Non-Invasive Monitoring System Based on Standing Wave

Total Page:16

File Type:pdf, Size:1020Kb

Non-Invasive Monitoring System Based on Standing Wave Yang et al. Plant Methods (2021) 17:56 https://doi.org/10.1186/s13007-021-00757-y Plant Methods METHODOLOGY Open Access Methodology: non-invasive monitoring system based on standing wave ratio for detecting water content variations in plants Yunjeong Yang1†, Ji Eun Kim1†, Hak Jin Song1†, Eun Bin Lee1, Yong‑Keun Choi1, Jeong Wook Jo1, Hyeon Jin Jeon1, Ho Hyun Kim2, Kwang Jin Kim3 and Hyung Joo Kim1* Abstract Background: Water content variation during plant growth is one of the most important monitoring parameters in plant studies. Conventional parameters (such as dry weight) are unreliable; thus, the development of rapid, accurate methods that will allow the monitoring of water content variation in live plants is necessary. In this study, we aimed to develop a non‑invasive, radiofrequency‑based monitoring system to rapidly and accurately detect water content variation in live plants. The changes in standing wave ratio (SWR) caused by the presence of stem water and magnetic particles in the stem water fow were used as the basis of plant monitoring systems. Results: The SWR of a coil probe was used to develop a non‑invasive monitoring system to detect water con‑ tent variation in live plants. When water was added to the live experimental plants with or without illumination under drought conditions, noticeable SWR changes at various frequencies were observed. When a fxed frequency (1.611 GHz) was applied to a single experimental plant (Radermachera sinica), a more comprehensive monitoring, such as water content variation within the plant and the efect of illumination on water content, was achieved. Conclusions: Our study demonstrated that the SWR of a coil probe could be used as a real‑time, non‑invasive, non‑ destructive parameter for detecting water content variation and practical vital activity in live plants. Our non‑invasive monitoring method based on SWR may also be applied to various plant studies. Keywords: Plant water content, Plant activity monitoring, Standing wave ratio (SWR), Radermachera sinica, Coil probe Background Te oven-drying technique is generally used for meas- Measuring the internal water content variation of a live uring soil water content for research purposes due to its plant is important to understand its physiology and accuracy and simplicity. However, soil measurements metabolism as well as to retrieve useful information performed at specifc times are not directly related to the regarding water shortage or over-irrigation [1]. Conven- actual water fow in the plant [2]. Terefore, measuring tional plant irrigation and its scheduling are based on the the actual water content of the plant xylem could provide analysis of soil water content and meteorological data. more accurate information regarding the efect of water on plant growth and physiology. Numerous experimental methods are available to *Correspondence: [email protected] determine the actual water content of live plant com- †Yunjeong Yang, JiEun Kim, and HakJin Song are contributed equally to this study ponents (i.e., leaves, stems, xylem, and roots), including 1 Department of Biological Engineering, Konkuk University, Seoul 05029, dendrography [3], pressure chamber methods [4], infra- Republic of Korea red image analysis [5], impedance spectrometry [6], and Full list of author information is available at the end of the article radar systems [7]. Nevertheless, these methods involve © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Yang et al. Plant Methods (2021) 17:56 Page 2 of 9 complex experimental procedures that require costly these approaches focused only on the water fow in a instrumentation. Several methods have been developed plant. Terefore, it is necessary to develop a rapid and to measure plant stem water content directly, includ- simple method that will allow the efective estimation of ing heat pulse systems [2, 8], microneedle sensors [1], water content variation in plants while observing their and the standing wave ratio (SWR) system [9]. However, vital activity. these approaches require the insertion of a probe sensor In this study, we applied an SWR method for monitor- system into the plant xylem, which might cause serious ing water content variations and vital activity in plants. disturbance to the water fow conditions and, conse- Our approach, based on SWR measurements, may repre- quently, provide unreliable results [10]. sent a simple, rapid, and unique monitoring method for A previous study [11] showed that traces of paramag- detecting water content variation and vital activities in netic metal components in plants (i.e., humus and water) plants based on SWR. could induce electrical inductance changes in a coil probe surrounding a plant and also demonstrated that there Results and discussion are clear electrical inductance diferences between a live Changes in SWR for control and experimental vessels and a dead plant with or without the addition of water. under diferent conditions Tese results suggested that diferences in the induct- An experiment was carried out to obtain preliminary ance changes are closely related to diferences between SWR measurements for a vessel containing only soil the metabolic and physiological activities of live and dead (control vessel) using a coil probe located above the ves- plants. Tus, the non-invasive measurement of stem sel. Using the same system, a vessel containing the plant water fow might be possible using an electromagnetic Fatoua villosa (experimental vessel) was also examined. method. SWR variations at 1.0–2.0 GHz for the control and the SWR is estimated by measuring the impedance experimental vessels under various conditions are shown matching of loads to the characteristic impedance of an in Fig. 1. For the control vessel, SWR showed multiple antenna, transmission line, or waveguide, and measure- peaks with a minimum at 2.2 and a maximum at 16.3. No ments are obtained using a network analyzer [12]. SWR signifcant variation in the SWR was observed with the is widely used to estimate radio antenna performance addition of water to the control vessel. However, when (i.e., resonance point and transmission efciency) at a water was added to the experimental vessel, diferences in specifc radio frequency (RF). Due to water in live plant the SWR, compared with that of the control vessel, were components and their electrical impedance, several observed throughout the frequency range. As shown studies have shown the transmission of specifc RF [13]. in Fig. 1, the experimental vessel induced two peak fre- Besides, the variation in the water content of a plant quencies, and its SWR values were lower than those of has been estimated from SWR values using invasive [9, the control vessel throughout the frequency range. For 14, 15] or non-invasive ring-type sensors [16]. However, instance, the control vessel showed a peak at 1.629 GHz Fig. 1 Standing wave ratio (SWR) changes for the experimental plant Fatoua villosa. SWR measurement of the coil probe was performed using a network analyzer under various experimental conditions, and the frequency was measured at 1.0–2.0 GHz Yang et al. Plant Methods (2021) 17:56 Page 3 of 9 with an SWR of 16.1, whereas the experimental vessel (Fig. 2C). Te dead plants showed signifcantly diferent showed a left-shifted peak at 1.620 GHz with an SWR of SWR compared with those of the live plants but almost 14.8 (Fig. 1A). At frequency ranges of 1.197–1.202 GHz identical with those of the control vessel (Fig. 2). Tere- (Fig. 1B), 1.323–1.341 GHz (Fig. 1C), 1.710–1.737 GHz fore, the plant confguration (i.e., leaf number, leaf shape, (Fig. 1D), and 1.917–1.935 GHz (Fig. 1E), reduced and and stem length) and physiological activities (i.e., photo- shifted SWR were observed for the experimental vessel, synthesis, stem water fow, water content, and concentra- probably due to the presence of stem water and mag- tion of magnetic materials) might afect SWR throughout netic particles in the stem water fow that changed the RF the frequency range. To evaluate the accuracy and repro- characteristics of the coil probe [11]. ducibility of our results, further experiments were carried To evaluate the efect of water addition on F. villosa, out with various live plants under the same experimental SWR measurements were obtained after 3 d of no water- conditions. ing and 3 h post-watering. As shown in Fig. 1, watering Various experimental plants were examined using the generated major and minor SWR changes compared same monitoring system after 7 d, 5 d, and 3 d of no with no watering throughout the frequency range. For watering for Ficus benghalensis, Dypsis lutescens, and instance, post-watering SWR changed by 2.4 ± 0.61% Salvia rosmarinus, respectively, as well as at 3 h post- at 1.026 GHz, 2.1 ± 0.83% at 1.197 GHz, 3.1 ± 0.91% watering, with or without illumination.
Recommended publications
  • Study on the Relationship Between Plant Distribution and Local Atmospheric Environment in Guangdong Province
    2018 International Conference on Zoology, Botany and Ecology (ICZBE 2018) Study on the Relationship between Plant Distribution and Local Atmospheric Environment in Guangdong Province 1 1,* Minqing Huang , Desenke 1School of life science , Guangzhou University , Guangzhou 51006, China a Minqing Huang,[email protected], b Desenke,[email protected] *Corresponding author, Tel: 13342884383 Keywords: Vegetation, Air pollution, Phytoremediation. Abstract. Plants can rise to purify the atmosphere, the coverage rate of plants and the species of plants are the influencing factors of the atmospheric environment within a certain area. To explore the relationship of plant distribution and local atmospheric environment association between the Shaoguan and the Zhanjiang in Guangdong Province, we can see the vegetation coverage in Shaoguan area is higher than that in Zhanjiang area, but the plant species in Zhanjiang area is more targeted. In a word, the air quality of Zhanjiang area is higher than in the Shaoguan area. So strengthening the study of phytoremediation of air pollution is beneficial to the sustainable development of ecosystem. 1. Introduction Plants, which can exchange large amounts of gases with air through photosynthesis, are important members of the ecosystem. In addition, the surface of the plant will be deposited dry and wet by pollutants that exist in the atmosphere, while plant cells can dissolve gaseous substances and absorb soluble compounds deposited on the plant surface [1]. And different plants have different effects on their atmospheric environment [2] The zonal forest is a typical evergreen broadleaved forest in the subtropics in the north, a subtropical monsoon evergreen broad-leaved forest in the middle, and a tropical rain forest and a monsoon rainforest in the south in the geographical distribution of Guangdong forest.
    [Show full text]
  • Plant Pathology Circular No. 303 Fla. Dept. Agric. & Consumer Serv
    Plant Pathology Circular No. 303 Fla. Dept. Agric. & Consumer Serv. January 1987 Division of Plant Industry PHYTOPHTHORA ROOT & CROWN ROT OF RADERMACHERA SINICA Robert M. Leahyl Radermachera sinica (Hance) Hemsl., a member of the Bignoniaceae, occurs naturally in India, China, Java, the Celebes and the Phillipine Islands. This plant is a relatively new introduction to the foliage market in Florida and is used most commonly as indoor accent plants. Radermachera sinica is easy to grow and can be propagated by cuttings, marcottage and seed (1). SYMPTOMS: Few diseases are recorded on Radermachera sinica; however, Phytophthora parasitica Dastur, which has a wide host range, can cause a serious root and stem rot. It is also quite aggressive as a damping off disease of Radermachera seedlings. (DPI, Plant Pathology Files, UNPBL.). Phytophthora parasitica infects the young tender roots and stem tissue of seedlings resulting in their collapse and death. Overfertilization and poorly drained/overwatered media can play an important role in predisposing these plants to infection by Phytophthora. Older, more established Radermachera plants can also fall prey to this disease; however, symptoms tend to be less obvious at the initial onset of infection. Infected R. sinica plants eventually become unthrifty and chlorotic. Defoliation occurs as symptoms progress and eventually stems become necrotic. This gives infected plants an overall thin, flagged appearance. Fig. 1. Defoliation, col- lapsed foliage and blight- ed stems are symptoms ex- pressed by the infected Radermachera seedling on the left. (DPI Photo #87131 by Jeffrey W. Lotz). 1Biological Scientist II, Bureau of Plant Pathology, P. O. Box 1269, Gainesville, F1 32602.
    [Show full text]
  • Coleeae: Crescentieae: Oroxyleae
    Gasson & Dobbins - Trees versus lianas in Bignoniaceae 415 Schenck, H. 1893. Beitriige zur Anatomie Takhtajan, A. 1987. Systema Magnoliophy­ der Lianen. In: A.F.W. Schimper (ed.): torum. Academia Scientiarum U.R.S.S., 1-271. Bot. Mitt. aus den Tropen. Heft Leningrad. 5, Teil2. Gustav Fischer, Jena. Wheeler, E.A., R.G. Pearson, C.A. La Spackman, W. & B.G.L. Swamy. 1949. The Pasha, T. Zack & W. Hatley. 1986. Com­ nature and occurrence of septate fibres in puter-aided Wood Identification. Refer­ dicotyledons. Amer. 1. Bot. 36: 804 (ab­ ence Manual. North Carolina Agricultural stract). Research Service Bulletin 474. Sprague, T. 1906. Flora of Tropical Africa. Willis, J. C. 1973. A dictionary of the flower­ Vol. IV, Sect. 2, Hydrophyllaceae to. Pe­ ing plants. Revised by H. K. Airy Shaw. daliaceae. XCVI, Bignoniaceae: 512-538. 8th Ed. Cambridge Univ. Press. Steenis, C.G.G.J. van. 1977. Bignoniaceae. Wolkinger, F. 1970. Das Vorkommen leben­ In Flora Malesiana I, 8 (2): 114-186. der Holzfasem in Striiuchem und Bliumen. Sijthoff & Noordhoff, The Netherlands. Phyton (Austria) 14: 55-67. Stem, W. L. 1988. Index Xylariorum 3. In­ Zimmermann, M.H. 1983. Xylem structure stitutional wood collections of the world. and the ascent of sap. Springer Verlag, IAWA Bull. n.s. 9: 203-252. Berlin, Heidelberg, New York, Tokyo. APPENDIX The species examined are listed below. The country or geographical region of origin is that from which the specimen came, not necessarily its native habitat. If the exact source of the specimen is not known, but the native region is, this is in parentheses.
    [Show full text]
  • Vascular Flora of Motuora Island, Hauraki Gulf Shelley Heiss-Dunlop & Jo Fillery
    Vascular flora of Motuora Island, Hauraki Gulf Shelley Heiss-Dunlop & Jo Fillery Introduction 1988). A total of 141 species (including 14 ferns) were Motuora Island lies in the Hauraki Gulf southwest of recorded. Exotic plants confined to the gardens Kawau Island, approximately 3km from Mahurangi around the buildings at Home Bay were not included Heads, and 5km from Wenderholm Regional Park, in Dowding’s (1988) list. Dowding (1988) commented Waiwera. This 80ha island is long and narrow on four adventive species that were “well-established” (approximately 2km x c. 600m at its widest) with a and that “may present problems” (presumably for a relatively flat top, reaching 75m asl. The land rises future restoration project). These species were abruptly, in places precipitously, from the shoreline so boneseed (Chrysanthemoides monilifera), boxthorn that the area of the undulating ‘level’ top is (Lycium ferocissimum), gorse (Ulex europaeus) and comparatively extensive. Composed of sedimentary kikuyu grass (Pennisetum clandestinum). All four strata from the Pakiri formation of the Waitemata species still require ongoing control. However, as a Group (Lower Miocene age, approximately 20 million years old), Motuora is geologically similar to other result of ongoing weed eradication endeavours, inner Hauraki gulf islands such as Tiritiri Matangi, boxthorn has been reduced to a few isolated sites, Kawau, Waiheke and Motuihe Islands (Ballance 1977; and boneseed once widespread on the island is Edbrooke 2001). considerably reduced also, occurring in high densities now only on the northern end of the island (Lindsay History 2006). Gorse and kikuyu are controlled where these Motuora Island was farmed, from as early as 1853 species inhibit revegetation plantings.
    [Show full text]
  • Delimitation of Malagasy Tribe Coleeae and Implications for Fruit Evolution in Bignoniaceae Inferred from a Chloroplast DNA Phylogeny
    Plant Syst. Evol. 245: 55–67 (2004) DOI 10.1007/s00606-003-0025-y Delimitation of Malagasy tribe Coleeae and implications for fruit evolution in Bignoniaceae inferred from a chloroplast DNA phylogeny M. L. Zjhra1, K. J. Sytsma2, and R. G. Olmstead3 1Department of Biology, Georgia Southern University, Statesboro, GA, USA 2Department of Botany, University of Wisconsin, Madison, WI, USA 3Department of Botany, University of Washington, Seattle, WA, USA Received February 2, 2003; accepted April 23, 2003 Published online: February 23, 2004 Ó Springer-Verlag 2004 Abstract. Coleeae (Bignoniaceae) are a tribe almost the Gondwanan continent, Madagascar was entirely restricted to Madagascar. Coleeae have attached to Africa at present day Somalia, previously been placed in neotropical Crescentieae Kenya and Tanzania until 165 mya (Rabino- due to species with indehiscent fruits, a character witz et al. 1982, 1983). Madagascar was otherwise unusual in Bignoniaceae. A phylogeny completely separated from Africa by ndh trn based on three chloroplast regions ( F, T-L 120 mya (Rabinowitz et al. 1983), but spacer, trnL-F spacer) identifies a monophyletic remained attached to India until 88 mya Coleeae that is endemic to Madagascar and sur- rounding islands of the Indian Ocean (Seychelles, (Storey et al. 1995). During the lower Creta- Comores and Mascarenes). African Kigelia is not a ceous Madagascar traveled to its present member of Coleeae, rather it is more closely related position 400 km off the coast of Mozambique to a subset of African and Southeast Asian species (Fig. 1). The granitic islands of the Seychelles, of Tecomeae. The molecular phylogeny indicates in the Indian Ocean north of Madagascar, that indehiscent fruit have arisen repeatedly in represent fragments of the separation of Mad- Bignoniaceae: in Coleeae, Kigelia and Crescentieae.
    [Show full text]
  • A Quick Guide for Selection of Tree Species for Mass
    for Mass Plantation Drives by, Ketaki Ghate & Manasi Karandikar May 2017 Scientific approach for plantations . India has 18,500 species of flowering plants but we use very few species for plantations . Monoculture i.e. plantation of single species needs to be avoided. It creates greenery on land, but it doesn’t create FOREST ! . So more meaningful way is to do plantations which would mimic forest along with ecological restoration of natural resources like soil, water and biodiversity around it There are five major steps : 1. Know your region : Forest type in your area 2. Assess the status of your land 3. Plan for restoration and plantations : 3.a Protection to land : Conserve soil and moisture, Protect existing habitats 3.b Selection of species & numbers : as per status of soil and resource availability 3.c Seed dispersal 4. Execution : Selection of sapling and Plantation 5. Maintenance 1. Know your region . What is the kind of vegetation or forest in your region. e.g. Dry deciduous, Moist deciduous, Evergreen, Semi arid etc . Find out secondary data that will give an idea about the species growing naturally and easily in your area . But most of the times the original vegetation is lost & area is degraded due to various external pressures . So it is necessary to follow next step ….. 2. Assess your land . Is the soil ready to support plants ? . Plants grow well in fertile soil and even in soft to medium hard murrum but don’t grow well in hard murrum and rocks. But only fine soil is not enough . So check if it has enough organic matter & nutrients and microbes .
    [Show full text]
  • Antioxidant Activity of Mayodendron Igneum Kurz and the Cytotoxicity of the Isolated Terpenoids
    Journal of Medicinally Active Plants Volume 1 Issue 3 January 2012 Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids Follow this and additional works at: https://scholarworks.umass.edu/jmap Part of the Plant Sciences Commons Recommended Citation Hashem, F.A; A.E Sengab; M.H. Shabana; and S. Khaled. 2012. "Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids." Journal of Medicinally Active Plants 1, (3):88-97. DOI: https://doi.org/10.7275/R53B5X3B https://scholarworks.umass.edu/jmap/vol1/iss3/3 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Journal of Medicinally Active Plants by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Hashem et al.: Antioxidant activity of Mayodendron igneum Kurz and the cytotoxic Journal of Medicinally Active Plants Volume 1 | Issue 3 October 2012 Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids F.A Hashem Pharmacognosy depart. NRC. Cairo, Egypt, [email protected] A.E Sengab Pharmacognosy depart. Ain Shams University, Cairo, Egypt M.H. Shabana Phytochemistry and Plant Systematics depart. NRC. Cairo, Egypt S. Khaled Pharmacognosy depart. NRC. Cairo, Egypt Follow this and additional works at: http://scholarworks.umass.edu/jmap Recommended Citation Hashem, F.A, A.E Sengab, M.H. Shabana, S. Khaled. 2012. "Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids," Journal of Medicinally Active Plants 1(3):88-97. DOI: https://doi.org/10.7275/R53B5X3B Available at: http://scholarworks.umass.edu/jmap/vol1/iss3/3 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst.
    [Show full text]
  • International Journal of Universal Pharmacy and Bio
    703 | P a g e International Standard Serial Number (ISSN): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences 3(3): May-June 2014 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND BIO SCIENCES IMPACT FACTOR 1.89*** ICV 5.13*** Pharmaceutical Sciences RESEARCH ARTICLE……!!! MICROMORPHOLOGICAL AND MICROMETRIC EVALUATION OF RADERMACHERA XYLOCARPA (ROXB.) ROXB EX. K.SCHUM FLOWER Sneha Kalaskar1, Harisha CR2, B.R.Patel3 , Switu Jani4 1MD Scholar, Dravyaguna Dept, IPGT&RA, G.A.U, Jamnagar. 2Head, Pharmacognosy Laboratory, IPGT&RA, G.A.U, Jamnagar. 3Assistant Professor, Dravyaguna Department, IPGT&RA, G.A.U, Jamnagar. 4PhD. Scholar Pharmacognosy. IPGT&RA, G.A.U, Jamnagar. KEYWORDS: ABSTRACT Radermachera xylocarpa (Roxb.) Roxb ex. K.schum belongs to Bignonaceae. Flower Bignonaceae, the family of flowering plants. In Ayurveda, it is considered as micrometry, Patala, one of the source plant for one variety of Patala i.e. Ghantapatala or it may Radermachera xylocarpa be simply an unauthorized substitute for iti. Review of literature reveals that (Roxb.) Roxb ex. K.schum. flower has not been studied in detail for pharmacognostical characters, which For Correspondence: is an essential parameter for identification of a crude drug. Hence, the present Sneha Kalaskar * study was undertaken with an aim to study the micromorphological and Address: micrometric evaluation of flower of the plant. The variations in microscopic characters of flower can be helpful in identification of authentic drug and MD (Ayu)Scholar, adulterants. Pedicel shows outer single layer of epidermis with cuticle Dept.of Dravyaguna, interrupted by multicellular trichomes with oil globules, sessile, glandular IPGT&RA Jamnagar, trichomes. Outer epidermis of Calyx shows thick cuticle and interrupted by multicellular multi-branched trichomes, Thus, flower microscopy brings GAU, Gujarat.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • The Flower of Radermachera Ignea (Kurz) Steenis, a New Source of Zeaxanthin
    Suranaree J. Sci. Technol. Vol. 17 No. 3; July - Sept 2010 303 THE FLOWER OF RADERMACHERA IGNEA (KURZ) STEENIS, A NEW SOURCE OF ZEAXANTHIN Duangnapa Sompong and Pichaya Trakanrungroj* Received: Jun 24, 2010; Revised: Aug 20, 2010; Accepted: Aug 22, 2010 Abstract The flower of Radermachera ignea (Kurz) Steenis or “Peep Thong”, the emblem of Suranaree University of Technology, was selected for the study as a potential new source of antioxidant. The main antioxidant component was isolated from the ethyl acetate extract of the flower and its chemical structure was determined by spectroscopic data as zeaxanthin (β, β-carotene-3,3’-diol), one of the two significant carotenoids present in the marcula lutea of the retina of human eyes. The antioxidant study confirmed the activity of the isolated compound with the IC50 of 1.13 mol antioxidant/mol DPPH. This is the first report to identify the bioactive constituent in this plant. Keywords: Radermachera ignea (Kurz) Steenis, Peep Thong, antioxidant, carotenoids Introduction Oxidative damage process has been indicated which normally suggests the presence of as a major cause of several degenerative natural substances with antioxidant activity. diseases including cancer, cardiovascular R. ignea (Kurz) Steenis belongs to the family disease, diabetes, Alzheimer’s disease, and Bignoniaceae. The tree is evergreen or partly Parkinson’s disease (Ames et al., 1993; deciduous with 6-15 m high and typically Banerjee et al., 2005). Antioxidants have been scattered in several areas of Southeast Asian found to play an important role to prevent and region. inhibit such process (Ames et al., 1993). Neither the data about the chemical In the search for a new source of constituent nor the antioxidant activity of this antioxidants, the flower of Radermachera ignea plant has been previously reported in the (Kurz) Steenis or commonly known as “Peep literature.
    [Show full text]
  • A Synoptical Classification of the Lamiales
    Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 A Synoptical Classification of the Lamiales Version 2.0 (in progress) Compiled by Richard Olmstead With the help of: D. Albach, B. Bremer, P. Cantino, C. dePamphilis, P. Garnock-Jones, R. Harley, L. McDade, E. Norman, B. Oxelman, J. Reveal, R. Scotland, J. Smith, E. Wallander, A. Weber, A. Wolfe, N. Young, M. Zjhra, and others [estimated # species in Lamiales = 22,000] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near-term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA. Lamiales – Synoptical classification vers. 2.0 (in prog.) Updated: 13 December, 2005 Acanthaceae (~201/3510) Durande, Notions Elém. Bot.: 265. 1782, nom. cons. – Synopsis compiled by R. Scotland & K. Vollesen (Kew Bull. 55: 513-589. 2000); probably should include Avicenniaceae. Nelsonioideae (7/ ) Lindl. ex Pfeiff., Nomencl.
    [Show full text]
  • By CGGJ History. the Publication Of
    Malayan Bignoniaceae, their taxonomy, origin and geographical distribution by C.G.G.J. van Steenis. and will not distribu- Age area do, function of and tion is a age biology. The mechanism of evolution is the main problem of biological science. Introduction. : My publication on the Bignoniaceae of New Guinea ) has been the prime cause to study this family for the whole Malayan region. So this study forms a parallel to the publications of the families worked out by the botanists at Buitenzorg, which are an attempt to constitute a modern review of the Malayan flora. That this a review of family was necessary may appear from short historical a survey. History. Since the publication of „De flora van Neder- landsch Indie” by Miguel 2), only 4 of the 5 Javanese 3 species have been discussed byKoorders and Va 1eton ); 4 Koorders ) gives only a short enumeration of the 5 Java- nese species, together with the cultivated ones of Java. 6 discussed the and Boerlage ) genera gave an account critical dis- of the species known then, but did not give a cussion of the species. 1) Nova-Guinea 14 (1927) 293-303. 2 ) De Flora van Nederlandsch Indie. 2 (1856) 750-9. 8 ) Bijdrage tot de boomsoorten van Java. 1 (1894) 64. 4) Excursionsflora fur Java. 3 (1912) 182. 6 585 ) Handleiding tot de kennis der flora van Ned. Indie. 2 (1899) 788 For the there extra-Javanese species are only the elder works of Blume 1 2 ) and Mique 1 ) and for Deplanchea the descriptions of Scheffer 3). As the and genera species were known only incompletely, the geographical distribution could not be indicated with any certainty and about the affinities was not known much either.
    [Show full text]