TurkJBiol 25(2001)405-418 ©TÜB‹TAK

Pulsed-FieldElectrophoresis(PFGE)Technique anditsuseinMolecularBiology

Esin(HACIO⁄LU)BASIM SüleymanDemirelUniversity,FacultyofAgriculture,DepartmentofPlantProtection, 32260Çünür,Isparta-TURKEY HüseyinBASIM AkdenizUniversity,FacultyofAgriculture,DepartmentofPlantProtection, 07058,Antalya-TURKEY

Received:30.06.2000

Abstract: Inrecentyears,theuseofpulsed-fieldgelelectrophoresis(PFGE)inthemolecularbiology areahasbeensubjecttomuchresearch.PFGEisapowerfultoolforcharacterizingvariousstrainsat theDNAlevel,obtainingrelevantinformationongenomesizeandconstructingthephysicaland geneticmapofthechromosomeofbacteriathatarepoorlyunderstoodatthegeneticlevelaswellas inseparatingchromosomesinmicroorganisms,andinthelong-rangemappingofmammaliangenes. PFGEalsohasadvantageofexaminingtheelongatedandorientedconfigurationoflargeDNA moleculesinatfinitefieldstrengths.Inthisreview,theuseofPFGEinmolecularbiology, thegeneralcharacteristicsofPFGE,differenttypesofPFGEandfactorsaffectingPFGEare introduced.

KeyWords: Pulsed-FieldGelElectrophoresis(PFGE),CHEF,MolecularBiology,, RestrictionEnzymes. Pulsed-FieldJelElektroforez(PFGE)Tekni¤iveMolekülerBiyoloji Alan›ndaKullan›m›

Özet: Sony›llarda,molekülerbiyolojialan›ndapulsed-fieldjelelektroforez(PFGE)’inkullan›m›birçok araflt›rmayakonuolmufltur.PFGE,DNAdüzeyindeçeflitlistrainlerinkarakterizeedilmesinde,genom büyüklüklerihakk›ndabilgieldeetmede,genetikdüzeydeanlafl›lamam›flbakterikromozomlar›n›n fizikivegenetikharitalar›n›noluflturulmas›nda,mikroorganizmalar›nkromozomlar›n›nayr›lmas›nda, vememeligenlerininbüyükçaptakiharitalanmas›ndakullan›lanetkilibirmetottur.PFGE;agarozjel içerisindekibüyükDNAmoleküllerininuygunbiralandade¤iflikflekillerdehareketetmesinisa¤layan biravantajadasahiptir.Buderlemede,PFGE’inmolekülerbiyolojialan›ndakullan›m›,PFGE’ingenel özellikleri,çeflitlitiplerivePFGE’ietkileyenfaktörlersunulmufltur.

AnahtarSözcükler: Pulsed-FieldJelElektroforez(PFGE),CHEF,MolekülerBiyoloji,Biyoteknoloji, RestriksiyonEnzimler

405 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology

Introduction Muchoftherapidprogressthatisbeingmadeinmolecularbiologytodaydependsuponthe abilitytoseparate,sizeandvisualizeDNAmolecules.Themostcommontechniqueforthis purposeisthatofstandardagarosegelelectrophoresis.Gelelectrophoresis(1)isoneofthe mostcommonlyusedseparationtechniquesinthemodernbiologylaboratory.Itsubiquity arisesfromboththesimplicityandversatilityofthetechnique.Electrophoresishasfound widespreaduseinbiologicalassays,andinthepurificationandseparationofand nucleicacids.ThephysicalmappingofgenesandDNAsequencingbothdependonseparation bygelelectrophoresis(1).ConventionalgelelectrophoresisofDNAmoleculesiscarriedoutby placingDNAinasolidmatrix(i.e.agaroseorpolyacrylamide)andinducingthemoleculesto migratethroughthegelunderastaticelectricfield.DNAfragmentsfrom100to200basepairs (bp)upto50kilobasepairs(kb)areroutinelyseparatedbyconventionalgelelectrophoresis techniques.Above50kb,becauseofthesizeofthemolecules,thesievingactionofthegelis lost,andfragmentsrunasabroad,unresolvedbandwithanomalouslyhighmobility.Although largerfragments(upto750kb)havebeenresolvedbythistechnique(2),thegelsusedare extremelyfragileduetotheverylowagaroseconcentrations,andtheseparationisnot adequateformostapplications.TheseparationofDNAmoleculesbyothertechniquesistime- consuming.TheneedfortheanalysisoflargeDNAmoleculesisinlarge-scalemapping(3). In1982,Schwartzetal.(4)introducedtheconceptthatDNAmoleculeslargerthan50kb canbeseparatedbyusingtwoalternatingelectricfields(i.e.PFGE).Sincethattime,anumber ofinstrumentsbasedonthisprinciplehavebeendeveloped,andthevalueofusingpulsedfields hasbeendemonstratedforseparatingfromafewkbtoover10megabasepairs(Mb). ThedevelopmentofPFGEhasincreasedbytwoordersofmagnitudethesizeofDNA moleculesthatcanberoutinelyfractionatedandanalyzed.Thisincreaseisofmajorimportance inmolecularbiologybecauseitsimplifiesmanypreviouslylaboriousinvestigationsandmakes possiblemanynewones.Itsrangeofapplicationspansallorganisms(2)frombacteriaand virusestomammals(5).PFGEhasshownexcellentabilitytoseparatesmall,naturallinear chromosomalDNAsranginginsizefrom50-kbparasitemicrochromosomestomultimillion-bp yeastchromosomes.However,intacthumanchromosomesrangeinsizefrom50millionto 250millionbp(Mb),toolargefordirectPFGEseparations(6).PFGEprovidesthemeansfor theroutineseparationoffragmentsexceeding6,000kb(2,7,8,9).Therefore,PFGE separatesDNAsfromafewkilobase(kb)toover10megabasepairs(Mb)(10). ThenewtechniqueofPFGEtakesadvantageoftheelongatedandorientedconfigurationof largeDNAmoleculesinagarosegelsatfinitefieldstrengths.Animportantbonusofthis techniqueistheeasewithwhichthegenomesizecanbemeasured,aparameterthatwas previouslysubjecttoconsiderableerrorwhenmeasuredbyothertechniques.Oneimportant outcomeoftheuseofPFGEandrestrictionendonucleasedigestionistheconstructionofa physicalmap.GeneralapplicationsofPFGEcanbeintheseparationofwholechromosomes,

406 E.(HACIO⁄LU)BASIM,H. BASIM thelarge-scalerestrictionmappingofchromosomeregionsandinusingDNAfragment purificationasanaidincloning.PFGEwillgreatlyfacilitatethepreciseselectionofverylarge fragmentsforcloning,anditprovidesrapidanalysisofalargechromosomalregion.PFGEhas provenextremelypowerfulintheanalysisoflargeDNAmoleculesfromavarietyofsources, includingspecificallyfragmentedgenomesofbacteria(11),mammals(5),parasiteprotozoa (12-15)andintactchromosomalDNAsfromfungi(16-18).TheintroductionofPFGE techniquesforseparatinglargeDNAmoleculeshashadaninvigoratingeffectonthestudyof chromosomalDNAmolecules,genomestructureandelectrophoreticaltheory. Inthisreview,theuseofPFGEinmolecularbiologythegeneralcharacteristicsofPFGE, differenttypesofPFGEandfactorsaffectingPFGEareintroduced.

TypesofPFGE PFGEsizeresolvesDNAmoleculesofalmostamillimeterinlengththroughtheuseof pulsed-fieldelectricfields,whichselectivelymodulatemobilitiesinasize-dependentfashion. Thepulsedelectrophoresiseffecthasbeenutilizedbyavarietyofinstruments(FIGE,TAFE, CHEF,OFAGE,PACEandrotatingelectrodegel)toincreasethesizeresolutionofbothlarge andsmallDNAmolecules(1).ItisimportantwhenchoosingaPFGEsystemtoevaluatecost andperformanceinthelightofprojecteduse.TherearedifferenttypesofPFGE.Theseare: 1.Field-InversionGelElectrophoresis(FIGE):In1986,Carle,FrankandOlsondeveloped asimplersystem,FIGE,inwhichthetwofieldswere180°apart(19).Electrodepolaritywas reversedatintervals,withalongerforwardthanreversepulsetimetogenerateanetforward samplemigration.Netforwardmigrationisachievedbyincreasingtheratioofforwardto reversepulsetimesto3:1.ToimprovetheresolutionofthebandsbyFIGE,thedurationof pulsetimesisincreasedprogressivelyduringarun.Thisiscalled“switchtimeramping”.By changingpulsedurationscontinuallyduringthecourseofanexperiment,FIGEhasthe advantagesofstraightlanesandsimpleequipment.Allthatisneededarestandardgelboxes andapulsecontroller.Today,FIGEisverypopularforsmallerfragmentseparations.FIGE providesacceptableresolutionupto800kilobases(600-750kb). 2.Transverse-AlternatingFieldGelElectrophoresis(TAFE): ThisformofPFGEallows separationoflargeDNAfragmentsinasimple,convenientformatwithoutthedrawbacksof earlierpulsed-fieldtechniques.InTAFE,thegelisorientedverticallyandasimplefour-electrode arrayisplacednotintheplaneofthegel,butinfrontandatthebackofit.Samplemolecules areforcedtozigzagthroughthethicknessofthegel,andalllanesexperiencethesameeffects, sothebandsremainstraight(20).Asthemoleculesmovedownthegel,theyaresubjectedto continualvariationsinfieldstrengthandreorientationangle,buttoalllanesequally.However, theanglebetweentheelectricfieldsvariesfromthetopofthegel(115°)tothebottom (approximately165°)andhencemoleculesstilldonotmoveataconstantvelocityoverthe

407 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology lengthofthegel.TAFEtechnology,withregularandsharpseparationofDNAbands,willbeof specialadvantageinthestudyofgeneticsofmanypathogenicprotozoans,wheresuchanalysis wasimpossiblebefore(20).TAFEhasbeenusedfortheseparationoffragmentsupto1,600 kilobasefragments. 3.Contour-ClampedHomogeneousElectricFields(CHEF):CHEFisthemostwidelyused apparatus.TheCHEFapparatusprovidesamoresophisticatedsolutiontothedistortingeffects ofboththeedgesofthechamberandthepassiveelectrodes.CHEFhastwenty-fourpoint electrodesequallyspacedaroundthehexagonalcontour.IntheCHEFsystem,thereareno “passive”electrodes.Alltheelectrodesareconnectedtothepowersupplyviaanexternalloop ofresistors,allofwhichhavethesameresistance.Thisloopisresponsibleforsettingthe voltagesofalltheelectrodesaroundthehexagonalcontourtovaluesappropriatetothe generationofuniformfieldsineachofthealternateswitchingpositions.TheCHEFsystemsets thevoltagesatthese24points.Thisapparatusproduceselectricfieldsthataresufficiently uniformsothatalllanesofagelrunstraight.CHEFusesanangleofreorientationof120°with gradiationsofelectropotentialradiatingfromthepositivetothenegativepores.Moleculesup to7,000kbcanbeseparatedbyCHEF(10). 4.Orthogonal-FieldAlternationGelElectrophoresis(OFAGE): Asimilarapparatusthat usedtwononhomogeneouselectricfieldswasreportedbyCarleandOlson(17)in1984.The majordrawbacksoftheseapparatuseswerethatbecausetheelectricfieldswerenotuniform, andtheanglebetweentheelectricfieldvariedacrossthegel,DNAmoleculesmigratedat differentratesdependingontheirlocationinthegel.Thisisespeciallyproblematicin mammaliangenomemapping,whereacontinuousdistributionoffragmentsizesisgenerated. Lane-to-lanecomparisionsandsizeestimationsfordigestedgenomicDNAareless straightforwardwhenfewerdiscretebandsarebeingseparated,aswiththechromosomesof lowerorganismslikeyeast.Theanglebetweentheelectricfieldsvariesfromlessthan180°and themorethan90°.DNAmoleculesfrom1,000to2,000kbcanbeseparatedinOFAGE(17, 21). 5.RotatingGelElectrophoresis(RGE): InEnglandin1987,Southern(22)describeda novelPFGEsystemthatrotatesthegelbetweentwosetangleswhiletheelectrodesareoff.In RGE,theelectricfieldisuniformandbandsarestraightbecauseonlyonesetofelectrodesis used.RGEmakesiteasytoperformtimeandvoltageramping.Italsoenablesuserstostudy theeffectsofdifferentangles,andeventovarythese,duringanexperiment-angleramping. RGEusesasinglehomogeneousfieldandchangestheorientationoftheelectricfieldinrelation tothegelbydiscontinuouslyandperiodicallyrotatingthegel.SwitchtimesaretoolonginRGE. TheDNAmoleculesmigrateinstraightlanes,duetothehomogeneousfields,andDNA moleculesfrom50kbto6,000kbcanbeseparatedbyadjustingthefrequencyofthegel rotation.Inaddition,theangleofreorientationcanbeeasilyalteredsimplybychangingthe angleofrotation(2,23).

408 E.(HACIO⁄LU)BASIM,H. BASIM

6.ProgrammableAutonomously-ControlledElectrodes(PACE): ThePACE electrophoresissystemoffersprecisecontroloverallelectricfieldparametersbythe independentregulationofthevoltageson24electrodesarrangedinaclosedcontour.The flexibilityofthePACEsystemderivesfromitsabilitytogenerateanunlimitednumberof electricfieldsofcontrolledhomogeneity,voltagegradient,orientationandduration.ThePACE systemcanperformallpreviouspulsedfieldswitchingregimens(i.e.FIGE,OFAGE,PHOGE, unidirectionalpulsing),aswellasgeneratevoltageclampedhomogeneousstaticfields.The PACEsystemseparatesDNAfragmentsfrom100bptoover6Mb.Theabilitytoalterthe reorientationanglebetweenthealternatingfieldspermitsanincreasedspeedofseparationfor largeDNAmolecules.Acomputer-drivensystemknownasPACE,designedbyLaietal.(1)may betheultimatePFGEdevice.Itisanextremelyusefultoolforstudyingvariablessuchaspulse time,temperature,agaroseconcentration,voltageandanglesbetweenfieldsaffectingDNA migrationinPFGE(24). 7.Pulsed-HomogeneousOrthogonalFieldGelElectrophoresis(PHOGE): Themajor differencebetweenthisinstrumentandothergelboxeswithhomogeneouselectricfieldsisthat thefieldreorientationangleis90°.PHOGEusesa90°reorientationangle,buttheDNA moleculesundergofourreorientationspercycleinsteadoftwo.TheDNAlanesinPHOGEdo notrunstraight,aphenomenonwhichhasbeendescribedforgelrunsinvolvingmultiple electricfieldsinthismanner.ThissystemseparatesDNAfragmentsofupto1Mb(23).

PFGEEquipment ThebasiccomponentsofaPFGEsystemconsistofagelboxwithsomemeansof temperatureregulation,aswitchingunitforcontrollingtheelectricfields,acoolerandapower supply(1).

GelBox ThebasicdesignofPFGEboxesconsistsofanimmobilizedgelwithinanarrayofelectrodes andameansofcirculatingtheelectrophoresisbuffer.Voltagegradientsof10volts/cmare commonlyusedinPFGE.Voltagegradientsashighas15volts/cmhavebeenusedinfield inversionseparationsofcosmidclones(1).Thetemperatureofthebufferiscontrolledbya heat-exchangemechanism.Generally,thebufferisrecirculatedthroughoutthegelboxusing inletandoutletports(17,24).

HighVoltagePowerSupply PrecisecontroloftheelectricfieldgradientisnecessarytoobtainconsistentPFGE separations.Theoutputratingsofthepowersupplyshouldthereforebehighenoughtomeet

409 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology boththevoltageandcurrentrequirementsofthegelbox.AtypicalPFGEgelboxhaselectrodes thatare25to50cmapart.Toachievethecommonlyusedrangeofvoltagegradientsof1.5 to15volts/cmrequiresapowersupplywithamaximumvoltageratingof750volts.The currentdrawnatthisvoltageinmostPFGEboxesisabout0.5amperesat14°Cusing0.5x TBE(1xTBEis89mMTrispH:7.89mMBoricacidand2mMEDTA)asrunningbuffer(1).

SwitchUnit Theabilitytoreproduciblycontroltheswitchintervaliscriticalfortheseparation(24).The limitedspeedatwhichrelayscanswitchwillnotaccommodatethefastswitchingnecessaryfor thePFGEseparationofsmallDNAmolecules(2-50kb).Therelaysareusuallycontrolledbya computer.Toovercomethedrawbacksofelectromechanicalrelays,high-voltagesolid-state electronicshassupplantedelectromechanicalrelaysinrecentlydesignedcommercialPFGE systems.Theseswitchingunitsarecommonlybasedontheuseofmetaloxidesemiconductor fieldeffecttransistors(MOSFETs)inbothswitchingandelectrodevoltagecontrolcircuits. Thesedesignsoffertheadvantagesofimprovedreliability,thecapabilityofhighspeed switching(0.1ms)andamplevoltage(750V)andcurrent(0.5amperes)ratings(1).These apparatuseshavetheabilitytocontrolthereorientationanglesbetweenelectricfields. However,theseinstrumentscannotprovidefastenoughswitchingfortheimprovementofthe separationofDNAmoleculessmallerthan50kb.

ComputerProgram CarefulcontroloftheswitchintervaliscrucialincontrollingtheresolutioninPFGE.A versatileswitchingunitshouldhavesoftwarewiththesamecharacteristics.Thealgorithm shouldbefastenoughsothatswitchtimesatleastasshortas1mscanbeachievedandswitch intervalincrementsshouldhaveatleast1msresolution.Linearswitchintervalrampinghas beenthemostcommonlyusedprocedurebecauseofitssimpleimplementation.Themaximum runtimeshouldbeabouttwoweekstoallowfortheseparationofverylargeDNAmolecules. Thisiscontrolledbyacomputerprogram(1).

Cooler Bufferrecirculationisanimportantfactor,asiteliminatestemperaturevariationswithinthe gelsoastoalleviatebufferbreakdownduetoelectrolysis.DNAmoleculemigrationissensitive totemperature,andthusauniformtemperatureacrossthegelisneededtoensureeven migrationineachofthelanes.Bufferisrecirculatedthroughthegelchamberbyareciprocating solenoidpumpatarateofabout450ml/min.Thebufferischilledinitsreservoirtankbycold (5°C)circulatedthroughaglasstubingheatexchanger.Buffertemperatureisthus maintainedat13-15°Cthroughoutatypicalrun(17,24).

410 E.(HACIO⁄LU)BASIM,H. BASIM

RunningConditionsforPFGE PFGEseparationsaresensitivetoavarietyofdifferentmolecularandenvironmental variables.TheprinciplesignificantvariablesarethemolecularpropertiesoftheDNA,thepulse time,theelectricalfieldshape,theelectricalfieldstrength,thegelcomposition,thesample concentrationandthetemperature. 1.PulseTime: InPFGE,DNAissubjectedalternatelytotwoelectricalfieldsatdifferent anglesforatimecalledthepulsetime.Themoleculesmustpresumablychangedirectionprior tonettranslationalmotion.Eachtimethefieldisswitched,largermoleculestakelongerto changedirectionandhavelesstimetomoveduringeachpulse,sotheymigrateslowerthan smallermolecules.Moleculessosmallthattheirreorientationtimeisshortcomparedtothe pulsetimewillspendmostofthepulsedurationinconventionalelectrophoreticmotionwhere sizeresolutionisquitelimited.Asaresultofthis,resolutioninPFGEislikelytobeoptimalfor moleculeswithreorientationtimescomparabletothepulsetime.Atappliedfieldstrengthsof about10V/cm,0.1spulsetimesresolveDNAoptimallyinthe5-kbsizerange,whilepulse timesof1,000sat3V/cmareusedtoresolve3-7Mbmolecules.Pulsetimesareselectedso thatDNAmoleculesofatargetedsizespendmostofthedurationofthepulsereorienting ratherthanmovingthroughthegel,whichaccountsforthelongperiodsoftime,usuallydays orweeks,neededtofractionatelargeDNAmolecules.ThechromosomalDNAmoleculesof Saccharomycescerevisiae inthe10Mbrangerequireslangerelectrophoresisofapproximately oneweek(25). 2.ElectricalFieldShape: Anumberofdifferentelectricalfieldconfigurationswere employedinearlyPFGEexperiments.Itwasapparentthatcertainaspectsatthefieldshape werecriticalinachievinghigh-resolutionPFGEseparations.Electricalfieldstrengthcanbe adjustedtotunethesizerangeofeffectivePFGEresolution.TheresolutionofPFGEisaffected bythenumberandconfigurationoftheelectrodesused,becausethesealtertheshapeofthe appliedelectricalfields.Themostcriticalvariableappearstobetheanglebetweenthealternate electricalfields.Themosteffectiveelectrodeconfigurationsyieldanglesofmorethan110°.A continuallyincreasinganglebetweenthefieldsproducesbandsharpeningthatgreatlyenhances theresolution.Theanglebetweenthealternatefieldsisalwaysgreaterthan90°wheregood resolutionisobserved.Incasesofexcellentresolution,fieldanglestypicallyrangefrom120° to150°.Incontrast,wherepoorresolutionwasseen,thefieldanglesrangedtypicallyfrom 110°to150°(25).Anglesof90°orsmallerarenoteffective,probablybecausetheDNA moleculeseasilybecomeorientedmidwaybetweenthetwoappliedfields.Angleslargerthan 90°aremoreeffective(25).Whilemorecompletestudiesonoptimumanglesareneeded,itis clearthatanglesintherangeof120°-150°provideveryhighresolution(25).Fieldstrengths thatdecrease,oranglesthatincrease,progressivelyalongthedirectionofthenetDNAmotion producebandsharpeningbecausethemoleculesatthefrontofeachDNAzonealwaysmigrate moreslowlythanthoseattherear.

411 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology

3.ElectricalFieldStrength: Electrophoreticmobilityisdefinedasthevelocityperunit field.Inmostordinaryelectrophoresis,themobilityisindependentoffieldstrength.This independenceisexpectedifthepropertiesofthemoleculesarenotdirectlyalteredbya separationprocess.Thefieldstrengthaffectsmobilityintwoways.Themobilitiesof100-500 kbDNAshowanapproximatelylineardependenceonfieldstrength.Thefieldstrengthaffects theDNAsizeofthetransitionbetweenthetwozonesofresolution(25). 4.ReorientationAngle: Thewideningofthereorientationangleshouldyieldsharperbands andbetterresolution.Theseparationofyeastchromosomesisnearlyidenticalforthose chromosomesseparatedwithreorientationanglesof110°and165°.However,when reorientationanglesfrom105°to165°areusedtoseparatemoleculesinthesizerangeof S. cerevisiae (200-3,000kb),thereisa4-folddifferenceamongtheDNAvelocitiesobservedwith thesedifferentangles(1).Theincreaseinmobilityobtainedwithsmallerreorientationangles isevenmorepronouncedwhenseparatinglargermolecules.Mostcommerciallyavailable pulsed-fieldgelboxesuseafixedangleof120°betweenthealternatingfields. 5.Voltage: Aswithswitchtime,thechoiceofthevoltageusedinPFGEmustalsobevaried withthesizeoftheDNAtobeseparated.Whilevoltagegradientsof6-10V/cmcanbeusedto separatemoleculesupto1Mb,resolvingmoleculeslargerthanthisinpulsedfieldgelsrequires areductioninvoltagegradient(14,24).SeparationofchromosomesfromtheyeastS.pombe (3Mb,5Mband6Mb)requiresthatvoltagegradientsdonotexceed2V/cm.Theevenlarger chromosomesofN.crassa (largerthan12Mb)wereseparatedat1.5V/cm(15).Thepractical effectistoincreasetheruntimesforlargerDNAmolecules.Thus,electrophoreticseparation of N.crassa chromosomesrequiredupto7days.Whenthevoltagegradientisreducedto separatelargeDNAs,switchingintervalsmustbelengthened(15). 6.Temperature: Inconventionalgelelectrophoresis,DNAmoleculeswererunatroom temperaturebut,inPFGE,DNAwasrunatalowtemperature(between4°Cand15°C). TemperaturehasadramaticeffectonDNAmobilityinPFGE.Temperaturesbetween14°Cand 22°Caregenerallyregardedasthebestcompromisebetweenspeedandresolutionwhilegels canberunatroomtemperature,itisusuallynecessarytocirculatethebufferthroughaheat exchangertodissipatetheheatgeneratedbythevoltagegradientsusedduringmostpulsed fieldruns(2,25).ThevelocityoflambdaDNAat34°Cistwicethatat4°C.However,gelsrun attemperaturesashighas34°Cshowdiminishedresolution(1). 7.Switchinterval: ThesinglemostimportantdeterminantofmobilityinPFGEisthe intervalatwhichthedirectionoftheelectricfieldisswitched.Iftheswitchingintervalis increasedbeyondthetimerequiredforafragmenttoreorient,thenthefragmentwillspenda largeportionofthegelrunmigrating,asinconventionalelectrophoresis,witharesultingloss inresolution.ThechoiceofanappropriateswitchingintervalforPFGEmustreflectthesize rangeofthefragmentstoberesolved.Birrenetal.(24)havemeasuredthevelocityofDNA moleculesfrom50to1,000kbinPFGEwithswitchtimesoffrom5to300s.Thehighest

412 E.(HACIO⁄LU)BASIM,H. BASIM resolutionformoleculesofagivensizeisobtainedbyusingtheshortestswitchintervalswhich permitseparationofthecompletesizerangeofthefragments(26). 8.AgaroseConcentration: Theagaroseconcentrationwillaffecttheseparationobtained withPFGE.FasterDNAmigrationoccursingelsofloweragaroseconcentration.The λ DNA monomer(48.5kb)migrates50%fasterinPFGEof0.6%agarosecomparedtoa1%gel.The DNAbandswhicharequitediffuseinthe0.7%gelbecomeincreasinglysharpastheagarose concentrationisraisedin1.4%and1.8%gelsoveridenticaltimes.Thedistancemigratedby theidenticalsamplesdemonstratedthedecreaseinvelocityastheagaroseconcentrationis increased(24). 9.RestrictionEnzymes: Theabilityofrestrictionenzymes(REs)tocutDNAataspecific sequenceofbaseshasgreatlystimulatedthegrowthofrecombinantDNAtechnology.Over 1,900REsareknown,andofthere275areavailablefromcompaniesbasedaroundtheworld (27).Thecommonrestrictionenzymes, EcoR Iand Hind III,digestbacterialandmammalian DNAtofragmentsaveragingapproximately4kbinsizesmuchtoosmallforPFGE.Forthis reason,itisadvisabletouseenzymeswhichhaverelativelyfewsitesandgivelargerfragments fromthetargetDNAinPFGE(27).Anyenzymeproducingalargenumberofsmallfragments (smallerthan10kb)isunlikelytobeusefulforPFGEandmapping.Amajorfactorinselecting suitablerestrictionenzymesisthebasecomposition(%G+Ccontent)ofthetargetDNA. AnalysisbyPFGEandrare-restrictionenzymeshavebeenusefulforobtainingrelevant informationongenomesize,characterizingvariousstrainsattheDNAlevel(28),followingthe genetichistoryofaparticularstrain,constructingphysicalandgeneticmapsofbacterial chromosomesandstudyingchromosomaldynamicsamongbacteria(29-31).Enzymesthat recognizesequenceslargerthan6bparepotentiallyusefulingenomemappingbecausethey generatelargefragments(27).Atpresent,thereareninerestrictionenzymescommercially availablewithan8-bprecognitionsequence.Ofthese, NotI,SfiI,SrfI,AseI,PacI andSwaI arerare-cuttersingenomeswithaG+Ccontentofabout35-55%.Belowandabovethese marginsthenumberoffragmentsbecomestoosmallandtoolarge,respectively. PacI (AATTAATT),SwaI (ATTTAAAT),PmeI (GTTTAAAC)andSse 83871(CCTGCAGG)arenewon themarket(32).Ontheotherhand, PacI and SwaI enzymesshouldbeusefulespeciallyfor genomeswithaG+Ccontentsintherangeof45-65%(32).The4-bppairsequence5’-CTAG- 3’seemstobeselectedagainstinmostbacterialgenomes(33).Thistetranucleotideispartof therecognitionsequenceof SpeI (A/CTAGT),XbaI (T/CTAGA),NheI (G/CTAGC)and AvrII (C/CTAGG).CTAGisfoundinfrequentlyinmostprokaryotesandrestrictionendonucleasesthat includethissequenceintheirrecognitionsequencecutbacterialgenomesinfrequently(32). PFGEoflargefragmentsofDNAgeneratedusinginfrequentlycutting Swa I and Pac I restrictionendonucleaseswereusedingenomeanalysisof Xanthomonasaxonopodis pv. vesicatoria,acausalagentofleafspotdiseaseofpepperandtomato,andoptimalconditions fordigestioninthegenomeanalysisweredetermined(26,34-36).

413 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology

Pulsed-FieldApplications Fullunderstandingofabiologicalsystemrequiresknowledgeofthestructureandfunction ofthegenesandtheirarrangementonthechromosome.PFGEhasbeenusedtoseparateDNA moleculesaslargeas12Mb.Theabilitytoanalyzesuchlargefragmentswillgreatlyfacilitate theconstructionofphysicalmaps(1). Theabilitytoseparate,isolateandanalyzemegabasesizefragmentsofDNAisalready providinginsightsintothegenomeorganizationoforganismsasdiverseasbacteriaandhumans (2). PFGEisusedinthefollowingareas: 1.TheadventofPFGEtechniquesfortheresolutionoflargeDNAmoleculeshasprovided anewanalysisapproachforbacterialgenomes(37).ThePFGEofDNAfragmentsobtained usingdifferentenzymesisapowerfultechniqueforquickresolutionofthebacterialgenome intoasmallnumberoflargefragments. 2.ThePFGEofDNAfragmentsobtainedbyusingendonucleasesproduceadiscretepattern ofbandsusefulforthefingerprintingandphysicalmappingofthechromosome(38). 3.ThePFGEtechniqueisusefultoestablishthedegreeofrelatednessamongdifferent strainsofthesamespecies(38). 4.PFGEhasprovedtobeanefficientmethodforgenomesizeestimationandthe constructionofchromosomalmaps,aswellasbeingusefulforthecharacterizationofbacterial species(39-41).PFGEtechnologyhasproveninvaluablefortheaccurateestimationofgenome sizeandintheconstructionofphysicalmapsofadiverserangeofprokaryoticorganisms (42,43). 5.PFGEisapowerfultoolforgenomecharacterizationandhasledtotheconstructionof thephysicalmapofmorethan180bacterialchromosomes(44). 6.PFGEhasprovenextremelypowerfulintheanalysisoflargeDNAmoleculesfroma varietyofsourcesincludingintactchromosomalDNAsfromfungi(16),parasiticprotozoa(45) andspecificallyfragmentedgenomesofbacteria(26,38)andmammals(5,6). 7.PFGEsimplifiesmanypreviouslylaboriousinvestigationsandmakespossiblemanynew investigations.Thistechniquehasbeenusedextensivelyinapplicationtoallorganismsfrom bacteriatoviruses(2). 8.YeastArtificialChromosome(YAC)librarieshavebeenconstructedbyPFGE(2). 9.PFGEexperimentsareusedintheconstructionoftransgenicmice(2). 10.PFGEhasalsoshownitselfusefulinthestudyofradiation-inducedDNAdamageand repair,sizeorganizationandvariationinmammaliancentromers(2,46).

414 E.(HACIO⁄LU)BASIM,H. BASIM

11.Manyinvestigationsdirectlyinvolvestudiesofgenomeorganization.Forexample,in determiningthephysicalproximityoftwogenes,whiledeterminingthesizeofverylargegenes orwhenidentifyingthelocationofchromosomalbreaks(2,46). 12.PFGEwillplayamajorroleinthemappingofthehumangenome(47).Thephysical mappingofahumanchromosomeinvolvesorderingandmeasuringthedistancesbetweenaset ofDNAmarkersthatareuniquetothatchromosome.Giventhelargesizesofthechromosomes involved(50,000-300,000kb),PFGEisthemethodtopursue(47). 13.PFGEisusedtodeterminetheorderofmarkersmorepreciselythanispossiblewith geneticlinkageanalysis,andwithaPFGEmapavailable,newmarkerscanbequicklylocalized withinthatregion(32). 14.Anewmutationcanbemappedbycloningthegene,followedbyrestrictionanalysisand hybridization,toasetoforderedrestrictionfragmentsbyPFGE(47). 15.PFGEwillgreatlyfacilitatethepreciseselectionoflargeDNAfragmentsforcloning.REs whicharespecificforcuttinginfrequentlyoccurringsequences,areusedtocreatelargeDNA fragmentswhicharethenseparatedbyPFGE.Byblottingandhybridizationthefragments containingthedesiredgenearedetermined.Thisregionisrecoveredfromthegelandcloned (2,23). 16.PFGEallowsforeasyisolationoftheindividualrestrictionfragmentsforfurther restrictionmapping,geneinsertionandfunctionalgenemapping(13).

Results ThedevelopmentsinPFGEoverthepastdecadehaveledtoaningeniouscollectionof workabledesigns.Today’sinstrumentsresolveDNAseveralordersofmagnitudelargerthan waspossiblebyconventionalelectrophoresis,permittingthedirectstudyofintact chromosomesfromyeastsandhumanparasites.Investigationsnowcenteronabetter understandingofthesetechniques,whichwillsupportthedesignofnewgenerationsofdevices toseparateevenlargerfragmentsand,eventually,entirehumangenomes. Theanalysisofentiregenomesrepresentsarevolutionaryapproachtogenetics,andthe availabilityofvastamountsofinformationfromtheseprojectswillallownewconceptual approachesinmanyareasofbiologicalresearch.Itisclearthatatthepresenttime,nosingle techniqueorstrategyissufficientforpreparingamapofanintacthumanchromosome. However,thecombineduseofmanypowerfulnewtechniquesbringstheanalysisof mammaliangenomeswithinreach. PFGEhasmadepossiblethedevelopmentoftheYACcloningsystemandwillplayamajor roleinthemappingofthehumangenome.ThePFGEtechniquewillbeusefulforestablishing thedegreeofrelatednessamongdifferentstrainsofthesamespecies.

415 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology

FutureapplicationsforPFGEtechniquesmayincludeseparationsandnucleicacid sequencingandstudiesofDNAtopology.PFGEallowsphysical-mapconstructionforvirtually anyorganisms.PFGEtechniquesshouldsoonprovidephysicalmapsandtheirapplicationsfor awidenumberofmicroorganism.Asphysicalmappingmethodsarerapidlydisplacinggenetic methodsforchromosomeassignment,itisessentialtounderstandthebehaviorofcircularDNA speciesonpulsed-fieldgels. AnalysiswithPFGEcanbeusedtoestablishlong-rangemapsbasedonanonymousmarkers thathavebeenshowntobegeneticallylinked.Ideally,thetargetedregionissaturatedwith markers,allowingtheconstructionofseveraloverlappingmaps.However,forplantgenomes, markersarerarelyclusteredwithsufficientdensitytoallowtheimmediateconstructionof detailedmapsbasedonseveralmarkers.

References 1. Lai,E.,Birren,B.W.,Clark,S.M.,Simon,M.I.,Hood,L.Pulsed-FieldGelElectrophoresis.Biotechniques,7:34- 42,1989. 2. Gardiner,K.Pulsed-FieldGelElectrophoresis.AnalyticalChemistry,63:658-665,1991. 3. Southern,E.M.,Elder,J.K.Pulsed-FieldGelElectrophoresis.EditedbyA.P.Monaco,Oxford,IRLPress,1-119, 1995. 4. Schwartz,D.C.,Saffran,W.,Welsh,J.,Haas,R.,Goldenberg,M.,Cantor,C.R.Newtechniquesforpurifying largeDNAsandstudyingtheirprioretiesandpackaging.ColdSpringHarborSymposiaonQuantitativeBiology, XLVII:189-195,1982. 5. Smith,C.J.,Coote,J.G.,Parton,R.Rplasmid-mediatedchromosomemobilizationinBordetellapertussis.J.Gen. Microbiol.,1432:2685-2692,1986. 6. Smith,C.L.,Cantor,C.R.CurrentcommunicationsinmolecularbiologyDNAprobes.Applicationsingeneticand infectiousdiseaseandcancer.EditedbyL.S.Lerman,ColdSpringHarborLaboratory,87-95,1986. 7. Steward,G.,Furst,A.,Avdalovic,N.TransverseAlternatingFieldElectrophoresis(TAFE).Biotechniques,6:68-73, 1988. 8. Maloy,S.R.,Cronan,J.E.Jr.,Freifelder,D.MicrobialGenetics.JonesandBartlettPublishers,SecondEdition, 45-47,1994. 9. Kaufmann,M.E.,Pitt,T.L.MethodsinPracticalLaboratoryBacteriology.EditedbyH.Chart,FL,CRCPressInc., 83,1994. 10. Levene,S.D.MethodsinMolecularBiology,Pulsed-FieldGelElectrophoresis.Eds.M.BurmeisterandL. Ulanovsky,Totowa,NJ,TheHumanaPress,345-365,1992. 11. Smith,C.L.,Econome,J.G.,Schutt,A.,Klco,S.,Cantor,C.R.Aphysicalmapofthe Escherichia coli K12 genome.Science,236:1448-1453,1987. 12. VanderPloeg,L.H.T.,Schwartz,D.C.,Cantor,C.R.,Borst,P.AntigenicvariationinTrypanosomabruceianalyzed byelectrophoreticseparationofchromosome-sizedDNAmolecules.,37:77-78,1984.

416 E.(HACIO⁄LU)BASIM,H. BASIM

13. Smith,C.L.,Klco,S.R.,Cantor,C.R.Genomeanalysisapracticalapproach.EditedbyK.E.Davis,Washington D.C.,IRLPress,Oxford,41-72,1988. 14. Vollrath,D.,Davis,R.W.IsolationofDNAmoleculesgreaterthan5megabasesbycontour-clampedhomogeneous electricfields.Nucl.Acids.Res.,15:7865-7876,1987. 15. Orcbach,M.J.,Vollrath,D.,Davis,R.W.,Yanofsky,C.Anelectrophoretickaryotypeof Neurosporacrassa.Mol. Cell.Biol.,8:1469-1473,1988. 16. Schwartz,D.C.,Cantor,C.R.Separationofyeastchromosome-sizedDNAsbypulsed-fieldgradient.Cell,37:67-75,1984. 17. Carle,G.F.,Olson,M.V.SeparationofchromosomalDNAmoleculesfromyeastbyorthogonal-field-alternation gelelectrophoresis.Nucl.AcidsRes.,14:5647-5663,1984. 18. Carle,G.F.,Olson,M.V.Anelectrophoretickaryotypeforyeast.Proc.Natl.Acad.Sci.,82:3756-3760,1985. 19. Carle,G.F.,Frank,F.,Olson,M.V.ElectrophoreticseparationsoflargeDNAmoleculebyperiodicinversionof electricfield.Science,232:65-68,1986. 20. Steward,G.,Furst,A.,Avdalovic,N.TransferseAlternatingFieldElectrophoresis(TAFE).Biotechniques,6:68-73, 1988. 21. Chu,G.,Vollrath,D.,Davis,R.W.SeparationoflargeDNAmoleculesbycontour-clampedhomogeneouselectric fields.Science,234:1582-1585,1986. 22. Southern,E.M.,Anand,R.,Brown,W.R.,Fletcher,D.S.AmodelfortheseparationoflargeDNAmoleculesby crossed-fieldgelelectrophoresis.Nucl.AcidsRes.,15:5925-5943,1987. 23. Ziegler,A.,Vols,A.MethodsinMolecularBiology,Pulsed-fieldgelelectrophoresis.Eds.M.Burmeister,L. Ulanovsky,Totawa,NJ,HumanaPress,63-72,1992. 24. Birren,B.W.,Lai,E.,Clark,S.M.,Houd,L.,Simon,M.I.Optimizedconditionsforpulsed-fieldgelelectrophoretic separationsofDNA.Nucl.AcidsRes.,16:7563-7581,1988. 25. Cantor,C.R.,Gaal,A.,Smith,C.L.High-resolutionseparationandaccuratesizedeterminationinpulsed-fieldgel electrophoresisofDNA.3.Effectofelectricalfieldshape.,27:9216-9221,1988. 26. Bas›m,E.,Bas›m,H.,Stall,R.E.,Jones,J.B.BakteriyelgenomanalizindePFGE(Pulsed-FieldGelElectrophoresis) yöntemininoptimalkoflullar›n›nbelirlenmesi.Biyoteknoloji(Kükem)Dergisi,23(2):107-112,1999. 27. Bhagwat,A.S.Restrictionenzymes:Propertiesanduse.MethodsinEnzymology,216:199-224,1992. 28. Grouthues,D.,Tümmler,B.Newapproachesingeneanalysisbypulsed-fieldgelelectrophoresis:applicationtothe analysisofPseudomonas species.Mol.Microbiol.,5:2763-2776,1991. 29. Kohara,Y.,Akiyama,K.,Isono,K.Thephysicalmapofthewhole E.coli chromosome:Applicationofanew strategyforrapidanalysisandsortingofalargegenomelibrary.Cell,50:495-508,1987. 30. Chang,N.,Taylor,D.E.Useofpulsed-fieldagarosegelelectrophoresistosizegenomesofCampylobacter species andtoconstructaSalImapofCampylobacterjejuni UA580.J.Bacteriology,172:5211-5217,1990. 31. Bas›m,E.Pulsed-fieldjelelektroforezyöntemiiledomatesvebiberdeyapraklekesietmeni( Xanthomonas axonopodis pv.vesicatoria)’n›ngenombüyüklü¤ününsaptanmas›vefizikselharitas›n›noluflturulmas›.Doktora tezi,AkdenizÜniv.,FenBilimleriEnst.,BitkiKorumaAnabilimDal›,83sayfa,1998. 32. Burmeister,M.MethodsinMolecularBiology.Eds.M.Burmeister,L.Ulanovsky,NewJersey,HumanaPress,259- 284,1992.

417 Pulsed-FieldGelElectrophoresis(PFGE)TechniqueanditsuseinMolecularBiology

33. Bautsch,W.Pulsed-fieldgelelectrophoresis,protocols,methodsandtheories.Eds.M.Burmeister,L.Ulanovsky, HumanaPress,185-201,1992. 34. McClelland,M.,Jones,R.,Patel,J.,Nelson,M.Restrictionendonucleasesforpulsed-fieldmappingofbacterial genomes.Nucl.AcidsRes.,15:5985-6005,1987. 35. Hac›o¤lu,E.,Bas›m,H.,Stall,R.E.Rarely-cuttingrestrictionendonucleasesuseful fordetermininggenomesize andphysicalmapofXanthomonasaxonopodis pv.vesicatoria.Phytopathology,86:77-78,1996. 36. Hac›o¤lu,E.,Bas›m,H.,Stall,R.E.OptimizedconditionsofPac IandSwa IforgenomeanalysisofXanthomonas axonopodis pv.vesicatoria byPFGE.Biotecniques,22:1024-1026,1997. 37. Dempsey,J.A.F.,Livaker,W.,Madhure,A.,Snodgrass,T.L.,Cannon,J.G.Physicalmapofthechromosomeof Neisseriagonorrhoea FA1090withlocationsofgeneticmarkers,includingopa andpilgenes.J.Bacteriology,173: 5476-5486,1991. 38. Correia,A.,Martin,J.F.,Castro,J.M.Pulsed-fieldgelelectrophoresisanalysisofthegenomeofaminoacid producingCorynebacteria:Chromosomesizesanddiversityofrestrictionpatterns.Microbiology,140:2841- 2847,1994. 39. Bas›m,H.,Stall,R.E.,Minsavage,J.,Jones,J.Chromosomalgenetransferamongstrainsof Xanthomonas axonopodis pv.vesicatoria byconjugation.Phytopathology,89:1044-1049,1999. 40. Churin,Y.N.,Shalak,I.N.,Borner,T.,Shestakov,S.V.Physicalandgeneticmapofthechromosomeofthe unicellularCyanobacteriumSynechocystis sp. strainPCC6803.J.Bacteriology,177:3337-3343,1995. 41. Roussel,Y.,Pebay,M.,Guedon,G.,Simonet,J.M.,Decaris,B.Physicalandgeneticmapof Streptococcus thermophilus A054.J.Bacteriology,176:7413-7422,1994. 42. Bourke,B.,Sherman,P.,Louie,H.,Hani,E.,Islur,P.,Chan,V.L.Physicalandgeneticmapofthegenomeof Campylobacterupsaliensis.Microbiology,141:2417-2424,1995. 43. Pyle,L.E.,Taylor,T.,Finch,L.R.Genomicmapsofsomestrainswithinthe Mycoplasmamycoides cluster.J. Bacteriology,172:7265-7268,1990. 44. Bourgeois,P.L.,Lautier,M.,Berghe,L.V.D.,Gasson,M.J.,Ritzenthaler,P.Physicalandgeneticmapofthe Lactococcuslactissubsp. cremoris MG1363chromosome:ComparisonwiththatofLactococcuslactis subsp. lactis IL1403revalsalargegenomeinversion.J.Bacteriology,177:2840-2850,1995. 45. VanderPloeg,L.H.T.,Schwartz,D.C.,Cantor,C.R.,Borst,P.AntigenicvariationinTrypanosomabruceianalyzed byelectrophoreticseparationofchromosome-sizedDNAmolecules.Cell,37:77-78,1984. 46. Suwanto,A.,Kaplan,S.Physicalandgeneticmappingofthe Rhodobactersphaeroides 2-4.1.Genome:Presence oftwouniquecircularchromosomes.J.Bacteriology,171:5850-5859,1989. 47. Larsen,F.,Gunderson,G.,Prtdz,H.ChoiceofenzymesformappingbasedonCpGislandsinthehumangenome. GATA,9(3):80-85,1992.

418