Analytical Separations Using Packed and Open-Tubular Capillary Electrochromatography" (2004)

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Separations Using Packed and Open-Tubular Capillary Electrochromatography Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2004 Analytical separations using packed and open- tubular capillary electrochromatography Constantina P. Kapnissi Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Kapnissi, Constantina P., "Analytical separations using packed and open-tubular capillary electrochromatography" (2004). LSU Doctoral Dissertations. 595. https://digitalcommons.lsu.edu/gradschool_dissertations/595 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ANALYTICAL SEPARATIONS USING PACKED AND OPEN- TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Constantina P. Kapnissi B.S., University of Cyprus, 1999 August 2004 Copyright 2004 Constantina Panayioti Kapnissi All rights reserved ii DEDICATION I would like to dedicate this work to my husband Andreas Christodoulou, my parents Panayiotis and Eleni Kapnissi, and my sisters Erasmia, Panayiota and Stella Kapnissi. I want to thank all of you for helping me, in your own way, to finally make one of my dreams come true. Thank you for encouraging me to continue and achieve my goals. Thank you for your endless love, support, and motivation. Andreas, thank you for your continuous patience and for being there for me whenever I needed you during this difficult time. I will never forget what you did for me. iii ACKNOWLEDGMENTS I would like to acknowledge the following people for their contributions in this work: Dr. Isiah M. Warner for his guidance and excellent advice. Thank you for encouraging me to finish what I started. I want to also thank you for the financial and moral support. You are an excellent mentor, and you prove that every day with your constant encouragement and support. Thank you again for everything. Dr. Rezik A. Agbaria for his helpful scientific discussions during my general exam and my project with laser scanning confocal microscopy. Dr. Charles William Henry III for training me how to use the capillary electrophoresis instrument and the packing apparatus. Dr. Henry and Dr. Shahab Shamsi helped me understand the most important concepts of my research. Dr. Joseph B. Schlenoff and his group at Florida State University in Tallahassee, Florida for training me on the polyelectrolyte multilayer coating procedure. Dr. Lei Geng and Mark Lowry at University of Iowa in Iowa City, Iowa for helping me conduct some experiments on the laser scanning confocal microscope, and for their helpful discussions about this part of my research. Dr. Akbay Cevdet and Bertha C. Valle for providing the polymeric surfactants I used in my research work. Warner research group and Warner family for their encouragement and their total support. Bertha C. Valle for her friendship, her advice, and the long useful discussions we had about research. iv Dr. Nikki Gill, Dr. Xiaofeng Zhu, and Dr. Abdul Numan for editing a few of my reports. My family and friends in Cyprus for believing in me, and supporting all my choices. v TABLE OF CONTENTS DEDICATION .....................................................................................................................iii ACKNOWLEDGMENTS ...................................................................................................iv LIST OF TABLES ...............................................................................................................ix LIST OF FIGURES ..............................................................................................................x LIST OF ABBREVIATIONS ............................................................................................xiv ABSTRACT .................................................................................................................... xviii CHAPTER 1. INTRODUCTION .........................................................................................1 1.1 Capillary Electrophoresis ....................................................................................1 1.2 Micellar Electrokinetic Chromatography ...........................................................9 1.3 Capillary Electrochromatography .....................................................................15 1.3.1 Packed-Capillary Electrochromatography ...............................................17 1.3.2 Open-Tubular Capillary Electrochromatography ....................................18 1.3.2.1 Adsorption ...................................................................................20 1.3.2.2 Covalent Bonding and/or Crosslinking .......................................29 1.3.2.3 Porous Layers ..............................................................................31 1.3.2.4 Chemical Bonding After Etching ................................................32 1.3.2.5 Sol-Gel Technique .......................................................................35 1.4 Chirality ............................................................................................................38 1.5 Chiral Selectors in Open-Tubular Capillary Electrochromatography ..............40 1.5.1 Derivatized Cyclodextrins .......................................................................40 1.5.2 Cellulose ..................................................................................................42 1.5.3 Proteins ....................................................................................................43 1.5.4 Molecular Imprinted Polymers ................................................................44 1.5.5 Polymeric Surfactants ..............................................................................46 1.6 Laser Scanning Confocal Microscopy ..............................................................47 1.7 Scope of Dissertation ........................................................................................51 1.8 References .........................................................................................................54 CHAPTER 2. SEPARATION OF BENZODIAZEPINES BY USE OF CAPILLARY ELECTROCHROMATOGRAPHY .....................................65 2.1 Introduction .......................................................................................................65 2.2 Experimental .....................................................................................................68 2.2.1 Reagents and Chemicals ..........................................................................68 2.2.2 Instrumentation and Conditions ...............................................................68 2.2.3 Sample and Buffer Preparation ................................................................69 2.2.4 Preparation and Conditioning of Packed Capillary Columns ..................69 2.3 Results and Discussion .....................................................................................70 vi 2.3.1 Effect of the Nature of Organic Modifier ................................................70 2.3.2 Effect of Mobile-Phase Composition ......................................................73 2.3.3 Effect of Applied Voltage ........................................................................73 2.3.4 Effect of Tris Concentration ....................................................................75 2.3.5 Effect of Column Temperature ................................................................76 2.3.6 CEC Separation of Drugs from a Urine Sample ......................................78 2.4 Conclusion ........................................................................................................81 2.5 References .........................................................................................................81 CHAPTER 3. ANALYTICAL SEPARATIONS USING MOLECULAR MICELLES IN OPEN-TUBULAR CAPILLARY ELECTROCHROMATOGRAPHY .....................................85 3.1 Introduction .......................................................................................................85 3.2 Experimental .....................................................................................................87 3.2.1 Apparatus and Conditions ........................................................................87 3.2.2 Reagents and Chemicals ..........................................................................87 3.2.3 Sample and Buffer Preparation ................................................................88 3.2.4 Synthesis of Monomeric and Polymeric Surfactant ................................88 3.2.5 Procedure for Polyelectrolyte Multilayer (PEM) Coating .......................88 3.3 Results and Discussion .....................................................................................89 3.3.1 Endurance of PEM Coating .....................................................................89 3.3.2 Stability of PEM Coating .........................................................................91 3.3.3 Reproducibilities ......................................................................................92
Recommended publications
  • Agarose Gel Electrophoresis
    Laboratory for Environmental Pathogen Research Department of Environmental Sciences University of Toledo Agarose gel electrophoresis Background information Agarose gel electrophoresis of DNA is used to determine the presence and distinguish the type of nucleic acids obtained after extraction and to analyze restriction digestion products. Desired DNA fragments can be physically isolated for various purposes such as sequencing, probe preparation, or for cloning fragments into other vectors. Both agarose and polyacrylamide gels are used for DNA analysis. Agarose gels are usually run to size larger fragments (greater than 200 bp) and polyacrylamide gels are run to size fragments less than 200 bp. Typically agarose gels are used for most purposes and polyacrylamide gels are used when small fragments, such as digests of 16S rRNA genes, are being distinguished. There are also specialty agaroses made by FMC (e.g., Metaphor) for separating small fragments. Regular agarose gels may range in concentration from 0.6 to 3.0%. Pouring gels at less or greater than these percentages presents handling problems (e.g., 0.4% agarose for genomic DNA partial digests requires a layer of supporting 0.8% gel). For normal samples make agarose gels at 0.7%. The chart below illustrates the optimal concentrations for fragment size separation. The values listed are approximate and can vary depending on the reference that is used. If you do not know your fragment sizes then the best approach is to start with a 0.7% gel and change subsequently if the desired separation is not achieved. Nucleic acids must be stained prior to visualization. Most laboratories use ethidium bromide but other stains (e.g., SYBR green, GelStar) are available.
    [Show full text]
  • Microchip Electrophoresis
    Entry Microchip Electrophoresis Sammer-ul Hassan Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK; [email protected] Definition: Microchip electrophoresis (MCE) is a miniaturized form of capillary electrophoresis. Electrophoresis is a common technique to separate macromolecules such as nucleic acids (DNA, RNA) and proteins. This technique has become a routine method for DNA size fragmenting and separating protein mixtures in most laboratories around the world. The application of higher voltages in MCE achieves faster and efficient electrophoretic separations. Keywords: electrophoresis; microchip electrophoresis; microfluidics; microfabrications 1. Introduction Electrophoresis is an analytical technique that has been applied to resolve complex mixtures containing DNA, proteins, and other chemical or biological species. Since its discovery in the 1930s by Arne [1], traditional slab gel electrophoresis (SGE) has been widely used until today. Meanwhile, new separation techniques based on electrophoresis continue to be developed in the 21st century, especially in life sciences. Capillary electrophoresis (CE) provides a higher resolution of the separated analytes and allows the automation of the operation. Thus, it has been widely used to characterize proteins and peptides [2], biopharmaceutical drugs [3], nucleic acids [4], and the genome [5]. The development of microfabrication techniques has led to the further miniaturization of electrophoresis known Citation: Hassan, S.-u. Microchip as microchip electrophoresis (MCE). MCE offers many advantages over conventional Electrophoresis. Encyclopedia 2021, 1, capillary electrophoresis techniques such as the integration of different separation functions 30–41. https://dx.doi.org/10.3390/ onto the chip, the consumption of small amounts of sample and reagents, faster analyses encyclopedia1010006 and efficient separations [6,7].
    [Show full text]
  • Western Blotting Guidebook
    Western Blotting Guidebook Substrate Substrate Secondary Secondary Antibody Antibody Primary Primary Antibody Antibody Protein A Protein B 1 About Azure Biosystems At Azure Biosystems, we develop easy-to-use, high-performance imaging systems and high-quality reagents for life science research. By bringing a fresh approach to instrument design, technology, and user interface, we move past incremental improvements and go straight to innovations that substantially advance what a scientist can do. And in focusing on getting the highest quality data from these instruments—low backgrounds, sensitive detection, robust quantitation—we’ve created a line of reagents that consistently delivers reproducible results and streamlines workflows. Providing scientists around the globe with high-caliber products for life science research, Azure Biosystems’ innovations open the door to boundless scientific insights. Learn more at azurebiosystems.com. cSeries Imagers Sapphire Ao Absorbance Reagents & Biomolecular Imager Microplate Reader Blotting Accessories Corporate Headquarters 6747 Sierra Court Phone: (925) 307-7127 Please send purchase orders to: Suite A-B (9am–4pm Pacific time) [email protected] Dublin, CA 94568 To dial from outside of the US: For product inquiries, please email USA +1 925 307 7127 [email protected] FAX: (925) 905-1816 www.azurebiosystems.com • [email protected] Copyright © 2018 Azure Biosystems. All rights reserved. The Azure Biosystems logo, Azure Biosystems™, cSeries™, Sapphire™ and Radiance™ are trademarks of Azure Biosystems, Inc. More information about Azure Biosystems intellectual property assets, including patents, trademarks and copyrights, is available at www.azurebiosystems.com or by contacting us by phone or email. All other trademarks are property of their respective owners.
    [Show full text]
  • QPNC-PAGE Standardized Protocol for Acidic, Basic and Neutral Metalloproteins MW 6 - > 200Kda USE ONLY FRESH GELS
    QPNC-PAGE Standardized Protocol For Acidic, Basic and Neutral Metalloproteins MW 6 - > 200kDa USE ONLY FRESH GELS Correspondence: Bernd Kastenholz • Research Centre Juelich • Institute of Chemistry and Dynamics of the Geosphere – Phytosphere (ICG-3) • Juelich 52425 • Germany • E-mail: [email protected] Recommended Tools (Bio-Rad) Model 491 Prep Cell (U.S. patent no. 4,877,510) Power Pac 1000: Constant Power: 5 W; Time: 8 hr Model EP-1 Econo Pump: 1 mL/min; 5 mL/fraction; 80 mL prerun V; 480 ml total V (Eluent) Model 2110 Fraction Collector: 80 Fractions Model EM-1 Econo UV Monitor: AUFS 1.0; Detection Wavelength 254 nm Model 1327 Econo Recorder: Range: 100 mV; Chart Speed: 6 cm/hr Model SV-3 Diverter Ventil Buffer Recirculation Pump: Flow Rate: 95 mL/min (Electrophoresis Buffer) Stock Solutions 1) 200 mM Tris-HCl 10 mM NaN3 pH 10.00 – Keep RT. 2) 200 mM Tris-HCl 10 mM NaN3 pH 8.00 – Keep RT. 3) 40 % Acrylamide/Bis 2.67 % C - Keep 4°C. 4) 10 % Ammonium Persulfate (APS) - Keep 4°C (freshly prepared). Electrophoresis Buffer 20 mM Tris-HCL 1 mM NaN3 pH 10.00 degassed – Keep 4°C Upper Electrophoresis Chamber (Prep Cell): 500 mL Electrophoresis Buffer Lower Electrophoresis Chamber (Prep Cell): 2000 mL Electrophoresis Buffer Eluent 20 mM Tris-HCL 1 mM NaN3 pH 8.00 degassed – Keep 4°C Elution Chamber (Prep Cell): 700 mL Elution Buffer Separating Gel Acrylamide 4% T Volume: 40 mL ingredients: 4 mL 40 % Acrylamide/Bis 2.67 % C 4 mL 200 mM Tris-HCl 10 mM NaN3 pH 10.00 32 mL H2O 200 µL 10% APS 20 µL TEMED Add TEMED and APS at the end.
    [Show full text]
  • High Sensitivity Protein Gel Electrophoresis Label Compatible with Mass-Spectrometry
    biosensors Brief Report High Sensitivity Protein Gel Electrophoresis Label Compatible with Mass-Spectrometry Joshua A. Welsh 1 , Lisa M. Jenkins 2 , Julia Kepley 1, Gaelyn C. Lyons 2, David M. Moore 1 , Tim Traynor 1, Jay A. Berzofsky 3 and Jennifer C. Jones 1,* 1 Laboratory of Pathology, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] (J.A.W.); [email protected] (J.K.); [email protected] (D.M.M.); [email protected] (T.T.) 2 Laboratory of Cell Biology, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] (L.M.J.); [email protected] (G.C.L.) 3 Vaccine Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; [email protected] * Correspondence: [email protected] Received: 20 August 2020; Accepted: 28 October 2020; Published: 31 October 2020 Abstract: Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a widely utilized technique for macromolecule and protein analysis. While multiple methods exist to visualize the separated protein bands on gels, one of most popular methods of staining the proteins is with Coomassie dye. A more recent approach is to use Bio-Rad stain-free technology for visualizing protein bands with UV light and achieve similar or greater sensitivity than that of Coomassie dye. Here, we developed a method to further amplify the sensitivity of stain-free gels using carboxyfluorescein succinimidyl ester (CFSE) staining. We compared our novel method using foetal bovine serum samples with Coomassie dye, standard stain-free gels, and silver staining.
    [Show full text]
  • Seminar on Drug Chirality
    Drug chirality: Stereoselectivity in the action and disposition of anaesthetic agents Isomerism Isomers: Drugs with the same chemical composition and molecular formula. Isomers Structural Stereoisomers isomers •Constitutional / Structural isomerism: Same molecular formula but different chemical structure as the arrangement of atoms is different. Stereoisomerism: Same molecular formula and chemical structure but a different configuration (i.e. different three dimensional spatial arrangement of their atoms) Two types: 1. Optical isomers 2. Geometrical isomers Optical isomerism Enantiomers: A pair of stereoisomers that are non-superimposable mirror images of each other. Cause of enantiomerism: presence of a chiral centre. Physiochemical properties ( solubility, melting and boiling points, ionization constant) are identical. Separation is difficult. Diastereomers: Stereoisomers that are not mirror images of each other and are not enantiomeric. Physiochemical properties are different. Separation is easy. What is chirality? Chiral - derived from a Greek word chiros, meaning handedness. A molecule or object that is not superimposable on its mirror image is said to be chiral. Chiral centre / asymmetric carbon / stereogenic centre – A carbon atom attached to four different substituents. • Achiral molecules usually contain a plane of symmetry but chiral molecules do not. • A plane of symmetry is a mirror plane that cuts the molecule in half, so that one half of the molecule is a reflection of the other half. • With chiral compounds, the plane of the polarized light is rotated through an angle . A compound that rotates polarized light is said to be optically active. •With achiral compounds, the light that passes through the compound remains unchanged. A compound that does not change the plane of polarized light is said to be optically inactive.
    [Show full text]
  • Consensus for the Management of Analgesia, Sedation and Delirium in Adults with COVID-19-Associated Acute Respiratory Distress Syndrome
    ARTIGO ESPECIAL Manuel Donato1,2,3 , Federico Carlos Carini4 , María Julia Meschini5, Ignacio López Saubidet6 , Consenso para el manejo de la analgesia, sedación Adela Goldberg7, Marisol García Sarubio5, Daniela Olmos8, Rosa Reina5 em nombre del Comité de y delirium en adultos con síndrome de distrés Analgesia, Sedación y Delirium de la Sociedad Argentina de Terapia Intensiva respiratorio agudo por COVID-19 Consensus for the management of analgesia, sedation and delirium in adults with COVID-19-associated acute respiratory distress syndrome 1. Hospital General de Agudos José María Penna RESUMEN Sedación y Delirium de la Sociedad - Buenos Aires, Argentina. Argentina de Terapia Intensiva. 2. Ministerio de Salud de la Nación Argentina – Objetivo: Proponer estrategias Resultados: Se acordaron Buenos Aires, Argentina. agile para este abordaje integral de 3. Instituto de Efectividad Clínica y Sanitaria - recomendaciones y se desarrollaron la analgesia, sedación, delirium, Buenos Aires, Argentina. herramientas para asegurar un 4. Hospital Italiano de Buenos Aires - Buenos implementación de movilidad abordaje integral de analgesia, Aires, Argentina. temprana e inclusión familiar del sedación, delirium, implementación 5. Hospital Interzonal General de Agudos General paciente con síndrome de dificultad San Martín - La Plata, Argentina. de movilidad temprana e inclusión respiratoria aguda por COVID-19, 6. Centro de Educación Médica e Investigaciones familiar del paciente adulto con Clínicas “Norberto Quirno” - Buenos Aires, Argentina. considerando el alto riesgo de infección síndrome de dificultad respiratoria 7. Sanatorio de La Trinidad Mitre - Buenos Aires, que existe entre los trabajadores de Argentina. aguda por COVID-19. salud, el tratamiento humanitario 8. Hospital Municipal Príncipe de Asturias - Córdoba, Discusión: Ante el nuevo orden Argentina.
    [Show full text]
  • Protein Blotting Guide
    Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells
    [Show full text]
  • Electrophoresis SUBJECT FORENSIC SCIENCE
    SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No. 4: Instrumental Methods and Analysis Module No. and Title MODULE No. 34: Electrophoresis Module Tag FSC_P4_M34 FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.34: Electrophoresis TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Principle and Methodology 4. Classification of Electrophoretic Techniques 5. Common Mediums used in Electrophoresis 6. Types of Electrophoresis 7. Summary FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.34: Electrophoresis 1. Learning Outcomes After studying this module, you shall be able to know about: The significance of Electrophoresis The basic principle and methodology of Electrophoresis The types and application of Electrophoresis 2. Introduction Electrophoresis may be defined as the migration of colloidal particles through a solution under the influence of an electrical field. Electrophoresis basically is the movement of distributed particles corresponding to a fluid under the influence of electric field. Electrophoresis is mostly known as еlеctro - kinеtic phеnomеna. Thе tеchniquе of еlеctrophorеsis was discovеrеd by Rеuss in 1809 whеn hе еxpеrimеntеd that soil particlеs dispеrsеd in watеr migratе undеr еffеct of an appliеd еlеctric fiеld. Еlеctrophorеsis takеs placе bеcausе particlеs dispеrsеd in a fluid nеarly at all times carry an electric surface charge. The charged molecule migrates to their oppositely charged electrodes but that electric field is removed before it reaches there completely. Passage of charged particle in an electric field provides differential motion to the sample on the basis of charge and consequently resolve them. An electric field exerts electrostatic Coulomb forcе on thе particlеs through thеsе chargеs.
    [Show full text]
  • Post-Polymerization Modifications of Polymeric Monolithic Columns: a Review
    Chromatography 2014, 1, 24-53; doi:10.3390/chromatography1010024 OPEN ACCESS chromatography ISSN 2227-9075 www.mdpi.com/journal/chromatography Review Post-Polymerization Modifications of Polymeric Monolithic Columns: A Review Sinéad Currivan and Pavel Jandera * Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +420-460-037-023. Received: 18 December 2013; in revised form: 16 January 2014 / Accepted: 17 January 2014 / Published: 10 February 2014 Abstract: The vast cache of methods used in polymeric monolithic column modification is presented herein, with specific attention to post-polymerization modification reactions. The modification of polymeric monolithic columns is defined and can include the modification of pre-existing surface groups, the addition of polymeric chains or indeed the addition of structures such as nano-particles and nano-structures. The use of these modifications can result in the specific patterning of monoliths, useful in microfluidic device design or in the investigation of modification optimization. Keywords: polymer monoliths; modifications; HPLC; CEC; grafting; click chemistry; hypercross-linking; nano-particles List of Abbreviations: 2-acrylamido-2-methyl-1-propanesulphonic acid AMPS, α, α’-azoisobutyronitrile AIBN, adenosine triphosphate ATP, atom transfer radical polymerization ATRP, benzoyl peroxide
    [Show full text]
  • Test Summary Sheet For
    Test Summary Sheet for: 8054B Postmortem, Expanded with NPS, Blood (Forensic) The following test codes are contained in this document: 1. 8054B Postmortem, Expanded with NPS, Blood (Forensic) 2. 50000B Acetaminophen Confirmation, Blood (Forensic) 3. 52250B Alcohols and Acetone Confirmation, Blood (Forensic) 4. 52143B Alfentanil and Sufentanil Confirmation, Blood (Forensic) 5. 52168B Amitriptyline and Metabolite Confirmation, Blood (Forensic) 6. 52239B Amoxapine Confirmation, Blood (Forensic) 7. 52485B Amphetamines Confirmation, Blood (Forensic) 8. 52416B Aripiprazole Confirmation, Blood (Forensic) 9. 52007B Atomoxetine Confirmation, Blood (Forensic) 10. 50011B Barbiturates Confirmation, Blood (Forensic) 11. 52365B Bath Salts Confirmation, Blood (Forensic) 12. 52367B Bath Salts Confirmation, Blood (Forensic) 13. 50012B Benzodiazepines Confirmation, Blood (Forensic) 14. 52443B Benztropine Confirmation, Blood (Forensic) 15. 52245B Brompheniramine Confirmation, Blood (Forensic) 16. 52011B Bupivacaine Confirmation, Blood (Forensic) 17. 52012B Bupropion and Metabolite Confirmation, Blood (Forensic) 18. 52444B Buspirone Confirmation, Blood (Forensic) 19. 52198B Cannabinoids Confirmation, Blood (Forensic) 20. 52015B Carbamazepine and Metabolite Confirmation, Blood (Forensic) 21. 52017B Carisoprodol and Metabolite Confirmation, Blood (Forensic) 22. 52440B Chlorpheniramine Confirmation, Blood (Forensic) 23. 52272B Chlorpromazine Confirmation, Blood (Forensic) 24. 52482B Citalopram Confirmation, Blood (Forensic) 25. 52274B Clomipramine and Metabolite
    [Show full text]
  • Capillary Electrochromatography for Analysis of Proteins and Metalloproteinases
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research 2008 Capillary electrochromatography for analysis of proteins and metalloproteinases Vasudha Salgotra San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Salgotra, Vasudha, "Capillary electrochromatography for analysis of proteins and metalloproteinases" (2008). Master's Theses. 3572. DOI: https://doi.org/10.31979/etd.m48v-cr76 https://scholarworks.sjsu.edu/etd_theses/3572 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. CAPILLARY ELECTROCHROMATOGRAPHY FOR ANALYSIS OF PROTEINS AND METALLOPROTEINASES A Thesis Presented to The Faculty of the Department of Chemistry San Jose State University In Partial fulfillment of the Requirements for the Degree Master of Science by Vasudha Salgotra August 2008 UMI Number: 1459696 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1459696 Copyright 2008 by ProQuest LLC. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]