Phoma Macrostoma: As a Broad Spectrum Bioherbicide for Turfgrass and Agricultural Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biopesticides: State of the Art and Future Opportunities James N
Entomology Publications Entomology 11-2014 Biopesticides: State of the Art and Future Opportunities James N. Seiber University of California - Davis Joel R. Coats Iowa State University, [email protected] Stephen O. Duke United States Department of Agriculture Aaron D. Gross Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/300. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Biopesticides: State of the Art and Future Opportunities Abstract The use of biopesticides and related alternative management products is increasing. New tools, including semiochemicals and plant-incorporated protectants (PIPs), as well as botanical and microbially derived chemicals, are playing an increasing role in pest management, along with plant and animal genetics, biological control, cultural methods, and newer synthetics. The og al of this Perspective is to highlight promising new biopesticide research and development (R&D), based upon recently published work and that presented in the American Chemical Society (ACS) symposium “Biopesticides: State of the Art and Future Opportunities,” as well as the authors’ own perspectives. Although the focus is on biopesticides, included in this Perspective is progress with products exhibiting similar characteristics, namely those naturally occurring or derived from natural products. -
Seven Biopesticide Active Ingredients You Should Know About
Certis USA for CAPCA Adviser Seven Biopesticide Active Ingredients You Should Know About By Tim Damico, Executive VP-NAFTA, Certis USA Biological pesticides are often referred to as soft materials. It is Isaria fumosorosea. This fungus is highly pathogenic toward a broad true that their impact is soft to the environment, beneficial insects, range of pests, including whiteflies, aphids, thrips, soil-dwelling wildlife, spray applicators and farm crews. insects and spider mites. Spores applied as a foliar spray or soil drench germinate on contact with the target pest, and the growing But there is nothing soft about how biopesticides kill pests. fungus then penetrates through the cuticle or natural openings to proliferate inside. The insect or mite stops feeding and dies soon These seven common biopesticide active ingredients are formulated afterward, often with dark spots at infection points as the only from naturally occurring bacteria, fungi and viruses. Like the visible sign of fungal infection. I. fumosorosea can infect all life pathogenic diseases and insect pests they control, these beneficial stages of the pest (eggs, nymphs, pupae and adults). organisms must employ survival strategies to live. These strategies or modes of action allow them to biologically decimate their target Bacillus amyloliquefaciens. B. amyloliquefaciens is a broad spectrum pest species. preventive fungicide/bacteriacide for foliar and soil application. This bacterium rapidly colonizes root hairs, leaves and other plant Yet as destructive as they are to their target pests, beneficial bacteria, fungi and viruses cannot infect or harm non-target species. Their modes of action are specific to certain pests. A virus Paecilomyces lilacinus fungus engulfing nematode eggs. -
Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy. -
Disposal of Persistent Organic Pollutants and Obsolete Pesticides and Strengthening Life-Cycle Management of Pesticides in Benin”
Project evaluation series Mid-term evaluation of “Disposal of Persistent Organic Pollutants and Obsolete Pesticides and Strengthening Life-cycle Management of Pesticides in Benin” Project evaluation series Mid-term evaluation of “Disposal of persistent organic pollutants and obsolete pesticides and strengthening life-cycle management of pesticides in Benin” GCP/BEN/056/GFF FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Required citation: FAO. 2019. Mid-term evaluation of “Disposal of Persistent Organic Pollutants and Obsolete Pesticides and Strengthening Life-cycle Management of Pesticides in Benin”. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/ licenses/by-nc-sa/3.0/igo/legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. -
Phytomyza Vitalbae, Phoma Clematidina, and Insect-Plant
Phytomyza vitalbae, Phoma clematidina, and insect–plant pathogen interactions in the biological control of weeds R.L. Hill,1 S.V. Fowler,2 R. Wittenberg,3 J. Barton,2,5 S. Casonato,2 A.H. Gourlay4 and C. Winks2 Summary Field observations suggested that the introduced agromyzid fly Phytomyza vitalbae facilitated the performance of the coelomycete fungal pathogen Phoma clematidina introduced to control Clematis vitalba in New Zealand. However, when this was tested in a manipulative experiment, the observed effects could not be reproduced. Conidia did not survive well when sprayed onto flies, flies did not easily transmit the fungus to C. vitalba leaves, and the incidence of infection spots was not related to the density of feeding punctures in leaves. Although no synergistic effects were demonstrated in this case, insect–pathogen interactions, especially those mediated through the host plant, are important to many facets of biological control practice. This is discussed with reference to recent literature. Keywords: Clematis vitalba, insect–plant pathogen interactions, Phoma clematidina, Phytomyza vitalbae, tripartite interactions. Introduction Hatcher & Paul (2001) have succinctly reviewed the field of plant pathogen–herbivore interactions. Simple, Biological control of weeds is based on the sure knowl- direct interactions between plant pathogens and insects edge that both pathogens and herbivores can influence (such as mycophagy and disease transmission) are well the fitness of plants and depress plant populations understood (Agrios 1980), as are the direct effects of (McFadyen 1998). We seek suites of control agents that insects and plant pathogens on plant performance. Very have combined effects that are greater than those of the few fungi are dependent on insects for the transmission agents acting alone (Harris 1984). -
The Role of Biopesticides in Sustainable Agriculture Nature Fighting Nature Susan M
The role of biopesticides in sustainable agriculture Nature fighting nature Susan M. Boyetchko Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan,Canada [email protected] Introduction • Investment in biopesticide R&D in Canada has progressed • perceptions and attitudes towards chemical pesticides have changed • renewed interest in biopesticides, more products being registered since 2000 • social and economic drivers – legislative changes – regulatory policies – changing attitudes of consumers – greater interest by small-to-medium sized enterprises (SME’s) What are biopesticides? • beneficial use of living organisms to (directly or indirectly) suppress, inhibit, damage, or kill a pest or pest population • biocontrol agents: e.g. fungi, bacteria, viruses, natural products • inundative application, applied repeatedly, annually • easy to use and mass-produce, acceptable shelf life • host specific (target pests/pathogens, group of related pathogens) • no detrimental effects on non-target organisms • environmental and toxicological safety standards Biopesticides – Opportunities/Need • pesticide-resistance management • control of invasive alien species • reduced risk pest control products (new active ingredients & new modes of action) • expand label registration of existing biopesticide products; more products registered in Canada • reduce chemical residues (soil, water, food) • IPM in crop production systems (e.g. conventional, organic, no/low pesticide use) • where control measures (e.g. chemicals) are inadequate/unavailable/deregistered Biopesticides = Next Generation of Pest Control Products (transformative research) Biopesticide Market Global Biopesticides and Synthetic Pesticides Market ($millions) Type 2003 2004 2005 2010 Ave. Ann. growth rate Biopesticides 468 562 672 1,075 9.9 Synthetic 27,144 26,600 26,076 24,205 -1.5 Pesticides Total 27,612 27,162 26,748 25,280 -1.1 Biopesticides as % of total 1.69 2.07 2.51 4.25 from Business Communications Company, Inc. -
Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). -
A Polyphasic Approach to Characterise Two Novel Species of Phoma (Didymellaceae) from China
Phytotaxa 197 (4): 267–281 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.197.4.4 A polyphasic approach to characterise two novel species of Phoma (Didymellaceae) from China QIAN CHEN1,2, KE ZHANG2, GUOZHEN ZHANG1* & LEI CAI2* 1College of Agriculture and Biotechnology, China Agricultural University, No. 2 West Yuanmingyuan Rd, Haidian District, Beijing 100193, P.R. China 2State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, West Beichen Rd, Chaoyang District, Beijing 100101, P. R. China Corresponding authors: Lei Cai: [email protected]; Guozhen Zhang: [email protected]. Abstract Phoma odoratissimi sp. nov. on Viburnum odoratissimum and Syringa oblate, and Phoma segeticola sp. nov. on Cirsium segetum from China are introduced and described, employing a polyphasic approach characterising morphological charac- teristics, host association and phylogeny. Both species are the first records of Phoma species on their respective hosts. Multi- locus phylogenetic tree was inferred using combined sequences of the internal transcribed spacer regions 1 & 2 and 5.8S nrDNA (ITS), and partial large subunit 28S nrDNA region (LSU), β-tubulin (TUB) region and RNA polymerase II (RPB2) region. The two new species clustered in two separate and distinct lineages, and are distinct from their allied species. Key words: Karst, morphology, plant pathogen, phylogeny, taxonomy INTRODUCTION The coelomycetous genus Phoma Sacc. emend. Boerema & G.J. Bollen is omnipresent in the environments and consists of pathogens, opportunists and several saprobic species from a wide range of substrates (Aveskamp et al. -
S525 Certified Cabs Shouldn't Be Used in Lieu Of
July 2002 Volume 15, No. 4 S525 Certified Cabs Shouldn’t Be Used in Lieu of PPE 1 S525 Certified Cabs Shouldn’t Be Used in Lieu of PPE The American Society of Agricultural Engineers (ASAE) now recommends using agricul- tural cabs certified to meet ASAE standard S525-1.1 as a supplement to personal protec- tive equipment (PPE), rather than as a replacement for it. S525 was initially created to 2 Pesticide Protection: Cabs certify specially equipped cabs intended to provide equivalent protection of some specific on Sprayers and Tractors PPE listed on pesticide labels. Two main features of S525-certified cabs are special cab filters for removing organic pesticide vapors, and positive-pressure ventilation. These cabs use filters with a tested and 3 Custom Hay Balers, Take proven efficiency at removing pesticide vapors to provide a supply of filtered air to the Note climate-control system in the cab. In addition, the cabs are well sealed and maintain higher pressure inside the cab, so any air leakage would be of filtered air leaking out rather than of contaminated air leaking in. An in-cab pressure indicator is required so the 3 Systemic, Local Systemic, operator can monitor the pressure and be assured that the filtration system is functioning or Translaminar: What’s the properly. Low in-cab pressure could indicate excessive air leakage (as from a poorly sealed Difference? door) or a plugged air filter in need of replacement. US–EPA personnel endorsed S525 in 1998, allowing operators of equipment with 4 Study Shows Turf certified cabs to spray without some specific forms of PPE. -
Integration of Biological Control Into Ipm Systems for Aquatic Weeds
INTEGRATION OF BIOLOGICAL CONTROL INTO IPM SYSTEMS FOR AQUATIC WEEDS James J. Marois, Department of Plant Pathology, University of California, Davis, CA 95616 USA ABSTRACT The development of effective long-term control programs for aquatic weeds is dependent upon the ability to integrate biological, chemical, and cultural control strategies. Successful IPM programs are dependent upon a sound knowledge of the cropping system (especially the inputs and outputs of the system), the biology of the aquatic weed pest, and the biology of the control agent(s). There are several ways to analyze these complex systems, from the molecular to the community level. This presentation will emphasize the ecological interactions that should be con- sidered. INTRODUCTION approach may be to augment or inundate the system with the control organisms at specific times in the Integration of biological control of paddy and cropping history. This is especially true when the aquatic weeds into integrated pest management control agent is a fungus or bacterium, since these programs is a necessary goal for the implementation are relatively easy to produce in large quantities and of sustainable rice production systems. To reach are dependent upon specific environmental this goal, however, a number of obstacles must be conditions for greatest efficacy. When a fungus is overcome. Most important is the current status of used to control a weed in this manner, it is referred biological control of aquatic weeds which, in this to as a bioherbicide (Emge and Templeton 1981). discussion, will be defined narrowly as the use of Successful integration of control agents, either beneficial microorganisms or their gene products pathogens or insects, is dependent upon the for pest control. -
Resistance Management: a Critical Role for Biopesticides
Certis USA for CAPCA Adviser Resistance Management: A Critical Role for Biopesticides By Mike Dimock, Ph.D., Certis USA Vice President of Field Development & Technical Support and Scott Ockey, Certis USA Field Development Manager-Western USA BIOPESTICIDES are becoming critical components of resistance management programs. Most biopesticides, BENEFITS OF BIOPESTICIDES particularly microbial products, have multiple modes of action—they don’t target a single site or gene. Even if 0LNH'LPRFN3K'SRLQWVRXWWKHIROORZLQJ a pest is resistant to a single mode of action, it is highly EHQHÀWVWRXVLQJELRSHVWLFLGHVIRUUHVLVWDQFH unlikely it will have cross resistance to a biopesticide management: that has multiple modes of action or target sites. For this reason, biopesticides are valuable for helping us reduce or eliminate the development of resistance to pesticides. •0RVWDUHH[HPSWIURPUHVLGXHWROHUDQFHVRGRQ·W Resistance Development: A Brief Review SRVHDQLVVXHZLWK0D[LPXP5HVLGXH/LPLWV Weeds, insect pests and disease-causing fungi 05/V LQH[SRUWFURSV and bacteria are living organisms capable of evolving in response to selection. And one source of selection can be •6SHFLÀFLW\²PRVWELRSHVWLFLGHVSUHVHQWORZHU the pesticides used to control them. Most pest populations include a few individuals ULVNVIURPZRUNHUH[SRVXUHDQGHQYLURQPHQWDO with heritable traits that make them more able to survive issues. exposure to certain types of pesticide active ingredients. For example, a genetic mutation resulting in a slight change to •0RVWKDYHPXOWLSOHPRGHVRIDFWLRQUDWKHUWKDQ an enzyme that is the target of a particular active ingredient (AI) might make individuals expressing the altered enzyme attacking a single target site as is more typical of no longer susceptible to that AI. Application of pesticides conventional chemical pesticides. This puts them containing that AI acts as a selective agent favoring those DWORZHUULVNRIUHVLVWDQFHGHYHORSPHQW individuals (and their offspring) over individuals lacking the mutant genes for resistance to that mode of action. -
Introductory Chapter: Need of Bioherbicide for Weed Control 3
DOI: 10.5772/intechopen.77958 ProvisionalChapter chapter 1 Introductory Chapter: NeedNeed ofof BioherbicideBioherbicide forfor WeedWeed Control RamalingamRamalingam Radhakrishnan Radhakrishnan Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.77958 1. Introduction Food production is affected by climatic changes and environmental pollutions. The growth and yield of crop plants are significantly declined due to the effect of weed (a plant considered unwanted in a particular location) growth in farming fields. Weeds are strong competitors against crops to the absorption of water and nutrition from the soil, and also occupy more soil area, which result to suppress the crop growth [1, 2]. The integrated approach of weed control management (including tillage, mechanical way of weed removal, and crop rotation) can able to effectively decrease the weed growth 3[ –5]. The application of chemical-based her- bicides, that is, 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate, and dicamba suppress the germination and growth of weeds, but the prolonged application of those chemicals could not effectively control the weeds and causes to develop the resistant weed germplasms and also pollutes the environment [6]. In addition, Kim et al. [7] reported that 32% of food products in Korea are unsuitable for consumption due to higher accumulation of pesticides. Recently, sev- eral biological organisms or their extracts are utilized to integrate weed control strategies [8]. 2. Importance of bioherbicides Bioherbicides are either living organisms or the natural metabolites that have the ability to con- trol weed populations without harming the environment [9, 10]. The numbers of bacterial and fungal species demonstrate their host-specific or nonspecific bioherbicide activities against sus- ceptible weed populations [9].