Characteristics of Different Flue-Cured Tobaccos W.X
Bulgarian Chemical Communications, Volume 50, Issue 2, (pp. 315 –323) 2018 Effects of sodium polyacrylate and potassium polymer on growth and physiological characteristics of different flue-cured tobaccos W.X. Huang*, Z.Z. Wei, G.Y. Niu, Y.J Zhang, H.F. Shao* College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, 450002, China Received January 14, 2018; Accepted February 7, 2018 To investigate water retention effects and physiological regulation mechanism of water-retaining agents on the growth and development of different flue-cured tobacco varieties, a pot experiment was conducted using ‘Yuyan 6’ and ‘Yuyan 10’ to study the effects of sodium polyacrylate and potassium polymer on the agronomic characteristics, the root activity, the activity of antioxidant enzymes, the content of malondialdehyde (MDA) and proline in the leaves of flue-cured tobaccos. The results were as follows. (1) The application of water-retaining agents increased the plant height, the stem diameter, the number of effective leaves, the maximum leaf area and the root activity of flue-cured tobaccos and the effects were more significant for Yuyan 10 of relatively poor drought resistance. (2) The activity of SOD, POD and CAT of flue-cured tobaccos treated with water-retaining agents was reduced to different extents. (3) The application of water-retaining agents lowered the MDA content of flue-cured tobaccos but the effects were more significant for Yuyan 10 of relatively poor drought resistance. (4) The application of water-retaining agents decreased the proline content of flue-cured tobaccos under drought conditions, but the decrease of proline content in Yuyan 6 was larger than that in Yuyan 10. -
Superabsorbent Polymers
www.scifun.org Superabsorbent Polymers Absorbers and super absorbers If you spill a drink, your first impulse is probably to grab one or more paper napkins or paper towels to soak up, or absorb, the liquid. If the spill is large, several paper towels will be needed. Even a “quicker-picker-upper” can absorb only a small amount of liquid, before it is saturated (has absorbed all it can). What makes materials more or less absorbent in the first place? The answer is in their chemistry. We can harness the chemistry of polymers to build a better absorber: a super absorber. The word “polymer” means “many parts” (from the Greek: poly = many, meros = parts). A chemical polymer is a molecule made of many repeating units, monomers (mono = one, meros = parts), linked together through chemical bonds. It is useful to think of polymers as chains – a good analogy is a chain of paperclips (the monomers), Figure 1. Polymers are very versatile. They can form materials that are rigid like plastic water bottles or materials that are flexible, like plastic grocery bags. Note that polymeric materials are often called “plastics”. Figure 1. A chain of paperclips linked end-to-end like the individual molecules (monomers) that are chemically bonded to form a chemical polymer chain. Some polymers occur naturally. The most common polymer on Earth, cellulose, is a polymer of glucose molecules and is made (as a result of photosynthesis) by essentially every green plant. Cellulose forms part of a plant’s rigid structures, the wood in a tree trunk, for example. -
Poly( Ethylene-Co-Methyl Acrylate)-Solvent- Cosolvent Phase Behaviour at High Pressures
Poly( ethylene-co-methyl acrylate)-solvent- cosolvent phase behaviour at high pressures Melchior A. Meilchen, Bruce M. Hasch, Sang-Ho Lee and Mark A. McHugh* Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21278, USA (Received 5 April 7991; accepted 75 July 1997 ) Cloud-point data to 160°C and 2000 bar are presented showing the effect of cosolvents on the phase behaviour of poly(ethylene-co-methyl acrylate) (EMA) (64 mo1%/36 mol%) with propane and chlorodifluoromethane (F22). Ethanol shifts the EMA-propane cloud-point curves to lower temperatures and pressures, but above _ 10 wt% ethanol, the copolymer becomes insoluble. Up to 40 wt% acetone monotonically shifts the EMA-propane cloud-point curves to lower temperatures and pressures. Acetone and ethanol both shift the cloud-point curves of EMA-F22 mixtures in the same monotonic manner for cosolvent concentrations of up to 40 wt%. (Keywords: copolymer; cosolvent; high pressures) INTRODUCTION or diethyl ether, so it is necessary to operate at elevated temperatures and pressures to dissolve high molecular Within the past 20 years there has been a great deal of weight polystyrene in either solvent. Adding acetone to effort invested in trying to understand and model the PS-diethyl ether mixtures monotonically reduces the solubility behaviour of polar polymers in liquid cosolvent pressure needed at a given temperature to obtain a single mixtures’-9. Polymer solubility is usually related to phase. whether the cosolvent preferentially solvates or adsorbs There has also been a number of viscometric and light to certain segments of the polymer chain as determined scattering studies on the solution behaviour of polar by light scattering, viscosity measurements or cloud- copolymers in liquid cosolvent mixtures’4*‘5. -
Life Cycle Assessment of Bio-Based Sodium Polyacrylate Production from Pulp Mill Side Streams: Case Study of Thermo-Mechanical and Sulfite Pulp Mills
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Chalmers Publication Library Life cycle assessment of bio-based sodium polyacrylate production from pulp mill side streams: Case study of thermo-mechanical and sulfite pulp mills Paul Gontiaa, Matty Janssena,∗ aEnvironmental Systems Analysis, Department of Energy and Environment, Chalmers University of Technology, SE-412 96 Goteborg,¨ Sweden Abstract Sodium polyacrylate (Na-PA) is a super absorbent polymer, which is commonly used in diverse hygiene products. The polymer is currently produced from fossil feedstock and its production consequently leads to adverse environmental impacts. Na-PA production from sugars present in pulp mill side streams can potentially be a successful way to achieve a more sustainable production of this polymer. In order to guide the development of a novel biochemical process for producing Na-PA, a life cycle assessment was done in which Na-PA produced from side streams of thermo-mechanical pulp (TMP) and sulfite pulp mills were compared. Furthermore, a comparison was made with Na-PA produced from fossil resources. The results show that the main determinant of the environmental impact of the bio-based Na-PA production is the free sugar content in the side streams. The lowest environmental impact is achieved by the least diluted side streams. More diluted side streams require larger amounts of energy for concentration, and, if the diluted streams are not concentrated, processes such as hydrolysis and detoxification, and fermentation are the environmental hotspots. Furthermore, the higher the yield of the fermentation process, the lower the environmental impact will be. -
Reversible Deactivation Radical Polymerization: State-Of-The-Art in 2017
Chapter 1 Reversible Deactivation Radical Polymerization: State-of-the-Art in 2017 Sivaprakash Shanmugam and Krzysztof Matyjaszewski* Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States *E-mail: [email protected]. This chapter highlights the current advancements in reversible-deactivation radical polymerization (RDRP) with a specifc focus on atom transfer radical polymerization (ATRP). The chapter begins with highlighting the termination pathways for acrylates radicals that were recently explored via RDRP techniques. This led to a better understanding of the catalytic radical termination (CRT) in ATRP for acrylate radicals. The designed new ligands for ATRP also enabled the suppression of CRT and increased chain end functionality. In addition, further mechanistic understandings of SARA-ATRP with Cu0 activation and comproportionation were studied using model reactions with different ligands and alkyl halide initiators. Another focus of RDRP in recent years has been on systems that are regulated by external stimuli such as light, Downloaded via CARNEGIE MELLON UNIV on August 17, 2020 at 15:07:44 (UTC). electricity, mechanical forces and chemical redox reactions. Recent advancements made in RDRP in the feld of complex See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. polymeric architectures, organic-inorganic hybrid materials and bioconjugates have also been summarized. Introduction The overarching goal of this chapter is to provide an overall summary of the recent achievements in reversible-deactivation radical polymerization (RDRP), primarily in atom transfer radical polymerization (ATRP), and also in reversible addition-fragmentation chain transfer (RAFT) polymerization, tellurium mediated © 2018 American Chemical Society Matyjaszewski et al.; Reversible Deactivation Radical Polymerization: Mechanisms and Synthetic Methodologies ACS Symposium Series; American Chemical Society: Washington, DC, 2018. -
Sodium Polyacrylate Superabsorbent Polymers SCIENTIFIC
Sodium Polyacrylate Superabsorbent Polymers SCIENTIFIC Introduction Water from one cup is poured into an “empty” cup (actually containing sodium polyacrylate) and the water “disappears!” Concepts • Polymers • Osmosis • Superabsorbents • Industrial chemistry Materials Sodium polyacrylate, 0.5 g Styrofoam® cups or other opaque containers, 2 Distilled or deionized water, 100 mL Safety Precautions Sodium polyacrylate is nontoxic. However, it is irritating to the eyes and also to nasal membranes if inhaled. Wear chemical splash goggles whenever working with chemicals, heat or glassware. Sodium polyacrylate is an obvious choice for student pranks. Be careful students do not have access to sodium polyacrylate outside of chemistry class. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Pre-Lab Preparation Before the students come into the room, place 0.5 g of sodium polyacrylate in one of the Styrofoam cups. Procedure 1. Add approximately 100 mL of distilled or deionized water to the second Styrofoam cup. 2. Tell the students that the water will “disappear” when poured into the other cup. (You can tip the cup forward some- what to show that it is “empty”; it will be difficult to see the 0.5 g of sodium polyacrylate against the white Styrofoam cup.) 3. Slowly pour the water into the cup containing sodium polyacrylate. Swirl the cup a bit (give the sodium polyacrylate time to absorb the water). 4. Tip the cup downward slightly to show the students that the water has “disappeared”! (Don’t turn the cup upside down, or you may dump the jelly-like mass on the floor!) Disposal Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures, and review all federal, state and local regulations that may apply, before proceeding. -
Safety Data Sheet the Dow Chemical Company
SAFETY DATA SHEET THE DOW CHEMICAL COMPANY Product name: ACULYN™ 2051 Rheology Modifier Issue Date: 03/11/2021 Print Date: 03/25/2021 THE DOW CHEMICAL COMPANY encourages and expects you to read and understand the entire (M)SDS, as there is important information throughout the document. We expect you to follow the precautions identified in this document unless your use conditions would necessitate other appropriate methods or actions. 1. IDENTIFICATION Product name: ACULYN™ 2051 Rheology Modifier Recommended use of the chemical and restrictions on use Identified uses: Rheology modifier COMPANY IDENTIFICATION THE DOW CHEMICAL COMPANY 2211 H.H. DOW WAY MIDLAND MI 48674 UNITED STATES Customer Information Number: 800-258-2436 [email protected] EMERGENCY TELEPHONE NUMBER 24-Hour Emergency Contact: CHEMTREC +1 800-424-9300 Local Emergency Contact: 800-424-9300 2. HAZARDS IDENTIFICATION Hazard classification GHS classification in accordance with the OSHA Hazard Communication Standard (29 CFR 1910.1200) Not a hazardous substance or mixture. Other hazards No data available 3. COMPOSITION/INFORMATION ON INGREDIENTS Chemical nature: Organic compound emulsion This product is a mixture. Component CASRN Concentration ® ™ Trademark of The Dow Chemical Company ("Dow") or an affiliated Page 1 of 15 company of Dow Product name: ACULYN™ 2051 Rheology Modifier Issue Date: 03/11/2021 Sodium polyacrylate 9003-04-7 >= 20.0 - <= 29.0 % Decamethylcyclopentasiloxane 541-02-6 >= 7.0 - <= 10.0 % Ethoxylated branched C11-14, C13-rich 78330-21-9 >= 3.0 - <= 4.0 % alcohols 4. FIRST AID MEASURES Description of first aid measures General advice: If potential for exposure exists refer to Section 8 for specific personal protective equipment. -
Living Free Radical Polymerization with Reversible Addition – Fragmentation
Polymer International Polym Int 49:993±1001 (2000) Living free radical polymerization with reversible addition – fragmentation chain transfer (the life of RAFT) Graeme Moad,* John Chiefari, (Bill) YK Chong, Julia Krstina, Roshan TA Mayadunne, Almar Postma, Ezio Rizzardo and San H Thang CSIRO Molecular Science, Bag 10, Clayton South 3169, Victoria, Australia Abstract: Free radical polymerization with reversible addition±fragmentation chain transfer (RAFT polymerization) is discussed with a view to answering the following questions: (a) How living is RAFT polymerization? (b) What controls the activity of thiocarbonylthio compounds in RAFT polymeriza- tion? (c) How do rates of polymerization differ from those of conventional radical polymerization? (d) Can RAFT agents be used in emulsion polymerization? Retardation, observed when high concentra- tions of certain RAFT agents are used and in the early stages of emulsion polymerization, and how to overcome it by appropriate choice of reaction conditions, are considered in detail. Examples of the use of thiocarbonylthio RAFT agents in emulsion and miniemulsion polymerization are provided. # 2000 Society of Chemical Industry Keywords: living polymerization; controlled polymerization; radical polymerization; dithioester; trithiocarbonate; transfer agent; RAFT; star; block; emulsion INTRODUCTION carbonylthio compounds 2 by addressing the following In recent years, considerable effort1,2 has been issues: expended to develop free radical processes that display (a) How living is RAFT polymerization? -
Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature
polymers Article Controlling Growth of Poly (Triethylene Glycol Acrylate-Co-Spiropyran Acrylate) Copolymer Liquid Films on a Hydrophilic Surface by Light and Temperature Aziz Ben-Miled 1 , Afshin Nabiyan 2 , Katrin Wondraczek 3, Felix H. Schacher 2,4 and Lothar Wondraczek 1,* 1 Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, D-07743 Jena, Germany; [email protected] 2 Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, D-07743 Jena, Germany; [email protected] (A.N.); [email protected] (F.H.S.) 3 Leibniz Institute of Photonic Technology (Leibniz IPHT), D-07745 Jena, Germany; [email protected] 4 Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, D-07743 Jena, Germany * Correspondence: [email protected]; Tel.: +49-3641-9-48500 Abstract: A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed for in situ investigations of the effect of temperature and light on the conformational changes of a poly (triethylene glycol acrylate-co-spiropyran acrylate) (P (TEGA-co-SPA)) copolymer containing 12–14% of spiropyran at the silica–water interface. By monitoring shifts in resonance frequency and in acoustic dissipation as a function of temperature and illumination conditions, we investigated the evolution of viscoelastic properties of the P (TEGA-co-SPA)-rich wetting layer growing on the sensor, Citation: Ben-Miled, A.; Nabiyan, A.; from which we deduced the characteristic coil-to-globule transition temperature, corresponding to Wondraczek, K.; Schacher, F.H.; the lower critical solution temperature (LCST) of the PTEGA part. -
ICSHAM Acrylic Esters Safe Handling Guide
ACRYLATE ESTERS A SUMMARY OF SAFETY AND HANDLING 3RD EDITION Compiled by ATOFINA Chemicals, Inc. BASF Corporation Celanese, Ltd. The Dow Chemical Company ROHM AND HAAS2002 COMPANY TABLE OF CONTENTS 1 INTRODUCTION.....................................................................................................................................................................1 2 NAMES AND GENERAL INFORMATION......................................................................................................................2 2.1 ODOR..............................................................................................................................................................................................2 2.2 REACTIVITY.....................................................................................................................................................................................2 3 PROPERTIES AND CHARACTERISTICS OF ACRYLATES........................................................................................3 4 SAFETY AND HANDLING MANAGEMENT TRAINING..........................................................................................5 4.1 GENERAL CONSIDERATIONS.......................................................................................................................................................5 4.2 SAFETY, HEALTH AND ENVIRONMENTAL REVIEWS...................................................................................................................5 4.3 WRITTEN OPERATING PROCEDURES...........................................................................................................................................5