Histone H3 Rabbit Pab

Total Page:16

File Type:pdf, Size:1020Kb

Histone H3 Rabbit Pab Leader in Biomolecular Solutions for Life Science Histone H3 Rabbit pAb Catalog No.: A2348 40 Publications Basic Information Background Catalog No. Histones are basic nuclear proteins that are responsible for the nucleosome structure of A2348 the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core Observed MW histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the 17KDa interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication- Calculated MW dependent histone that is a member of the histone H3 family. Transcripts from this gene 15kDa lack polyA tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on Category chromosome 6p22-p21.3. Primary antibody Applications WB, IHC, IF, ChIP Cross-Reactivity Human, Mouse, Rat, Other (Wide Range) Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 8290 Q16695 IHC 1:50 - 1:200 Immunogen IF 1:50 - 1:200 A synthetic peptide corresponding to a sequence within amino acids 50 to the C- terminus of human HIST3H3 (NP_003484.1). ChIP 1:50 - 1:200 Synonyms H3.4;H3/g;H3FT;H3t;HIST3H3;Histone H3;HIST1H3A Contact Product Information Source Isotype Purification www.abclonal.com Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using Histone H3 antibody (A2348) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 1s. Immunoprecipitation analysis of 1500ug extracts of HeLa cells using 30ul Histone H3 antibody (A2348). Western blot was performed from the immunoprecipitate using Histone H3 antibody (A2348) at a dilition of 1:10000. Western blot analysis of extracts of Rat lung, using Histone H3 antibody (A2348) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020). Exposure time: 1s. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products. Validation Data Chromatin immunoprecipitation analysis of extracts of 293T cells, using Histone H3 antibody (A2348) and rabbit IgG.The amount of immunoprecipitated DNA was checked by quantitative PCR. Histogram was constructed by the ratios of the immunoprecipitated DNA to the input. Immunofluorescence analysis of U2OS Immunohistochemistry of paraffin- Immunohistochemistry of paraffin- cells using HIST3H3 antibody (A2348) at embedded rat brain using Histone H3 embedded human appendix using Histone dilution of 1:100. Blue: DAPI for nuclear antibody (A2348) at dilution of 1:100 (40x H3 antibody (A2348) at dilution of 1:100 staining. lens). (40x lens). Immunohistochemistry of paraffin- Immunohistochemistry of paraffin- Immunohistochemistry of paraffin- embedded mouse testis using Histone H3 embedded rat lung using Histone H3 embedded human liver using Histone H3 antibody (A2348) at dilution of 1:100 (40x Rabbit pAb (A2348) at dilution of 1:100 Rabbit pAb (A2348) at dilution of 1:100 lens). (40x lens). (40x lens). Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products. Validation Data Immunohistochemistry of paraffin- Immunohistochemistry of paraffin- embedded human brain using Histone H3 embedded mouse kidney using Histone H3 Rabbit pAb (A2348) at dilution of 1:100 Rabbit pAb (A2348) at dilution of 1:100 (40x lens). (40x lens). Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products..
Recommended publications
  • Genome-Wide Analysis of 5-Hmc in the Peripheral Blood of Systemic Lupus Erythematosus Patients Using an Hmedip-Chip
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 35: 1467-1479, 2015 Genome-wide analysis of 5-hmC in the peripheral blood of systemic lupus erythematosus patients using an hMeDIP-chip WEIGUO SUI1*, QIUPEI TAN1*, MING YANG1, QIANG YAN1, HUA LIN1, MINGLIN OU1, WEN XUE1, JIEJING CHEN1, TONGXIANG ZOU1, HUANYUN JING1, LI GUO1, CUIHUI CAO1, YUFENG SUN1, ZHENZHEN CUI1 and YONG DAI2 1Guangxi Key Laboratory of Metabolic Diseases Research, Central Laboratory of Guilin 181st Hospital, Guilin, Guangxi 541002; 2Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China Received July 9, 2014; Accepted February 27, 2015 DOI: 10.3892/ijmm.2015.2149 Abstract. Systemic lupus erythematosus (SLE) is a chronic, Introduction potentially fatal systemic autoimmune disease characterized by the production of autoantibodies against a wide range Systemic lupus erythematosus (SLE) is a typical systemic auto- of self-antigens. To investigate the role of the 5-hmC DNA immune disease, involving diffuse connective tissues (1) and modification with regard to the onset of SLE, we compared is characterized by immune inflammation. SLE has a complex the levels 5-hmC between SLE patients and normal controls. pathogenesis (2), involving genetic, immunologic and envi- Whole blood was obtained from patients, and genomic DNA ronmental factors. Thus, it may result in damage to multiple was extracted. Using the hMeDIP-chip analysis and valida- tissues and organs, especially the kidneys (3). SLE arises from tion by quantitative RT-PCR (RT-qPCR), we identified the a combination of heritable and environmental influences. differentially hydroxymethylated regions that are associated Epigenetics, the study of changes in gene expression with SLE.
    [Show full text]
  • DNA Methylation Changes in Down Syndrome Derived Neural Ipscs Uncover Co-Dysregulation of ZNF and HOX3 Families of Transcription
    Laan et al. Clinical Epigenetics (2020) 12:9 https://doi.org/10.1186/s13148-019-0803-1 RESEARCH Open Access DNA methylation changes in Down syndrome derived neural iPSCs uncover co- dysregulation of ZNF and HOX3 families of transcription factors Loora Laan1†, Joakim Klar1†, Maria Sobol1, Jan Hoeber1, Mansoureh Shahsavani2, Malin Kele2, Ambrin Fatima1, Muhammad Zakaria1, Göran Annerén1, Anna Falk2, Jens Schuster1 and Niklas Dahl1* Abstract Background: Down syndrome (DS) is characterized by neurodevelopmental abnormalities caused by partial or complete trisomy of human chromosome 21 (T21). Analysis of Down syndrome brain specimens has shown global epigenetic and transcriptional changes but their interplay during early neurogenesis remains largely unknown. We differentiated induced pluripotent stem cells (iPSCs) established from two DS patients with complete T21 and matched euploid donors into two distinct neural stages corresponding to early- and mid-gestational ages. Results: Using the Illumina Infinium 450K array, we assessed the DNA methylation pattern of known CpG regions and promoters across the genome in trisomic neural iPSC derivatives, and we identified a total of 500 stably and differentially methylated CpGs that were annotated to CpG islands of 151 genes. The genes were enriched within the DNA binding category, uncovering 37 factors of importance for transcriptional regulation and chromatin structure. In particular, we observed regional epigenetic changes of the transcription factor genes ZNF69, ZNF700 and ZNF763 as well as the HOXA3, HOXB3 and HOXD3 genes. A similar clustering of differential methylation was found in the CpG islands of the HIST1 genes suggesting effects on chromatin remodeling. Conclusions: The study shows that early established differential methylation in neural iPSC derivatives with T21 are associated with a set of genes relevant for DS brain development, providing a novel framework for further studies on epigenetic changes and transcriptional dysregulation during T21 neurogenesis.
    [Show full text]
  • Download Download
    Supplementary Figure S1. Results of flow cytometry analysis, performed to estimate CD34 positivity, after immunomagnetic separation in two different experiments. As monoclonal antibody for labeling the sample, the fluorescein isothiocyanate (FITC)- conjugated mouse anti-human CD34 MoAb (Mylteni) was used. Briefly, cell samples were incubated in the presence of the indicated MoAbs, at the proper dilution, in PBS containing 5% FCS and 1% Fc receptor (FcR) blocking reagent (Miltenyi) for 30 min at 4 C. Cells were then washed twice, resuspended with PBS and analyzed by a Coulter Epics XL (Coulter Electronics Inc., Hialeah, FL, USA) flow cytometer. only use Non-commercial 1 Supplementary Table S1. Complete list of the datasets used in this study and their sources. GEO Total samples Geo selected GEO accession of used Platform Reference series in series samples samples GSM142565 GSM142566 GSM142567 GSM142568 GSE6146 HG-U133A 14 8 - GSM142569 GSM142571 GSM142572 GSM142574 GSM51391 GSM51392 GSE2666 HG-U133A 36 4 1 GSM51393 GSM51394 only GSM321583 GSE12803 HG-U133A 20 3 GSM321584 2 GSM321585 use Promyelocytes_1 Promyelocytes_2 Promyelocytes_3 Promyelocytes_4 HG-U133A 8 8 3 GSE64282 Promyelocytes_5 Promyelocytes_6 Promyelocytes_7 Promyelocytes_8 Non-commercial 2 Supplementary Table S2. Chromosomal regions up-regulated in CD34+ samples as identified by the LAP procedure with the two-class statistics coded in the PREDA R package and an FDR threshold of 0.5. Functional enrichment analysis has been performed using DAVID (http://david.abcc.ncifcrf.gov/)
    [Show full text]
  • For Reference Only
    Datasheet Version: 1.0.0 Revision date: 05 Nov 2020 Histone H3R2me2a Antibody Catalogue No.:abx000029 Western blot analysis of extracts of various cell lines, using Asymmetric Dimethyl-Histone H3- R2 antibody (abx000029). Dot-blot analysis of various methylation peptides using Asymmetric Dimethyl-Histone H3-R2 antibody (abx000029). Immunofluorescence analysis of 293T cells using Asymmetric Dimethyl-Histone H3-R2 antibody (abx000029). Blue: DAPI for nuclear staining. Histone H3R2me2a Antibody is a Rabbit Polyclonal antibody against Histone H3R2me2a. Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. TranscriptsFor from this Reference gene lack polyA tails; instead, they contain a palindromic Only termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3. Target: Histone H3R2me2a Clonality: Polyclonal Reactivity: Human, Mouse, Rat v1.0.0 Abbexa Ltd, Cambridge, UK · Phone: +44 1223 755950 · Fax: +44 1223 755951 1 Abbexa LLC, Houston, TX, USA · Phone: +1 832 327 7413 www.abbexa.com · Email: [email protected] Datasheet Version: 1.0.0 Revision date: 05 Nov 2020 Tested Applications: WB, IHC, IF/ICC, IP, ChIP Host: Rabbit Recommended dilutions: WB: 1/500 - 1/2000, IHC: 1/50 - 1/200, IF/ICC: 1/50 - 1/200, IP: 1/50 - 1/200, ChIP: 1/20 - 1/100, ChIPseq: 1/20 - 1/100.
    [Show full text]
  • Anti-Histone H3 (Mono Methyl K4) Polyclonal Antibody (CABT-LM00401) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-Histone H3 (mono methyl K4) polyclonal antibody (CABT-LM00401) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chroma Target Histone H3K4me2 Immunogen A synthetic methylated peptide corresponding to residues surrounding K4 of human histone H3 Isotype IgG Source/Host Rabbit Species Reactivity Human Purification Antibodies were produced by immunizing rabbits and were purified by antigen affinity- chromatography. Conjugate Unconjugated Applications WB,IHC,IF,IP,ChIP Molecular Weight 15kDa Format Buffer: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. Preservative 0.02% Sodium Azide Storage Store at -20°C or -80°C. Avoid freeze / thaw cycles. GENE INFORMATION Gene Name HIST3H3 histone cluster 3, H3 [ Homo sapiens (human) ] Official Symbol HIST3H3 Synonyms HIST3H3; histone cluster 3, H3; H3 histone family, member T , H3FT, histone 3, H3; histone H3.1t; H3/g; H3t; H3/t; histone 3, H3; H3 histone family, member T; H3.4; H3FT; MGC126886; MGC126888; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Entrez Gene ID 8290 Protein Refseq NP_003484 UniProt ID Q16695 Chromosome Location 1q42 Pathway Alcoholism; Cell Cycle; Cellular Senescence; Cellular responses to stress; Chromosome Maintenance; DNA Damage/Telomere Stress Induced Senescence; EGFR1 Signaling Pathway; FSH signaling pathway; Meiosis; Meiotic Recombination; Meiotic Synapsis; Packaging O Function DNA binding; protein binding; protein heterodimerization activity References 1.
    [Show full text]
  • The Conserved DNMT1-Dependent Methylation Regions in Human Cells
    Freeman et al. Epigenetics & Chromatin (2020) 13:17 https://doi.org/10.1186/s13072-020-00338-8 Epigenetics & Chromatin RESEARCH Open Access The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure Dana M. Freeman1 , Dan Lou1, Yanqiang Li1, Suzanne N. Martos1 and Zhibin Wang1,2,3* Abstract Background: Allele-specifc DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The signifcance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-tradi- tional ASMs are sensitive to exposures in association with human disease. Results: We frst explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal develop- ment and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identifed regions were diferentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegenera- tion.
    [Show full text]
  • A Mutation in Histone H2B Represents a New Class of Oncogenic Driver
    Author Manuscript Published OnlineFirst on July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A Mutation in Histone H2B Represents A New Class Of Oncogenic Driver Richard L. Bennett1, Aditya Bele1, Eliza C. Small2, Christine M. Will2, Behnam Nabet3, Jon A. Oyer2, Xiaoxiao Huang1,9, Rajarshi P. Ghosh4, Adrian T. Grzybowski5, Tao Yu6, Qiao Zhang7, Alberto Riva8, Tanmay P. Lele7, George C. Schatz9, Neil L. Kelleher9 Alexander J. Ruthenburg5, Jan Liphardt4 and Jonathan D. Licht1 * 1 Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 2 Division of Hematology/Oncology, Northwestern University 3 Department of Cancer Biology, Dana Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School 4 Department of Bioengineering, Stanford University 5 Department of Molecular Genetics and Cell Biology, The University of Chicago 6 Department of Chemistry, Tennessee Technological University 7 Department of Chemical Engineering, University of Florida 8 Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida 9 Department of Chemistry, Northwestern University, Evanston IL 60208 Running title: Histone mutations in cancer *Corresponding Author: Jonathan D. Licht, MD The University of Florida Health Cancer Center Cancer and Genetics Research Complex, Suite 145 2033 Mowry Road Gainesville, FL 32610 352-273-8143 [email protected] Disclosures: The authors have no conflicts of interest to declare Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Histone H3.1 (Human) Cell-Based ELISA Kit
    Histone H3.1 (Human) Cell-Based ELISA Kit Catalog # : KA2761 規格 : [ 1 Kit ] List All Specification Application Image Product Histone H3.1 (Human) Cell-Based ELISA Kit is an indirect enzyme-linked Qualitative Description: immunoassay for qualitative determination of Histone H3 expression in cultured cells. Reactivity: Human, Mouse, Rat Storage Store the kit at 4°C. Instruction: Protocol: Protocol Download Suitable Attached Cell, Loosely Attached Cell, Suspension Cell Sample: Label: HRP-conjugated Detection Colorimetric Method: Regulation For research use only (RUO) Status: Datasheet: Download Applications Qualitative HIST1H3A HIST1H3D HIST1H3C HIST1H3E HIST1H3I HIST1H3G HIST1H3J HIST1H3H HIST1H3B HIST1H3F Gene Information Entrez GeneID: 8350 Protein P68431 Accession#: Gene Name: HIST1H3A Gene Alias: H3/A,H3FA Gene histone cluster 1, H3a Description: Omim ID: 602810 Gene Ontology: Hyperlink Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. This structure consists of approximately 146 bp of DNA wrapped around a Page 1 of 6 2021/6/18 nucleosome, an octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is found in the large histone gene cluster on chromosome 6p22-p21.3. [provided by RefSeq Other H3 histone family, member A,histone 1, H3a Designations: Gene Information Entrez GeneID: 8351 Protein P68431 Accession#: Gene Name: HIST1H3D Gene Alias: H3/b,H3FB Gene histone cluster 1, H3d Description: Omim ID: 602811 Gene Ontology: Hyperlink Gene Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes.
    [Show full text]
  • A Mutation in Histone H2B Represents a New Class of Oncogenic Driver
    Published OnlineFirst July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 RESEARCH ARTICLE A Mutation in Histone H2B Represents a New Class of Oncogenic Driver Richard L. Bennett1, Aditya Bele1, Eliza C. Small2, Christine M. Will2, Behnam Nabet3, Jon A. Oyer2, Xiaoxiao Huang1,4, Rajarshi P. Ghosh5, Adrian T. Grzybowski6, Tao Yu7, Qiao Zhang8, Alberto Riva9, Tanmay P. Lele8, George C. Schatz4, Neil L. Kelleher4, Alexander J. Ruthenburg6, Jan Liphardt5, and Jonathan D. Licht1 Downloaded from cancerdiscovery.aacrjournals.org on September 30, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 ABSTRACT By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when recon- stituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to pro- mote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements.
    [Show full text]
  • TRIM11 Locus Modifies PSP Phenotype
    Variation at the TRIM11 locus modifies Progressive Supranuclear Palsy phenotype Article (Accepted Version) Jabbari, Edwin, Woodside, John, Tan, Manueal M X, Shoai, Maryam, Pittman, Alan, Ferrari, Raffaele, Mok, Kin Y, Zhang, David, Reynolds, Regina H, de Silva, Rohan, Grimm, Max-Joseph, Respondek, Gesine, Müller, Ulrich, Al-Sarraj, Safa, Gentleman, Stephen M et al. (2019) Variation at the TRIM11 locus modifies Progressive Supranuclear Palsy phenotype. Annals of Neurology, 84 (4). pp. 485-496. ISSN 0364-5134 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/77646/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
    [Show full text]
  • H3FA (HIST1H3A) Rabbit Polyclonal Antibody – TA347176 | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA347176 H3FA (HIST1H3A) Rabbit Polyclonal Antibody Product data: Product Type: Primary Antibodies Applications: Dot, ELISA, WB Recommended Dilution: ChIP (1 - 5 µl/ChIP); ELISA (1:100 ?? 1:1,000); Dot blotting (1:1,000); Western blotting (1:250) Reactivity: Human Host: Rabbit Isotype: IgG Clonality: Polyclonal Immunogen: The immunogen for anti-H3 pan antibody: histone H3, using two KLH-conjugated synthetic peptides containing an unmodified sequence from the central part and from the C-terminus of the protein. Concentration: lot specific Purification: Whole antiserum from rabbit containing 0.05% azide. Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Gene Name: histone cluster 1, H3a Database Link: NP_003520 Entrez Gene 8350 Human P68431 Background: Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histones play a central role in the regulation of transcription, DNA repair, DNA replication and chromosomal stability. These different functions are established via a complex set of post-translational modifications which either directly or indirectly alter chromatin structure and DNA accessibility to facilitate transcriptional activation or repression or other nuclear processes.
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]