Sodium Hexametaphosphate from China

Total Page:16

File Type:pdf, Size:1020Kb

Sodium Hexametaphosphate from China Sodium Hexametaphosphate From China Investigation No. 731-TA-1110 (Final) Publication 3984 March 2008 Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Daniel R. Pearson, Chairman Shara L. Aranoff, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Robert A. Rogowsky Director of Operations Staff assigned Debra Baker, Investigator Philip Stone, Industry Analyst Craig Thomsen, Economist John Ascienzo, Auditor Robin Turner, Attorney Mara Alexander, Statistician George Deyman, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Sodium Hexametaphosphate From China Investigation No. 731-TA-1110 (Final) Publication 3984 March 2008 CONTENTS Page Determination................................................................... 1 Views of the Commission ......................................................... 3 Part I: Introduction .............................................................. I-1 Background .................................................................. I-1 Organization of the report....................................................... I-1 Summary data................................................................ I-2 Previous and related investigations................................................ I-3 Nature and extent of sales at LTFV ............................................... I-3 The subject product ............................................................ I-4 Definition of the subject product ............................................... I-4 U.S. tariff treatment......................................................... I-5 The domestic like product ....................................................... I-6 Description and uses ........................................................ I-7 Production process .......................................................... I-11 Data on product types .......................................................... I-12 Part II: Conditions of competition in the U.S. market ................................... II-1 Channels of distribution........................................................ II-1 Lead times................................................................ II-1 Internet sales .............................................................. II-1 Market segments.............................................................. II-1 Supply and demand considerations ................................................ II-3 U.S. supply ............................................................... II-3 U.S. demand .............................................................. II-4 Cost share ................................................................ II-5 Qualification/certification.................................................... II-5 Substitute products ......................................................... II-6 Substitutability issues .......................................................... II-7 Factors affecting purchasing decisions .......................................... II-7 Comparisons of domestic products, subject imports, and nonsubject imports ............ II-9 Elasticity estimates............................................................ II-13 U.S. supply elasticity ........................................................ II-13 U.S. demand elasticity....................................................... II-13 Substitution elasticity ....................................................... II-14 Part III: U.S. producers’ production, shipments, and employment .......................... III-1 U.S. producers ............................................................... III-1 U.S. producers’ imports and purchases ............................................. III-3 U.S. producers’ capacity, production, and capacity utilization .......................... III-3 U.S. producers’ shipments ...................................................... III-4 U.S. producers’ inventories ..................................................... III-5 U.S. producers’ employment, wages, and productivity ................................ III-5 Continued. i CONTENTS–Continued Page Part IV: U.S. imports, apparent consumption, and market shares........................... IV-1 U.S. importers................................................................ IV-1 U.S. imports ................................................................. IV-1 Calculation of U.S. imports................................................... IV-1 U.S. import trends.......................................................... IV-6 The question of negligible imports ............................................. IV-7 Apparent U.S. consumption and U.S. market shares .................................. IV-7 Part V: Pricing and related information .............................................. V-1 Factors affecting prices......................................................... V-1 Raw material costs.......................................................... V-1 Tariffs and transportation costs................................................ V-1 Exchange rates............................................................. V-1 Pricing practices.............................................................. V-2 Pricing methods ............................................................ V-2 Sales terms and discounts .................................................... V-3 Price leadership............................................................ V-3 Price data ................................................................... V-4 Price trends ............................................................... V-4 Price comparisons .......................................................... V-7 Lost sales and lost revenues ..................................................... V-7 Part VI: Financial experience of U.S. producers........................................ VI-1 Background .................................................................. VI-1 Operations on SHMP .......................................................... VI-1 Capital expenditures and research and development expenses ........................... VI-4 Assets and return on investment .................................................. VI-4 Capital and investment......................................................... VI-4 Part VII: Threat considerations and Bratsk information.................................. VII-1 Overview of data collection ..................................................... VII-1 Summary of data provided...................................................... VII-1 The industry in China .......................................................... VII-2 Importers’ U.S. inventories...................................................... VII-5 Information on nonsubject sources ................................................ VII-6 Bratsk considerations........................................................ VII-6 Nonsubject manufacturers.................................................... VII-7 Appendices A. Federal Register notices ...................................................... A-1 B. Hearing witnesses ........................................................... B-1 C. Summary data .............................................................. C-1 D. Information on prices of SHMP from nonsubject countries ........................... D-1 E. Questionnaire data on the nonsubject SHMP industries in France and Germany ........... E-1 Note.--Information that would reveal confidential operations of individual concerns may not be published and therefore has been deleted from this report. Such deletions are indicated by asterisks. ii UNITED STATES INTERNATIONAL TRADE COMMISSION Washington, DC 20436 Investigation No. 731-TA-1110 (Final) SODIUM HEXAMETAPHOSPHATE FROM CHINA DETERMINATION On the basis of the record1 developed in the subject investigation, the United States International Trade Commission (Commission) determines, pursuant to section 735(b) of the Tariff Act of 1930 (19 U.S.C. § 1673d(b)) (the Act), that an industry in the United States is materially injured by reason of imports from China of sodium hexametaphosphate, provided for in subheadings 2835.39.50 and 3824.90.39 of the Harmonized Tariff Schedule of the United States, that have been found by the Department of Commerce (Commerce) to be sold in the United States at less than fair value (LTFV).2 BACKGROUND The Commission instituted this investigation effective February 8, 2007, following receipt of a petition filed with the Commission and Commerce by ICL Performance Products, LP, St. Louis, MO, and Innophos, Inc., Cranbury, NJ. The final phase of the investigation was scheduled by the Commission following notification of a preliminary determination by Commerce that imports of sodium hexametaphosphate from China were being sold at LTFV within the meaning of section 733(b) of the Act (19 U.S.C. § 1673b(b)). Notice of the scheduling of the final phase of the Commission’s investigation and of a public hearing to be held in connection therewith was given by posting copies of the notice in the Office of the Secretary, U.S. International Trade Commission, Washington, DC, and by publishing the notice in the Federal Register of October 31, 2007 (72 FR 61677). The hearing was held in Washington, DC, on January 24, 2008, and all persons who
Recommended publications
  • Planning for Seafood Freezing
    TTTTTTTTTTT Planning for Seafood Freezing Edward KOLBE Donald KRAMER MAB-60 2007 Alaska Sea Grant College Program University of Alaska Fairbanks Fairbanks, Alaska 99775-5040 (888) 789-0090 Fax (907) 474-6285 www.alaskaseagrant.org TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT Elmer E. Rasmuson Library Cataloging-in-Publication Data: Kolbe, Edward. Planning for seafood freezing ⁄ Edward Kolbe and Donald Kramer. – Fairbanks, Alaska : Alaska Sea Grant College Program, University of Alaska Fairbanks, 2007 126 p. : 51 ill. ; cm. (Alaska Sea Grant College Program, University of Alaska Fairbanks ; MAB-60) Includes bibliographical references and index. 1. Frozen seafood—Preservation—Handbooks, manuals, etc. 2. Seafood— Preservation—Handbooks, manuals, etc. 3. Cold storage—Planning—Handbooks, manuals, etc. 4. Fishery management—Handbooks, manuals, etc. 5. Refrigeration and refrigeration machinery—Handbooks, manuals, etc. 6. Frozen fishery products—Handbooks, manuals, etc. I. Title. II. Kramer, Donald E. III. Series: Alaska Sea Grant College Program ; MAB-60. SH336.F7 K65 2007 ISBN 1-56612-119-1 Credits The work for this book was funded in part by the NOAA Office of Sea Grant, U.S. Department of Commerce, under grants NA76RG0476 (OSU), NA86RG0050 (UAF), and NA76RG0119 (UW); projects A/ESG-3 (OSU), A/151-01 (UAF), and A/FP-7 (UW), and by appropriations made by the Oregon, Alaska, and Washington state legislatures. Publishing is supported by grant NA06OAR4170013, project A/161-01. Sea Grant is a unique partnership with public and private sectors, combining research, education, and technology transfer for public service. This national network of universities meets the changing environmental and economic needs of people in our coastal, ocean, and Great Lakes regions.
    [Show full text]
  • General Properties of the Alkaline Phosphates: - Major Food and Technical Applications
    Phosphorus Research Bulletin Vol. 15 (2004) p. 85-94 General Properties of the Alkaline Phosphates: - Major Food and Technical Applications P.HOURANT Deputy Business Line Manager, Prayon S.A., Business Unit Phosphates, Rue Joseph Wauters, 144 4480 Engis, Belgium; E-mail: [email protected] INTRODUCTION The alkaline phosphates are used for many food and technical applications. Phosphates have two characteristics that explain their four main properties: buffer agent, sequestering power, dispersing power and water holding capability. Those properties allow phosphates to be used in many food and technical applications. The main food applications are meat and seafood processing, baking and processed cheese, but others such as cereals, French fries, fruits and vegetables, beverages, noodles and so on also may need the use of phosphates. On the technical side, the main applications are the detergent products, the water treatment and the metal treatment. As for the food, many other applications require phosphates such as ceramics, bone china, paper and paints,... In meat products, phosphates salts interact in a unique way to bind water with proteins and improve the tenderness in meats. Treated products will maintain their juicy appearance as well as their natural nutritional properties texture and colour. In fish and seafood products, phosphates salts allow the retention of the natural juices of frozen fish fillets, prawns, shrimps, scallops and other seafood. Phosphates also help prevent the build-up of struvite crystals in tinned tuna and crabmeat. In processed cheese, phosphates are crucially important in the production of processed cheese. These products ensure a homogeneous and uniform melt of raw cheese and product stability.
    [Show full text]
  • Vipel® Chemical Resistance Guide
    Vipel® Chemical Resistance Guide CORROSION RESISTANT RESINS FOR THE HARSHEST ENVIRONMENTS The Right Chemistry for the Harshest Environments – AOC is leading the composites industry in the fight against damaging and costly corrosion. Our Vipel corrosion-resistant resins set the global standard for proven performance in a wide range of fibre-reinforced polymer (FRP) applications, including pipes, tanks, water and wastewater treatment, chemical processing, pulp and paper, mining and power generation. With unparalleled strength and durability, AOC resins combat corrosion in even the harshest conditions. 2 INTRODUCTION TO CORROSION RESISTANT RESINS Selecting a Resin System • Length of exposure to the medium if less than continuous. For example, the laminate may need to This guide is designed to assist fabricators of FRP withstand only occasional splashes of exposure. components in selecting the appropriate resin for parts which will be exposed to highly corrosive environments. • Process description, where a reaction such as The data presented is the result of years of extensive neutralization takes place in the tank. laboratory testing and actual field exposure in North • Fire retardancy, where applicable, including flame America and Europe. spread rating and smoke requirements. Resin system selection is determined by the chemical service and environment to which the equipment will Sorting Out the Details be exposed, end-user specifications and preferences, Normally a suitable resin can be selected from the or fabricator recommendation. AOC Corrosion advisors Chemical Resistance Guide based on the information in also are available any time to answer questions. the “Gathering Data” section above. A few comments on information featured in this guide should be noted: Users frequently specify the resin system and laminate construction for particular applications.
    [Show full text]
  • Sodium Acid Pyrophosphate (SAPP)
    Sodium Acid Pyrophosphate (SAPP) Sodium acid pyrophosphate (Disodium pyrophosphate) is a buffering and chelating agent, with many food and industrial uses. It is polyvalent, and acts as a Lewis base, so is effective at binding polyvalent cations. It is manufactured by the reaction of sodium carbonate withphosphoric acid. followed by heating of the resulting sodium phosphate to 220 degrees Celsius. Specification: Trisodium Phosphate Anhydrous Identifiers SKU: D9028 Items Spec Food Grade Industrial Grade CAS number: 7758-16-9 HS Code: 2835.22.0000 Purity (as Na2H2P2O7) % ≥ 95 95 Properties % ≤ 0.002 Heavy Metal (as Pb) Molecular formula: Na2H2P2O7 Molar Mass: Arsenic (as) % ≤ 0.0003 221.94g/mol Fluoride (as F) % ≤ 0.005 Density: 1.1-1.3g/cm3 Melting Point: >600 °C 3.5-4.5 3.5-4.5 PH (1% aqueous solution) Appearance: white powder Solubility in Water: Water Insoluble % ≤ 1.0 1.0 11.9 g/100 mL (20°C ) Standard GB 2928-1999 HG 2928-1999 Protection Do not ingest. Do not breathe dust. In case of insufficient ventilation, wear suitable respiratory equipment If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents, acids. Packing and Storage In double layer bags of net weight of 25 Kg or 50 Kg, store at a cool, dry and well ventilated place. Applications Food uses Sodium acid pyrophosphate is a GRAS substance for food use. It is used in canned seafood to maintain color and reduce purge[clarification needed] during retorting. Retorting achieves microbial stability with heat.
    [Show full text]
  • 301 Retaliation List
    . China 301 List 3.4 | Released Aug. 3, 2018 | Finalized Sept. 18, 2018 | Amended May 13, 2019 | Effective Sept. 24, 2018 Note Tariff was 5% Prior to February 14, 2020 Additional Item HS Codes Product Name Tariffs (%) 1 28042900 Other rare gases 5% 2 28043000 nitrogen 5% 3 28044000 Oxygen 5% 4 28046117 Single crystal silicon rods with diameter ≥30cm for the electronics industry 5% 5 28051100 sodium 5% 6 28051910 Lithium 5% 7 28051990 Other alkali or alkalineearth metals 5% 8 28053012 Dysprosium, not intermixed or interalloyed 5% 9 28053014 Lanthanum, not intermixed or interalloyed 5% 10 28053015 Cerium 5% 11 28053017 Yttrium metal, not intermixed or interalloyed 5% 12 28053019 Other rareearth metal, not intermixed or interalloyed 5% 13 28091000 Phosphorus pentoxide 5% 14 28092090 Other polyphosphoric acids 5% 15 28100010 Oxides of boron 5% 16 28112210 Silicon gel of silicon dioxide 5% 17 28121200 Phosphorus oxychloride(phosphoryl monochloride, phosphorus oxytrichloride) 5% 18 28129019 Chlorine trifluoride, arsenic trifluoride, sulfuryl fluoride and other fluorides and oxyfluorides 5% 19 28129090 Arsenic tribromide, arsenic triiodide, other nonmetallic halides and oxyhalides 5% 20 28152000 Potassium hydroxide(caustic potash) 5% 21 28164000 Oxides, hydroxides and peroxides, of strontium or barium 5% 22 28191000 Chromium trioxide 5% 23 28201000 Manganese dioxide 5% 24 28249090 Other lead oxides 5% 25 28255000 Copper oxides and hydroxides 5% 26 28256000 Germanium oxides and zirconium dioxide 5% 27 28273100 Magnesium chloride 5% 28 28273990 Other chloride 5% [email protected] | www.strtrade.com Page 1 . Compilation Copyright © 2020 Sandler, Travis & Rosenberg, P.A. All rights reserved Updated 11/23/20 .
    [Show full text]
  • Phosphates and Phosphoric Acid in Everyday Life
    Detergents Metal treatment Fertilisers Water treatment Phosphates and phosphoric acid in everyday life Products to meet everyday needs PRAYON, a long tradition in the chemical industry Prayon was founded in 1982, but its roots reach back more than 100 years to the Liège region of Belgium. It is the parent company of the Prayon Group, a world leader in producing phosphate chemicals (fertilisers, detergents, food additives and technical applications) and developing inorganic chemical specialities. The Group’s expertise in the wet process production of phosphoric acid is acknowledged and utilised worldwide, including by its competitors. Currently, some 50% of phosphoric acid production sites use Prayon technology and 70% use Prayon equipment. Jointly owned by Office Chérifien des Phosphates (OCP) and Société Régionale d’Investissement de Wallonie (SRIW), the Group consists of over 20 companies located in more than 10 countries. It employs 1,450 people and generates a turnover of €500 million. Prayon boasts worldwide coverage via its production sites in Europe (Belgium and France), the Americas (USA, Brazil) and Africa (Morocco). The Group markets its products in more than 70 countries on five continents, an international presence that reinforces its position as a global player. PRAYON AND TECHNICAL PHOSPHATES Prayon markets the following major groups of phosphate products used in technical applications: • PURIFIED PHOSPHORIC ACID: produced using Prayon’s own solvent extraction process. Available in different grades and concentrations, this acid is used in a wide range of technical and food applications. Production sites: • Engis and Puurs (Belgium): 250,000 tonnes of P2O5 per year • Jorf-Lasfar (Morocco), via Emaphos, a joint venture between Prayon (33%), OCP (33%) and CFB (Chemische Fabrik Budenheim) (33%): 150,000 tonnes of P2O5 per year • Phosphate salts: sodium, potassium, calcium, ammonium and aluminium phosphates, and a wide variety of special blends based on these products.
    [Show full text]
  • Minerals Engineering 125 (2018) 10–14
    Minerals Engineering 125 (2018) 10–14 Contents lists available at ScienceDirect Minerals Engineering journal homepage: www.elsevier.com/locate/mineng Sodium hexametaphosphate and sodium silicate as dispersants to reduce the T negative effect of kaolinite on the flotation of chalcopyrite in seawater ⁎ Andres Ramirezb, Ailynne Rojasa, Leopoldo Gutierreza, , Janusz S. Laskowskic a Department of Metallurgical Engineering, University of Concepcion, Chile b Water Research Centre for Agriculture and Mining (CRHIAM), University of Concepcion, Chile c N.B. Keevil Institute of Mining Engineering, University of British Columbia, Canada ARTICLE INFO ABSTRACT Keywords: The interactions between chalcopyrite and kaolinites of different crystallinity, over the pH range from 7 to 12, Froth flotation are studied. The tests were carried out in seawater, and in a 0.01 M NaCl solution. The effect of the dispersants, Chalcopyrite flotation sodium hexametaphosphate (SHMP) and sodium silicate (SS) was evaluated. The results show that both tested Clay minerals dispersants are able to restore chalcopyrite flotation in the presence of kaolinite in seawater over the pH range Kaolinite from 7 to 11. Seawater flotation Slime coating Dispersants 1. Introduction on flotation of chalcopyrite was studied at different pH values, and in fresh and seawater. The results indicated that in seawater the depres- Depletion of major copper deposits forces mining industry to rely sing effect of kaolinite becomes significantly more pronounced above more on the ore bodies of progressively lower content of valuable pH 9. Experiments that were performed using solutions containing in- components. Currently more complex and finely disseminated ores are dividual cations showed that the depressing action of kaolinite in the processed in Chile.
    [Show full text]
  • Effects of Sodium Hexametaphosphate Addition On
    materials Article Effects of Sodium Hexametaphosphate Addition on the Dispersion and Hydration of Pure Calcium Aluminate Cement Benjun Cheng 1, Can Yao 1 , Jian Xiong 1, Xueyin Liu 2, Haijun Zhang 3,* and Shaowei Zhang 4,* 1 School of Energy Science and Engineering, Central South University, Changsha 410083, China; [email protected] (B.C.); [email protected] (C.Y.); [email protected] (J.X.) 2 College of Civil Engineering and Architecture, Quzhou University, Quzhou 324000, China; [email protected] 3 The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China 4 College of Engineering, Mathematics and Physical Science, Exeter University, Exeter EX4 4QF, UK * Correspondence: [email protected] (H.Z.); [email protected] (S.Z.); Tel.: +86-1569-718-1003 (H.Z.); +86-1300-712-2491 (S.Z.) Received: 2 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: The effects of sodium hexametaphosphate (SHMP) addition on the dispersion and hydration of calcium aluminate cement were investigated, and the relevant mechanisms discussed. The content of SHMP and the adsorption capacity of SHMP on the surface of cement particles were estimated using plasma adsorption spectroscopy and the residual concentration method. The rheological behavior of hydrate, ζ-potential value of cement particles, phase transformation and the microstructure of the samples were determined by coaxial cylinder rheometer, zeta probe, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that SHMP readily reacted with 2+ 2 Ca , forming complexes [Ca2(PO3)6] − ions which were subsequently adsorbed onto the surfaces of cement particles.
    [Show full text]
  • April 2021 International Trade Compliance Update
    International Trade Compliance Update (Covering Customs and Other Import Requirements, Export Controls and Sanc- tions, Trade Remedies, WTO and Anti-Corruption) Newsletter | April 2021 In This Issue: World Trade Organization (WTO) World Customs Organization (WCO) Other International Matters The Americas - North America The Americas - South America Please see our Webinars, Meetings, Seminars section for information for Asia-Pacific links to the webinars in our 18th annual Global Trade and Supply Chain Europe, Middle East and North Africa Webinar Series: “International Trade & Developments in a World Fo- cused on Recovery & Renewal,” which just began, as well as links to addi- Africa (except North Africa) tional webinars and other events. Newsletters, reports, articles, etc. There are also links to the video recordings, PowerPoints and handout materi- Webinars, Meetings, Seminars, etc. als of the WTO Cov id-19 Notifications 2020-2021 Asia Pacific International Commercial and Trade Webi- WTO TBT Notifications nar Series CBP Rulings: Downloads and Searches 2020 Virtual Trade Conference (July 14-16 2020) CBP Rulings: Rev ocations or Modifi- 2020 Virtual Year-End Review of Import/Export Developments cations European Classification Regulations 2020 Global Trade and Supply Chain Webinar Series: Interna- Amendments to the CN Explanatory tional Trade Basics and Trends Notes To keep abreast of international trade-related news, visit our blogs: Section 337 Actions For International Trade Compliance Updates, please regularly visit Antidumping, Counterv ailing Duty https://www.internationaltradecomplianceupdate.com/. and Safeguard Inv estigations, Or- ders & Reviews For additional articles and updates on trade sanctions and export controls, please visit: http://sanctionsnews.bakermckenzie.com/ regularly. For resources and news regarding international trade, particularly in Asia, please visit our Trade Crossroads blog at http://tradeblog.bakermckenzie.com/.
    [Show full text]
  • Sodium Hexametaphosphate from China
    CONTENTS Page Determination ................................................................................................................................. 1 Views of the Commission ............................................................................................................... 3 Information obtained in this review ..................................................................................... I-1 Background ................................................................................................................................ I-1 Responses to the Commission’s Notice of Institution .............................................................. I-1 Individual responses .............................................................................................................. I-1 Party comments on adequacy ............................................................................................... I-2 The original investigation and subsequent reviews .................................................................. I-3 The original investigation ...................................................................................................... I-3 The first five-year review ....................................................................................................... I-3 Previous and related investigations .......................................................................................... I-3 Actions at Commerce ...............................................................................................................
    [Show full text]
  • List of Designated Food Additives
    The Japan Food chemical Research Faundation List of Designated Food Additives The substances below are the designated food additives appearing in Appended Table 1, as mentioned in Article 12 of the Enforcement Regulations under the Food Sanitation Law. These additives are listed here in alphabetical order. They are 472 in total as of January 15, 2021. The number preceding the name of each additive is the sequence number given to the corresponding additive in the original Japanese table.The names of the substances are translated by the Foundation from the Japanese original. 16 Acesulfame Potassium(Acesulfame K) 20 Acetaldehyde 332 Glacial Acetic Acid 23 Acetone 22 Acetophenone 17 Acetylated Distarch Adipate 19 Acetylated Distarch Phosphate 18 Acetylated Oxidized Starch 5 Adipic Acid 26 Advantame 32 DL-Alanine 196 Aliphatic Higher Alcohols 197 Aliphatic Higher Aldehydes (except those generally recognized as highly toxic) 198 Aliphatic Higher Hydrocarbons (except those generally recognized as highly toxic) 183 Allyl Cyclohexylpropionate 377 Allyl Hexanoate (Allyl Caproate) 55 Allyl Isothiocyanate (Volatile Oil of Mustard) 446 Aluminum Ammonium Sulfate (Crystal: Ammonium Alum, Dried: Burnt Ammonium Alum) 447 Aluminum Potassium Sulfate (Crystal: Alum or Potassium Alum, Dried: Burnt Alum) 29 (3-Amino-3-carboxypropyl)dimethylsulfonium Chloride 45 Ammonia 36 Ammonium Alginate 248 Ammonium Bicarbonate (Ammonium Hydrogen Carbonate) 245 Ammonium Carbonate 85 Ammonium Chloride 463 Ammonium Dihydrogen Phosphate (Ammonium Phosphate, Monobasic) 33 Ammonium
    [Show full text]
  • Rev. 24A Table 2: Pacs by Chemical Name
    Table 2: Protective Action Criteria (PAC) Rev 24A based on applicable 60-minute AEGLs, ERPGs, or TEELs (Chemicals listed in alphabetical order) PAC Rev 24A – May 2009 Table 2 presents an alphabetical listing of the chemicals in the PAC data set and provides the Chemical Abstract Service Registry Numbers (CASRNs), PAC data, and technical comments focusing on changes in the PAC values since the previous version of the PAC/TEEL data set (Rev 23). PAC values are provided for TEEL-0, PAC-1, PAC-2, and PAC-3. Values are given in parts per million (ppm) for gases and volatile liquids and in milligrams per cubic meter (mg/m3) for particulate materials (aerosols) and nonvolatile liquids. The columns presented in Table 2 provide the following information: Heading Definition No. The ordered numbering of the chemicals as they appear in this alphabetical listing. Chemical The common name of the chemical. Name CASRN The Chemical Abstract Service Registry Number for this chemical. TEEL-0 This is the threshold concentration below which most people will experience no appreciable risk of health effects. This PAC is always based on TEEL-0 because AEGL-0 or ERPG-0 values do not exist. PAC-1 Based on the applicable AEGL-1, ERPG-1, or TEEL-1 value. PAC-2 Based on the applicable AEGL-2, ERPG-2, or TEEL-2 value. PAC-3 Based on the applicable AEGL-3, ERPG-3, or TEEL-3 value. Units The units for the PAC values (ppm or mg/m3). Comments and Technical comments by the developers of the PAC data set.
    [Show full text]