Antioxidant Activity of Mayodendron Igneum Kurz and the Cytotoxicity of the Isolated Terpenoids

Total Page:16

File Type:pdf, Size:1020Kb

Antioxidant Activity of Mayodendron Igneum Kurz and the Cytotoxicity of the Isolated Terpenoids Journal of Medicinally Active Plants Volume 1 Issue 3 January 2012 Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids Follow this and additional works at: https://scholarworks.umass.edu/jmap Part of the Plant Sciences Commons Recommended Citation Hashem, F.A; A.E Sengab; M.H. Shabana; and S. Khaled. 2012. "Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids." Journal of Medicinally Active Plants 1, (3):88-97. DOI: https://doi.org/10.7275/R53B5X3B https://scholarworks.umass.edu/jmap/vol1/iss3/3 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Journal of Medicinally Active Plants by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Hashem et al.: Antioxidant activity of Mayodendron igneum Kurz and the cytotoxic Journal of Medicinally Active Plants Volume 1 | Issue 3 October 2012 Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids F.A Hashem Pharmacognosy depart. NRC. Cairo, Egypt, [email protected] A.E Sengab Pharmacognosy depart. Ain Shams University, Cairo, Egypt M.H. Shabana Phytochemistry and Plant Systematics depart. NRC. Cairo, Egypt S. Khaled Pharmacognosy depart. NRC. Cairo, Egypt Follow this and additional works at: http://scholarworks.umass.edu/jmap Recommended Citation Hashem, F.A, A.E Sengab, M.H. Shabana, S. Khaled. 2012. "Antioxidant activity of Mayodendron igneum Kurz and the cytotoxicity of the isolated terpenoids," Journal of Medicinally Active Plants 1(3):88-97. DOI: https://doi.org/10.7275/R53B5X3B Available at: http://scholarworks.umass.edu/jmap/vol1/iss3/3 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Journal of Medicinally Active Plants by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Hashem et al.: Antioxidant activity of Mayodendron igneum Kurz and the cytotoxic Antioxidant Activity of Mayodendron igneum Kurz and Cytotoxicity of Isolated Terpenoids F.A. Hashem,1* A.E. Sengab,2 M.H. Shabana,3and S. Khaled1 1Pharmacognosy Department, NRC. Cairo, Egypt. 2 Pharmacognosy Department, Ain Shams University, Cairo, Egypt. 3Phytochemistry and Plant Systematics Department, NRC. Cairo, Egypt. *Corresponding author: [email protected] Date Received: January 16, 2012 Keywords: Bignoniaceae, cytotoxic, erythrodiol, norigeumone, oleanolic acid, sitosterol, trumpet creeper, ursolic acid. ABSTRACT INTRODUCTION A petroleum ether extract of Mayodendron The Trumpet Creeper family (Bignoniaceae), igneum Kurz, (Family Bignoniaceae) yielded five which includes approximately 750 species of plants compounds identified as sitosterol, erythrodiol, in 120 genera within 8 tribes, is distributed through- oleanolic acid, ursolic acid and 5', 6' norigeumone. out tropical and subtropical regions of South Antioxidant activity of total ethanol extracts of the America, Africa, and India, growing as both a wild plant was equal to 77.02% of the antioxidant activity plant and a cultivated ornamental (Von Poser et al., of ascorbic acid (100%) as measured by electron spin 2000). Plants in the Bignoniaceae family are notably resonance (ESR) and using DPPH as the stable free rich in terpenoids and flavonoids and are used medi- radical. The antioxidant activity of successive frac- cinally in traditional medicine and pharmaceutical tions of M. igneum leaves were tested with the preparations. strongest inhibition of DPPH stable free radicals Species within the Bignoniaceae, have yielded exhibited by the successive ethanol fraction (equal to a number of phytochemicals. Sitosterol and other 100% of free radical scavenging activity relative to compounds have been isolated from the bark of ascorbic acid). The ethyl acetate fraction had 64.96% Tecomella undulata, and the heartwood of of the antioxidant activity of ascorbic acid, and the Heterophragma adenophylum and Millingtonia petroleum ether and chloroform fractions had 12.46% hortensis (Singh, et al., 1972) and β-sitosterol has and 0%, respectively, of the antioxidant activity of been isolated from the trunkwood of Tabebuia ascorbic acid. An examination of isolated oleanolic ochracea (Zani et al., 1991) and the roots of acid demonstrated moderate cytotoxic activity against Incarvillea arguta (Luo et al., 2004). In addition to four tested cancer cell lines (liver, cervix, breast, and β-sitosterol, an aqueous extract of Jacaranda colon). The highest activity level was against the caucana has yielded the triterpene jacarandic acid, cervix cancer cell line (HELA) (IC50= 32 µg/mL), ursolic acid, 2 α-hydroxyursolic acid and 2 α,3 α- followed by the liver cancer cell line (HEPG2) (IC50= dihydroxyurs-12-en-28-oic acid (Ogura et al., 1977). 33 µg/mL), the colon cancer cell line (HCT-116) The diterpene, 2-α-hydroxy-12 β-hydroxy-isopimara- (IC50= 35 µg/mL), and the breast cancer cell line 8(14), 15-diene, along with six known triterpenes, (MCF7) (IC50= 37 µg/mL). sterol. and fatty acids, has been isolated from the 88 Hashem et al.: Antioxidant activity of Mayodendron igneum Kurz and the cytotoxic stem bark of Tanaecium jaroba, a Bolivian plant used phlogacantholide B, lup-20(29)-ene-3α, 27β-diol, in traditional medicine (Mitaine-Offer et al., 2002). paederoside, nemoroside, picroside, 2-hydroxy-3- Jin et al. (2004) has isolated five pentacyclic tri- hydroxymethyl-9,10 anthraquinone, 1-methoxy-3- terpenoids from leaves of Campsis grandiflora that hydroxy-2-carbon-methoxy-9,10-anthraquinone, have characterized as oleanolic acid, hederagenin, lucidin primeveroside, β-daucosterol, β-sitosterol, and ursolic acid, tormentic acid, and myrianthic acid auranamide (Guo et al., 2007). using spectroscopic methods. Work by Ogura et al. In a study of a total alcohol and successive (1977) and Hashem and Sleem (2006) led, extracts of M. igneum leaves against human cancer respectively, to the isolation of the triterpenoid cell lines Hashem, et al. (2011), the total ethanol ursolic acid from the petroleum ether extract of extract demonstrated strong cytotoxic activity against Jacranda caucana and Tecoma radicans. the cervix cancer cell line (IC50= 0.60 µg/mL), breast The biological activities of phytochemicals cancer cell line (IC50=0.54 µg/mL) and liver cancer extracted from plants in the Bignoniaceae family cell line (IC50=0.87 µg/mL) when compared with the have been demonstrated in a number of studies. For anticancer drug doxorubicin. A petroleum ether ex- example, ursolic acid is known to have cytotoxic tract showed cytotoxic activity against a liver cancer activity in vitro (El-Hossary et al., 2000). Biological cell line (IC50= 0.37 µg/mL) and breast cancer cell investigations on Tecoma stans fruit extract indicates line (IC50= 2.15 µg/mL). Therefore, in this study, the a strong scavenging activity to DPPH, peroxyl, and petroleum ether extract was subjected to a phyto- hydroxyl radicals plus cytotoxic effects on human chemical investigation to determine the active hepatocarcinoma cells and growth inhibition of constituents that contribute to the observed cytotoxic human breast carcinoma cells (Marzouk et al., 2006). activity. In a study on the coumarin fraction of Macfadyena unguis–cati by Hashem et al. (2007), demonstrated MATERIALS AND METHODS 93.9% inhibition of the stable DPPH free radical, Plant material. Fresh leaves from plants of level similar to that of vitamin C at 95.5% inhibition. Mayodendron igneum Kurz. (Bignoniaceae) growing Additional studies by Hashem (2007a) demonstrated in the Giza Zoo, Giza, Egypt, were used in this study. the coumarin fraction of Tecoma radicans and The plants were identified by Dr. M. El-Gibaly, a peucenin had active antioxidant activity. A later study plant taxonomist, and Mrs. Trease Labib, Consultant by Hashem (2007b) showed that the most potent free of Plant Taxonomy at the Ministry of Agriculture and radical scavenger of the five identified flavonoids in Director of Orman Botanical Garden, Giza, Egypt. A Teocoma radicans was quercetin 3-methyl ether. voucher specimen of the plant material (Voucher Of special interest in the current study are the number M.20) has been placed in the herbarium at phytochemical constituents of Mayodendron igneum the Orman Botanical Garden, Giza Egypt. Kurz. (also known as Radermachera ignea), a mem- Plant extracts. A total ethanol extract was ber of the Bignoniaceae family used in traditional prepared from 400 g of air-dried, powdered leaves of medicine. M. igneum grows wild in Northern M. igneum by repeatedly extracting in a Soxhlet ap- Myanmar, Northern Thailand, Laos, Vietnam, and paratus with 80% ethanol until exhaustion. The South China (Chun-Lin, 1990). The plant, which is extract was recovered and filtered to remove debris frequently grown in gardens as an ornamental and before concentrating under reduced pressure to vegetable, is known to contain a number of minerals, dryness at 55°C, yielding 95 g of crude extract. vitamins, and amino acids (Youkai et al., 2005). Successive fractions of the 80% ethanol extract were Earlier studies have shown the plant bark of M. made using 90 g of the crude extract suspended in igneum to contain a number of phytochemicals, water and partitioned successively with petroleum including the meroditerpenoid igeumone and 18 other ether (60-80oC), chloroform, and ethyl acetate. The chemical compounds: quercetin, naringenin, naringin, solvents were evaporated to dryness under reduced vanillic acid, ethyl caffeate, eugenin, syringaldehyde, pressure at 55°C yielding fractions of 25 g of 89 Hashem et al.: Antioxidant activity of Mayodendron igneum Kurz and the cytotoxic petroleum ether extract, 19 g of chloroform extract, Compound I: 10 g of ethyl acetate extract, and 30 g of remaining IR Spectrum: The IR spectrum shows the following -1 residue that was considered the ethanol extract. signals, IR υmax (KBr) cm : 3423.9 (OH), 2925.2, Phytoconstituent isolation and identification. 2854.3 both for aliphatic C-H, 1612.3 (C=C), 1421.8 The petroleum ether fraction from the leaves of M.
Recommended publications
  • Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
    Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region.
    [Show full text]
  • Plant Pathology Circular No. 303 Fla. Dept. Agric. & Consumer Serv
    Plant Pathology Circular No. 303 Fla. Dept. Agric. & Consumer Serv. January 1987 Division of Plant Industry PHYTOPHTHORA ROOT & CROWN ROT OF RADERMACHERA SINICA Robert M. Leahyl Radermachera sinica (Hance) Hemsl., a member of the Bignoniaceae, occurs naturally in India, China, Java, the Celebes and the Phillipine Islands. This plant is a relatively new introduction to the foliage market in Florida and is used most commonly as indoor accent plants. Radermachera sinica is easy to grow and can be propagated by cuttings, marcottage and seed (1). SYMPTOMS: Few diseases are recorded on Radermachera sinica; however, Phytophthora parasitica Dastur, which has a wide host range, can cause a serious root and stem rot. It is also quite aggressive as a damping off disease of Radermachera seedlings. (DPI, Plant Pathology Files, UNPBL.). Phytophthora parasitica infects the young tender roots and stem tissue of seedlings resulting in their collapse and death. Overfertilization and poorly drained/overwatered media can play an important role in predisposing these plants to infection by Phytophthora. Older, more established Radermachera plants can also fall prey to this disease; however, symptoms tend to be less obvious at the initial onset of infection. Infected R. sinica plants eventually become unthrifty and chlorotic. Defoliation occurs as symptoms progress and eventually stems become necrotic. This gives infected plants an overall thin, flagged appearance. Fig. 1. Defoliation, col- lapsed foliage and blight- ed stems are symptoms ex- pressed by the infected Radermachera seedling on the left. (DPI Photo #87131 by Jeffrey W. Lotz). 1Biological Scientist II, Bureau of Plant Pathology, P. O. Box 1269, Gainesville, F1 32602.
    [Show full text]
  • Coleeae: Crescentieae: Oroxyleae
    Gasson & Dobbins - Trees versus lianas in Bignoniaceae 415 Schenck, H. 1893. Beitriige zur Anatomie Takhtajan, A. 1987. Systema Magnoliophy­ der Lianen. In: A.F.W. Schimper (ed.): torum. Academia Scientiarum U.R.S.S., 1-271. Bot. Mitt. aus den Tropen. Heft Leningrad. 5, Teil2. Gustav Fischer, Jena. Wheeler, E.A., R.G. Pearson, C.A. La Spackman, W. & B.G.L. Swamy. 1949. The Pasha, T. Zack & W. Hatley. 1986. Com­ nature and occurrence of septate fibres in puter-aided Wood Identification. Refer­ dicotyledons. Amer. 1. Bot. 36: 804 (ab­ ence Manual. North Carolina Agricultural stract). Research Service Bulletin 474. Sprague, T. 1906. Flora of Tropical Africa. Willis, J. C. 1973. A dictionary of the flower­ Vol. IV, Sect. 2, Hydrophyllaceae to. Pe­ ing plants. Revised by H. K. Airy Shaw. daliaceae. XCVI, Bignoniaceae: 512-538. 8th Ed. Cambridge Univ. Press. Steenis, C.G.G.J. van. 1977. Bignoniaceae. Wolkinger, F. 1970. Das Vorkommen leben­ In Flora Malesiana I, 8 (2): 114-186. der Holzfasem in Striiuchem und Bliumen. Sijthoff & Noordhoff, The Netherlands. Phyton (Austria) 14: 55-67. Stem, W. L. 1988. Index Xylariorum 3. In­ Zimmermann, M.H. 1983. Xylem structure stitutional wood collections of the world. and the ascent of sap. Springer Verlag, IAWA Bull. n.s. 9: 203-252. Berlin, Heidelberg, New York, Tokyo. APPENDIX The species examined are listed below. The country or geographical region of origin is that from which the specimen came, not necessarily its native habitat. If the exact source of the specimen is not known, but the native region is, this is in parentheses.
    [Show full text]
  • Delimitation of Malagasy Tribe Coleeae and Implications for Fruit Evolution in Bignoniaceae Inferred from a Chloroplast DNA Phylogeny
    Plant Syst. Evol. 245: 55–67 (2004) DOI 10.1007/s00606-003-0025-y Delimitation of Malagasy tribe Coleeae and implications for fruit evolution in Bignoniaceae inferred from a chloroplast DNA phylogeny M. L. Zjhra1, K. J. Sytsma2, and R. G. Olmstead3 1Department of Biology, Georgia Southern University, Statesboro, GA, USA 2Department of Botany, University of Wisconsin, Madison, WI, USA 3Department of Botany, University of Washington, Seattle, WA, USA Received February 2, 2003; accepted April 23, 2003 Published online: February 23, 2004 Ó Springer-Verlag 2004 Abstract. Coleeae (Bignoniaceae) are a tribe almost the Gondwanan continent, Madagascar was entirely restricted to Madagascar. Coleeae have attached to Africa at present day Somalia, previously been placed in neotropical Crescentieae Kenya and Tanzania until 165 mya (Rabino- due to species with indehiscent fruits, a character witz et al. 1982, 1983). Madagascar was otherwise unusual in Bignoniaceae. A phylogeny completely separated from Africa by ndh trn based on three chloroplast regions ( F, T-L 120 mya (Rabinowitz et al. 1983), but spacer, trnL-F spacer) identifies a monophyletic remained attached to India until 88 mya Coleeae that is endemic to Madagascar and sur- rounding islands of the Indian Ocean (Seychelles, (Storey et al. 1995). During the lower Creta- Comores and Mascarenes). African Kigelia is not a ceous Madagascar traveled to its present member of Coleeae, rather it is more closely related position 400 km off the coast of Mozambique to a subset of African and Southeast Asian species (Fig. 1). The granitic islands of the Seychelles, of Tecomeae. The molecular phylogeny indicates in the Indian Ocean north of Madagascar, that indehiscent fruit have arisen repeatedly in represent fragments of the separation of Mad- Bignoniaceae: in Coleeae, Kigelia and Crescentieae.
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Download Download
    OPEN ACCESS All articles published in the Journal of Threatened Taxa are registered under Creative Commons Attribution 4.0 Interna- tional License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication. Journal of Threatened Taxa The international journal of conservation and taxonomy www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) Data Paper Flora of Fergusson College campus, Pune, India: monitoring changes over half a century Ashish N. Nerlekar, Sairandhri A. Lapalikar, Akshay A. Onkar, S.L. Laware & M.C. Mahajan 26 February 2016 | Vol. 8 | No. 2 | Pp. 8452–8487 10.11609/jott.1950.8.2.8452-8487 For Focus, Scope, Aims, Policies and Guidelines visit http://threatenedtaxa.org/About_JoTT.asp For Article Submission Guidelines visit http://threatenedtaxa.org/Submission_Guidelines.asp For Policies against Scientific Misconduct visit http://threatenedtaxa.org/JoTT_Policy_against_Scientific_Misconduct.asp For reprints contact <[email protected]> Publisher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 February 2016 | 8(2): 8452–8487 Data Paper Data Flora of Fergusson College campus, Pune, India: monitoring changes over half a century ISSN 0974-7907 (Online) Ashish N. Nerlekar 1, Sairandhri A. Lapalikar 2, Akshay A. Onkar 3, S.L. Laware 4 & ISSN 0974-7893 (Print) M.C. Mahajan 5 OPEN ACCESS 1,2,3,4,5 Department of Botany, Fergusson College, Pune, Maharashtra 411004, India 1,2 Current address: Department of Biodiversity, M.E.S. Abasaheb Garware College, Pune, Maharashtra 411004, India 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected], 4 [email protected], 5 [email protected] Abstract: The present study was aimed at determining the vascular plant species richness of an urban green-space- the Fergusson College campus, Pune and comparing it with the results of the past flora which was documented in 1958 by Dr.
    [Show full text]
  • A Quick Guide for Selection of Tree Species for Mass
    for Mass Plantation Drives by, Ketaki Ghate & Manasi Karandikar May 2017 Scientific approach for plantations . India has 18,500 species of flowering plants but we use very few species for plantations . Monoculture i.e. plantation of single species needs to be avoided. It creates greenery on land, but it doesn’t create FOREST ! . So more meaningful way is to do plantations which would mimic forest along with ecological restoration of natural resources like soil, water and biodiversity around it There are five major steps : 1. Know your region : Forest type in your area 2. Assess the status of your land 3. Plan for restoration and plantations : 3.a Protection to land : Conserve soil and moisture, Protect existing habitats 3.b Selection of species & numbers : as per status of soil and resource availability 3.c Seed dispersal 4. Execution : Selection of sapling and Plantation 5. Maintenance 1. Know your region . What is the kind of vegetation or forest in your region. e.g. Dry deciduous, Moist deciduous, Evergreen, Semi arid etc . Find out secondary data that will give an idea about the species growing naturally and easily in your area . But most of the times the original vegetation is lost & area is degraded due to various external pressures . So it is necessary to follow next step ….. 2. Assess your land . Is the soil ready to support plants ? . Plants grow well in fertile soil and even in soft to medium hard murrum but don’t grow well in hard murrum and rocks. But only fine soil is not enough . So check if it has enough organic matter & nutrients and microbes .
    [Show full text]
  • International Journal of Universal Pharmacy and Bio
    703 | P a g e International Standard Serial Number (ISSN): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences 3(3): May-June 2014 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND BIO SCIENCES IMPACT FACTOR 1.89*** ICV 5.13*** Pharmaceutical Sciences RESEARCH ARTICLE……!!! MICROMORPHOLOGICAL AND MICROMETRIC EVALUATION OF RADERMACHERA XYLOCARPA (ROXB.) ROXB EX. K.SCHUM FLOWER Sneha Kalaskar1, Harisha CR2, B.R.Patel3 , Switu Jani4 1MD Scholar, Dravyaguna Dept, IPGT&RA, G.A.U, Jamnagar. 2Head, Pharmacognosy Laboratory, IPGT&RA, G.A.U, Jamnagar. 3Assistant Professor, Dravyaguna Department, IPGT&RA, G.A.U, Jamnagar. 4PhD. Scholar Pharmacognosy. IPGT&RA, G.A.U, Jamnagar. KEYWORDS: ABSTRACT Radermachera xylocarpa (Roxb.) Roxb ex. K.schum belongs to Bignonaceae. Flower Bignonaceae, the family of flowering plants. In Ayurveda, it is considered as micrometry, Patala, one of the source plant for one variety of Patala i.e. Ghantapatala or it may Radermachera xylocarpa be simply an unauthorized substitute for iti. Review of literature reveals that (Roxb.) Roxb ex. K.schum. flower has not been studied in detail for pharmacognostical characters, which For Correspondence: is an essential parameter for identification of a crude drug. Hence, the present Sneha Kalaskar * study was undertaken with an aim to study the micromorphological and Address: micrometric evaluation of flower of the plant. The variations in microscopic characters of flower can be helpful in identification of authentic drug and MD (Ayu)Scholar, adulterants. Pedicel shows outer single layer of epidermis with cuticle Dept.of Dravyaguna, interrupted by multicellular trichomes with oil globules, sessile, glandular IPGT&RA Jamnagar, trichomes. Outer epidermis of Calyx shows thick cuticle and interrupted by multicellular multi-branched trichomes, Thus, flower microscopy brings GAU, Gujarat.
    [Show full text]
  • Hepatoprotective, Antihyperglycemic and Cytotoxic Activities Of
    Arom & at al ic in P l ic a n d t e s M Mostafa et al., Med Aromat Plants (Los Angles) 2017, 6:4 Medicinal & Aromatic Plants DOI: 10.4172/2167-0412.1000297 ISSN: 2167-0412 Research Article Open Access Hepatoprotective, Antihyperglycemic and Cytotoxic Activities of Jacaranda acutifolia Leaf Extract Nada M Mostafa1, Omayma A Eldahshan1, Hesham A El-Beshbishy2 and Abdel Nasser B Singab1* 1Department of Pharmacognosy, Ain Shams University, Abbassia, Cairo, Egypt 2Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia *Corresponding author: Abdel Nasser B Singab, Department of Pharmacognosy, Ain Shams University, Cairo, Egypt, Tel: 01005036231; E-mail: [email protected] Received date: June 30, 2017; Accepted date: July 13, 2017; Published date: July 20, 2017 Copyright: © 2017 Mostafa NM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Objective: Leaves methanol extract of Jacaranda acutifolia Humb. and Bonpl. (JA) family Bignoniaceae was subjected to phytochemical investigation as well as antioxidant, hepatoprotective, cytotoxic and antihyperglycemic activities evaluation. Key findings: Eight compounds were identified: luteolin-7-O-β-D-glucuronide, luteolin-7-O-β-D-glucoside, aesculetin, luteolin, verbascoside, luteolin-7-O-β-D-glucuronide methyl ester, apigenin-7-O-β-D-glucuronide methyl ester and apigenin. JA revealed a potent antioxidant activity in vitro superior to vitamin E (DPPH assay; EC50 of 0.43 mg/mL). A potential cytotoxic activity was produced against hepatocellular (HepG2) and cervical (HeLa) carcinoma cells with IC50 of 6.05 and 16.7 µg, respectively.
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]
  • A Pharmacological Evaluation of Bignoniaceae Family Plants with A
    236 Advances in Natural and Applied Sciences, 4(3): 236-253, 2010 ISSN 1995-0748 This is a refereed journal and all articles are professionally screened and reviewed ORIGINAL ARTICLE An Ethnomedicinal, Pharmacological and Phytochemical Review of Some Bignoniaceae Family Plants and a Description of Bignoniaceae Plants in Folk Medicinal Uses in Bangladesh 1Mohammed Rahmatullah, 2Walied Samarrai, 1Rownak Jahan, 1Shahnaz Rahman, 1Nasima Sharmin, 1Z.U.M. Emdad Ullah Miajee, 2Majeedul H. Chowdhury, 3Sazzadul Bari, 1Farhana Jamal, 1A.B.M. Anwarul Bashar, 1A.K. Azad, 1Shamima Ahsan 1Faculty of Life Sciences, University of Development Alternative, Dhanmondi, Dhaka-1205, Bangladesh. 2Present address: New York City College of Technology The City University of New York 300 Jay Street, Brooklyn, NY 11201, USA. 3MonicoPharma Ltd. House No. 89/1, Road No. 12A, Dhanmondi, Dhaka-1209, Bangladesh. Mohammed Rahmatullah, Walied Samarrai, Rownak Jahan, Shahnaz Rahman, Nasima Sharmin, Z.U.M. Emdad Ullah Miajee, Majeedul H. Chowdhury, Sazzadul Bari, Farhana Jamal, A.B.M. Anwarul Bashar, A.K. Azad, Shamima Ahsan; An ethnomedicinal, pharmacological and phytochemical review of some Bignoniaceae family plants and a description of Bignoniaceae plants in folk medicinal uses in Bangladesh ABSTRACT The Bignoniaceae family comprising of about 110 genera and 650 species is a family of flowering plants, commonly known as the Trumpet Creeper family, Jacaranda family, Bignonia family, or the Catalpa family. Plant species belonging to this family are distributed worldwide, but most of them occur in the tropical and sub-tropical countries. However, a number of temperate species also grow in North America and East Asia. Although the family is small, the Bignoniaceae plants are important for their reported bio-active constituents and diverse pharmacological activities.
    [Show full text]
  • Lapachol: an Overview
    Special Issue Reviews and Accounts ARKIVOC 2007 (ii) 145-171 Lapachol: an overview Hidayat Hussain,*a Karsten Krohn,a Viqar Uddin Ahmad,b Ghulam Abbas Miana,c and Ivan Robert Greend aDepartment of Chemistry, University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany bH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan cRiphah Institute of Pharmaceutical Sciences, Riphah Internation University, Islamabad, Pakistan dDepartment of Chemistry, University of the Western Cape, P/Bag X17, Bellville,7530, South Africa E-mail: [email protected] Abstract Lapachol is a naphthoquinone that was first isolated by E. Paterno from Tabebuia avellanedae (Bignoniaceae) in 1882. A wide spectrum of therapeutic activities have been attributed to lapachol or its derivatives viz., anti-abscess, anti-ulcer, antileishmanial, anticarcinomic, anti- edemic, anti-inflammatory, antimalarial, antiseptic, antitumor, antiviral, bactericidal, fungicidal, insectifugal, pesticidal, protisticidal, respiradepressant, schistosomicidal, termiticidal, and viricidal. Originally isolated from species of the Bignoniaceae family, lapachol can also be found in other families such as Verbenaceae, Proteaceae, Leguminosae, Sapotaceae, Scrophulariaceae, and Malvaceae. The interesting and most usefull knowledge on lapachol, which is reviewed in this paper, can be used as a starting point in future research endeavors. Keywords: Lapachol, Tabebuia avellanedae Lor., bignoniaceae, structure, pharmacology, biosynthesis Contents 1. Introduction 2. Occurance 3. Structure of lapachol 4. Pharmacological activities 5. Synthesis ISSN 1424-6376 Page 145 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2007 (ii) 145-171 6. Biosynthesis 7. Derivatives 8. Perspectives 1. Introduction Compounds having a quinone as the core system have promising biological activity.
    [Show full text]