A Guide to Data Governance Building a Roadmap for Trusted Data a Guide to Data Governance Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Center (CDP-DC) Reference Architecture
Cloudera Data Platform - Data Center (CDP-DC) Reference Architecture Important Notice © 2010-2020 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, and any other product or service names or slogans contained in this document, except as otherwise disclaimed, are trademarks of Cloudera and its suppliers or licensors, and may not be copied, imitated or used, in whole or in part, without the prior written permission of Cloudera or the applicable trademark holder. Hadoop and the Hadoop elephant logo are trademarks of the Apache Software Foundation. All other trademarks, registered trademarks, product names and company names or logos mentioned in this document are the property of their respective owners to any products, services, processes or other information, by trade name, trademark, manufacturer, supplier or otherwise does not constitute or imply endorsement, sponsorship or recommendation thereof by us. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Cloudera. Cloudera may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Cloudera, the furnishing of this document does not give you any license to these patents, trademarks copyrights, or other intellectual property. The information in this document is subject to change without notice. Cloudera shall not be liable for any damages resulting from technical errors or omissions which may be present in this document, or from use of this document. -
Definitive Guide to Data Governance Contents
Definitive Guide to Data Governance Contents Introduction: Why trusted data is the key to digital transformation 03 Chapter 1: What is data governance and why do you need it? 05 Chapter 2: Choosing the best governance model for you 11 Chapter 3: Three steps to deliver data you can trust 18 Chapter 4: Dos & don’ts: the 12 labors of the data governance hero 41 Chapter 5: New roles of data governance 46 Chapter 6: Successful trusted data delivery stories 50 Chapter 7: Managing the transition from data integration to data integrity 60 Chapter 8: Moving toward the data intelligence company 66 2 Definitive Guide to Data Governance Introduction Why trusted data is the key to digital transformation We’ve entered the era of the information economy, tools in order to get results fast While these tactics may where data has become the most critical asset of every solve for speed in the short term, they are not scalable as organization Data-driven strategies are now a competitive the company grows, and create quality and compliance imperative to succeed in every industry To support risk due to the lack of oversight On the other hand, business objectives such as revenue growth, profitability, organizations that try to solve the data trust problem often and customer satisfaction, organizations are increasingly create a culture of “no” with the establishment of strict relying on data to make decisions Data-driven controls and an authoritative approach to governance decision-making is at the heart of your digital However, it’s resource-intensive, cumbersome, -
Data Governance Part II: Maturity Models – a Path to Progress
NASCIO: Representing Chief Information Officers of the States Data Governance Part II: Maturity Models – A Path to Progress Introduction When government can respond effectively and expeditiously to its constituents, it In the previous report on Data Governance1 gains credibility with citizens. The an overview of data governance was opposite is also true. When government presented describing the foundational can’t respond, or responds incorrectly, or issues that drive the necessity for state too slowly, based on inaccurate informa- government to pursue a deliberate effort tion, or a lack of data consistency across for managing its key information assets. agencies, government’s credibility suffers. Data governance or governance of data, information and knowledge assets resides This research brief will present a number within the greater umbrella of enterprise of data governance maturity models2 architecture and must be an enterprise- which have been developed by widely wide program.There is a significant cost to recognized thought leaders. These models March 2009 state government when data and informa- provide a foundational reference for tion are not properly managed. In an understanding data governance and for NASCIO Staff Contact: emergency situation, conflicts in informa- understanding the journey that must be Eric Sweden anticipated and planned for achieving Enterprise Architect tion can jeopardize the lives of citizens, [email protected] first responders, law enforcement officers, effective governance of data, information fire fighters, and medical personnel. and knowledge assets. This report contin- ues to build on the concepts presented in Redundant sources for data can lead to Data Governance Part I. It presents a conflicting data which can lead to ineffec- portfolio of data governance maturity tive decision making and costly models. -
The Evolving Role of the Chief Data Officer in Financial Services
The evolving role of the chief data officer in financial services: From marshal and steward to business strategist The evolving role of the chief data officer in financial services | From marshal and steward to business strategist The evolving role of the chief data officer in financial services: From marshal and steward to business strategist Over the past few years, financial institutions core businesses, products, customers, and (FIs) have increasingly come to recognize supporting data infrastructure’s capabilities that their data assets represent highly and needs. strategic sources of insight and leverage for a wide array of business functions, More recently, the CDO’s job description–for including risk management, regulatory the most progressive organizations–has compliance, sales and marketing, product evolved from its initial focus on data asset development, and operational performance, gathering, governance, and stewardship among others. To realize this embedded to proactive business enablement, with value, however, organizations need to many institutions even marrying the CDO proactively and effectively manage their and chief analytics officer (CAO) roles into a information assets at the enterprise level. In single senior-level position. This is especially response, they have been appointing chief true for organizations that aggressively data officers (CDOs) to provide required seek to leverage data science and advanced strategic guidance and execution support, analytical modelling to generate new insights and also to assure access to and the into the markets and customers they serve, quality of critical data. In addition, CDOs the products they build and price, the risks will undoubtedly play a strategic role in they assume or pass on, and the means by helping FIs adapt and transform their data which they operate the business to benefit ecosystems in response to rapid technology stakeholders. -
Data Stewardship Committee: Minutes of February 23, 2015
Data Stewardship Committee: Minutes of February 23, 2015 In attendance: Craig Abbey (OIA), Gary Pacer (EAS), Brian O’Connor (CAS), Tom Wendt (VPRE), David Love (SEAS), Leah Feroleto (SW), Troy Joseph (GEMS), Chris Connor (GEMS/UG Admissions), Greg Olsen (VPEM), John Gottardy (Financial Aid), Sue Krzystofiak (HR), Beth Corry (Financial Services), Shirley Walker (Student Accounts), Michael Koziej (Campus Living), Kelly Hayes-McAlonie (Capital Planning), Tom Okon (Business Reporting and Services), Mark Molnar (OIA), Laurie Barnum (Resource Planning) Peter Elkin (Biomedical Informatics), Rachel Link (OIA). Meeting called to order at 4:00 p.m. by Gary Pacer. Gary thanked all in attendance for making the time to participate and asked attendees to introduce themselves and the areas represented. Gary gave a brief overview of the Data Stewardship Committee, which is a subsidiary of the Data Governance Council. Craig Abbey and Gary Pacer are co-chairing the DSC, and the initial invitation sent to the DSC members included the charge from the Provost for both the DSC and DGC. Thirteen data domains are represented on the committee, providing a university-wide perspective of how data governance is managed across the institution, how data are defined for particular projects, and identifying common vernacular to solve or address problems. The DSC membership is comprised of Data Stewards, Ex Officio members, and Ad Lucem (Latin for “to the light”) members, who serve to help lead the data stewardship process. Gary next reminded those in attendance of the work that lies ahead for the committee. The initial focus is to prepare the report recommending permanent data management organization and structure. -
Master Data Management Whitepaper.Indd
Creating a Master Data Environment An Incremental Roadmap for Public Sector Organizations Master Data Management (MDM) is the processes and technologies used to create and maintain consistent and accurate representations of master data. Movements toward modularity, service orientation, and SaaS make Master Data Management a critical issue. Master Data Management leverages both tools and processes that enable the linkage of critical data through a unifi ed platform that provides a common point of reference. When properly done, MDM streamlines data management and sharing across the enterprise among different areas to provide more effective service delivery. CMA possesses more than 15 years of experience in Master Data Management and more than 20 in data management and integration. CMA has also focused our efforts on public sector since our inception, more than 30 years ago. This document describes the fundamental keys to success for developing and maintaining a long term master data program within a public service organization. www.cma.com 2 Understanding Master Data transactional data. As it becomes more volatile, it typically is considered more transactional. Simple Master Data Behavior entities are rarely a challenge to manage and are rarely Master data can be described by the way that it interacts considered master-data elements. The less complex an with other data. For example, in transaction systems, element, the less likely the need to manage change for master data is almost always involved with transactional that element. The more valuable the data element is to data. This relationship between master data and the organization, the more likely it will be considered a transactional data may be fundamentally viewed as a master data element. -
Data Governance with Oracle
Data Governance with Oracle Defining and Implementing a Pragmatic Data Governance Process with Oracle Metadata Management and Oracle Data Quality Solutions ORACLE WHITE P A P E R | SEPTEMBER 2015 Disclaimer The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle. DATA GOVERNANCE WITH ORACLE Table of Contents Disclaimer 1 Introduction 1 First Define the Business Problem 2 Identify Executive Sponsor 3 Manage Glossary of Business Terms 4 Identify Critical Data Elements 4 Classify Data from an Information Security Perspective 5 Manage Business Rules 6 Manage Allowable Values for Business Terms 7 Support for Data Lineage and Impact Analysis 8 Manage Data Stewardship Workflows 10 Govern Big Data 11 Manage Data Quality Rules 12 Execute Data Quality Rules 12 View Data Quality Dashboard 16 Data Quality Remediation 16 Data Privacy and Security 17 Ingredients for Data Governance Success 17 Governance with Any Enterprise System 19 Align with Other Oracle Solutions 20 About the Author 22 DATA GOVERNANCE WITH ORACLE . DATA GOVERNANCE WITH ORACLE Introduction Data governance is the formulation of policy to optimize, secure, and leverage information as an enterprise asset by aligning the objectives of multiple functions. Data governance programs have traditionally been focused on people and process. In this whitepaper, we will discuss how key data governance capabilities are enabled by Oracle Enterprise Metadata Manager (OEMM) and Oracle Enterprise Data Quality (EDQ). -
Data Governance Part III: Frameworks – Structure for Organizing Complexity
NASCIO: Representing Chief Information Officers of the States Data Governance Part III: Frameworks – Structure for Organizing Complexity Introduction frameworks and maturity models assist in describing the scope—both breadth and NASCIO has presented previous research depth—of an initiative. This holds true as briefs that introduce the subject of data well for data, information and knowledge governance, and emphasize the impor- management. tance of managing data and information assets as enterprise assets. Maturity models were presented that help describe the The Challenge journey state government must anticipate and plan. The challenge in state government is a history of state agencies operating fairly This research brief presents the concept of autonomously regarding processes and frameworks that will describe what consti- investment related to managing informa- May 2009 tutes a data governance program. The tion. In the decades of this history, focus will be on frameworks from the Data strategic intent, processes, organization, NASCIO Staff Contact: Management Association (DAMA), the information management, infrastructure, Eric Sweden Enterprise Architect Data Governance Institute (DGI), and IBM. technology, training, incentives and opera- [email protected] tions have been developed in a highly In general, frameworks assist in describing decentralized manner to meet the needs of major concepts and their interrelationships. state agencies independent of one anoth- Frameworks assist in organizing the er. As state government pursues an complexity of a subject. Frameworks facili- enterprise perspective in managing its data tate communications and discussion. All of and information assets, it will recognize a these descriptors apply as well to frame- disparity in data maturity levels within the works related to data governance. -
Data Governance Officer Job Description
Data governance officer Role brief Directorate Strategy and corporate services Base location Bristol ectionGrade 15 Job level C Job family Professional services Date April 2017 Reports to Enterprise data manager Responsible for The continued establishment of a data governance programme within Jisc supporting the data warehouse, other core systems and datasets and implementing best practice across the company. 1. Background The data governance officer is a role within the information strategy team that forms part of group infrastructure in the strategy and corporate services directorate. This directorate, working closely with finance and commercial directorate, brings together into a single management framework all back office functions that support the operations and governance aspects of Jisc’s offering. The data management and governance team consists of the enterprise data manager supported by the data governance officer. The data governance officer role has been supporting the establishment of the data warehouse as it transitions from a project to business as usual. This includes working with data owners feeding key datasets in our CRM and finance systems. The data warehouse will be shortly moving into a business as usual state and will give a great opportunity for the data governance officer to develop and implement best practices policies and guidance across the company’s key systems and data sources. 2. Purpose and scope The purpose of this role is to work with the enterprise data manager as a liaison between Jisc business units to improve business processes, improve the quality of data within our core systems and introduce an enterprise taxonomy and ontology consistently across the business and systems. -
The Chief Data Officer in Government a CDO Playbook
The Chief Data Officer in Government A CDO Playbook A report from the Deloitte Center for Government Insights The Chief Data Officer in Government About the Deloitte Center for Government Insights The Deloitte Center for Government Insights shares inspiring stories of government innovation, looking at what’s behind the adoption of new technologies and management practices. We produce cutting-edge research that guides public officials without burying them in jargon and minutiae, crystalizing essential insights in an easy-to-absorb format. Through research, forums, and immersive workshops, our goal is to provide public officials, policy professionals, and members of the media with fresh insights that advance an understanding of what is possible in government transformation. About the Beeck Center for Social Impact + Innovation The Beeck Center for Social Impact + Innovation at Georgetown University engages global leaders to drive social change at scale. Through our research, education, and convenings, we provide innovative tools that leverage the power of capital, data, technology, and policy to improve lives. We embrace a cross-disciplinary approach to building solutions at scale. Deloitte Consulting LLP’s Technology Consulting practice is dedicated to helping our clients build tomorrow by solving today’s complex business problems involving strategy, procurement, design, delivery, and assurance of technology solutions. Our service areas include analytics and informa- tion management, delivery, cyber risk services, and technical strategy -
The Relationship Between Information Governance, Data Governance
The Relationship Between Information Governance, Data Governance, and Big Data Richard Kessler November 2015 Definitions and Interpretations Data Governance "The exercise of authority and control over the management of data assets to define, approve and communicate data strategies, policies, and standards; to track and enforce regulatory compliance and conformance to data…" etc. – Data Architecture Management Association (DAMA) "Data governance is a set of processes that ensures that important data assets are formally managed throughout the enterprise. Data governance ensures that data can be trusted and that people can be made accountable for any adverse event that happens because of low data quality." – Wikipedia Information Governance "The specification of decision rights and an accountability framework to ensure appropriate behavior in the valuation, creation, storage, use, archiving and deletion of information. It includes the processes, roles and policies, standards and metrics that ensure the effective and efficient use of information in enabling an organization to achieve its goals." – Gartner "The activities and technologies that organization employ to maximize the value of their information while minimizing associated risks and costs." – Information Governance Initiative Definitions and Interpretations Big Data "Volume, Variety, Velocity." (Note that others have added other V's, including Veracity, Validity, and Visibility.) - Doug Laney of Gartner, 2001. "Transactions, Interactions, and Observations." - Shaun Connolly of Hortonworks. -
Data Stewardship on the Map: a Study of Tasks and Roles in Dutch Research Institutes
Data stewardship on the map: A study of tasks and roles in Dutch research institutes lcrdm TheHet LandelijkNational CoordinationCoördinatiepunt Point Research Research Data Data Management (islcrd een m)landelijk is a national netwerk network van experts of expertsop het gebied on research van research data management data management (rdm) (rdm). inHet the lcrdm Netherlands. maakt de The koppeling lcrdm connects tussen beleid policy en anddagelijkse daily practice. praktijk. Binnen Within the het lcrd lcrdmm experts werken experts worksamen together om rdm-onderwerpen to put rdm topics te onagenderen the agenda die te thatgroot ask zijn for voor mutual één national instelling cooperation. en die vragen1 om een gezamenlijke landelijke aanpak. documentversion: april/may 2019 meermore informatie:information: www.lcrdm.nl www.lcrdm.nl Contents Introduction 5 Tasks, responsibilities and roles as described in existing literature 7 Classification in task areas 8 What Dutch research institutes ask for in vacancies 9 National Data Stewardship survey 13 Interviews 18 Examples of (future/desired) embedding of data stewardship 23 Conclusion 27 Appendix 1: Links 30 Colophon 31 3 4 Introduction ‘Effective long-term scientific data stewardship touches on processes, standards, and best practices in multiple knowledge domains, including science, data management/preserva- tion, and technology.’ 1 (Peng, G. et al. 2018). 1 Scientific Stewardship in the Open Data and Big Data Era — Roles and Responsibi- Good research requires good data stewardship. Data stewardship encompasses all the lities of Stewards and Other different tasks and responsibilities that relate to caring for data during the various phases of Major Product Stakeholders Peng, G. et al.