Pulsed-Field Gel Electrophoresis (PFGE) a Review of the “Gold
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Agarose Gel Electrophoresis
Laboratory for Environmental Pathogen Research Department of Environmental Sciences University of Toledo Agarose gel electrophoresis Background information Agarose gel electrophoresis of DNA is used to determine the presence and distinguish the type of nucleic acids obtained after extraction and to analyze restriction digestion products. Desired DNA fragments can be physically isolated for various purposes such as sequencing, probe preparation, or for cloning fragments into other vectors. Both agarose and polyacrylamide gels are used for DNA analysis. Agarose gels are usually run to size larger fragments (greater than 200 bp) and polyacrylamide gels are run to size fragments less than 200 bp. Typically agarose gels are used for most purposes and polyacrylamide gels are used when small fragments, such as digests of 16S rRNA genes, are being distinguished. There are also specialty agaroses made by FMC (e.g., Metaphor) for separating small fragments. Regular agarose gels may range in concentration from 0.6 to 3.0%. Pouring gels at less or greater than these percentages presents handling problems (e.g., 0.4% agarose for genomic DNA partial digests requires a layer of supporting 0.8% gel). For normal samples make agarose gels at 0.7%. The chart below illustrates the optimal concentrations for fragment size separation. The values listed are approximate and can vary depending on the reference that is used. If you do not know your fragment sizes then the best approach is to start with a 0.7% gel and change subsequently if the desired separation is not achieved. Nucleic acids must be stained prior to visualization. Most laboratories use ethidium bromide but other stains (e.g., SYBR green, GelStar) are available. -
In Silico Characteristics for Re-Emerging Possibility of Vibrio Cholerae Genotypes in Iran
ORIGINAL ARTICLE In silico characteristics for re-emerging possibility of Vibrio cholerae genotypes in Iran M. Hajia1 and Amir Sohrabi2 1) Department of Molecular Biology, Research Center of Health Reference Laboratory, Ministry of Health and Medical Education, Tehran, Iran and 2) Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Abstract Epidemic cholera has been registered several times within recent years in Iran. The dominant genotype was Ogawa until 2011, but this gradually changed to Inaba. However, in 2015, the re-appearance of a previous Ogawa genotype was detected by the Iranian CDC. This raised worries because no evidence was found for its origin abroad. The aim of the present study was to identify clearly the source of this outbreak. Pulsed field gel electrophoresis (PFGE) was used to compare the recently detected Vibrio cholerae strains with those isolated from 2011 to 2015. We selected one strain per PFGE pattern, and compared the distinct patterns. BIONUMERICS software was applied, which enables interpretation of phenotypic and genotypic differences. In total, we studied 33 V. cholerae Ogawa strains. Analysis showed that strains could be discriminated on the basis of annual clusters but with a similarity of more than 80%. The highest homology was observed among those isolated each year from 2011 to 2014. In contrast, strains isolated in 2015 also exhibited close correlation with each other but were located in distinct clusters. The analysis also proved genetic variations among some strains. All 2015 strains showed differences with regard to previous genotypes despite some similarities. The new genotypes were probably imported into Iran from neighbouring countries such as Iraq by travellers or contaminated food sources since 2015. -
Pulsenet: Depicting Red-Colored Salmonella Bacteria Invading a Mustard- Colored, Ruffled Immune Cell
AS-630-W AGEXTENSIONRICULTURE (Above) A digitally colorized scanning electron micrograph PulseNet: depicting red-colored salmonella bacteria invading a mustard- colored, ruffled immune cell. Using Technology to Track Foodborne Illnesses Every year, salmonella bacteria are estimated to cause 1 million illnesses in the United States, Nearly everyone has seen headlines or heard United States by epidemiologists to quickly with 19,000 hospitalizations news reports announcing a large food recall identify foodborne illness outbreaks across and 380 deaths. (Courtesy of the — or, worse, a widespread foodborne illness the country and effectively stop such illnesses National Institute of Allergy and outbreak. One in six Americans suffer from from spreading. Infectious Diseases) a foodborne illness each year. Anyone can be affected. Have you ever wondered how these What constitutes a foodborne outbreaks are discovered? A great deal of illness outbreak epidemiological investigation, some that is notably high-tech, goes into identifying the First, let’s define terms. A foodborne illness cause of foodborne illnesses that can affect is any infection resulting from consumption Anne M. Marshall unrelated individuals in different states, even of food that has been contaminated in different regions. Here, we will describe one some manner. Foodborne illnesses are most Paul D. Ebner very powerful tool, PulseNet, used in the often associated with viruses and bacteria, and their symptoms can range from mild discomfort to diarrhea and vomiting to, Epidemiology: The science of Purdue Animal Sciences in rare cases, death. A foodborne illness determining the who, what, where, when, www.ag.purdue.edu/ANSC outbreak is when two or more individuals and how of the spread of disease. -
Pulsenet Timeline
PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and multistate outbreaks. Since the network began in 1996, PulseNet has improved our food safety systems through identifying outbreaks early. This allows investigators to find the source, alert the public sooner, and identify gaps in our food safety systems that would not otherwise be recognized. E. coli O157:H7 is first recognized as a significant human pathogen. 1984 Pulsed-field gel electrophoresis (PFGE), the current gold standard for DNA fingerprinting, is developed by Schwartz and Cantor. 1993 E. coli O157:H7 causes a major outbreak in the Western US states. 1994 CDC and several state health laboratories demonstrate the utility of 1995 PFGE for detecting and investigating » The concept of PulseNet takes outbreaks of foodborne disease. shape in discussions between CDC, the Association of Public Health Laboratories (APHL), state public 1996 health laboratories and federal » CDC launches PulseNet with partners. the APHL, federal partners, and the original area public health » CDC provides $150,000 to PulseNet laboratories in Massachusetts, to conduct an initial project Minnesota, Texas, and Washington. demonstrating its effectiveness. » The first PulseNet training for standardized PFGE and analysis 1997 of patterns is organized at CDC. » PulseNet detects an outbreak of The area laboratories and the U.S. E. coli O157:H7 in Colorado linked to Department of Agriculture Food frozen ground beef from a Nebraska Safety and Inspection Service processing plant. Twenty-five million (USDA) laboratories attend. pounds of potentially contaminated ground beef are recalled. -
Microchip Electrophoresis
Entry Microchip Electrophoresis Sammer-ul Hassan Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK; [email protected] Definition: Microchip electrophoresis (MCE) is a miniaturized form of capillary electrophoresis. Electrophoresis is a common technique to separate macromolecules such as nucleic acids (DNA, RNA) and proteins. This technique has become a routine method for DNA size fragmenting and separating protein mixtures in most laboratories around the world. The application of higher voltages in MCE achieves faster and efficient electrophoretic separations. Keywords: electrophoresis; microchip electrophoresis; microfluidics; microfabrications 1. Introduction Electrophoresis is an analytical technique that has been applied to resolve complex mixtures containing DNA, proteins, and other chemical or biological species. Since its discovery in the 1930s by Arne [1], traditional slab gel electrophoresis (SGE) has been widely used until today. Meanwhile, new separation techniques based on electrophoresis continue to be developed in the 21st century, especially in life sciences. Capillary electrophoresis (CE) provides a higher resolution of the separated analytes and allows the automation of the operation. Thus, it has been widely used to characterize proteins and peptides [2], biopharmaceutical drugs [3], nucleic acids [4], and the genome [5]. The development of microfabrication techniques has led to the further miniaturization of electrophoresis known Citation: Hassan, S.-u. Microchip as microchip electrophoresis (MCE). MCE offers many advantages over conventional Electrophoresis. Encyclopedia 2021, 1, capillary electrophoresis techniques such as the integration of different separation functions 30–41. https://dx.doi.org/10.3390/ onto the chip, the consumption of small amounts of sample and reagents, faster analyses encyclopedia1010006 and efficient separations [6,7]. -
QPNC-PAGE Standardized Protocol for Acidic, Basic and Neutral Metalloproteins MW 6 - > 200Kda USE ONLY FRESH GELS
QPNC-PAGE Standardized Protocol For Acidic, Basic and Neutral Metalloproteins MW 6 - > 200kDa USE ONLY FRESH GELS Correspondence: Bernd Kastenholz • Research Centre Juelich • Institute of Chemistry and Dynamics of the Geosphere – Phytosphere (ICG-3) • Juelich 52425 • Germany • E-mail: [email protected] Recommended Tools (Bio-Rad) Model 491 Prep Cell (U.S. patent no. 4,877,510) Power Pac 1000: Constant Power: 5 W; Time: 8 hr Model EP-1 Econo Pump: 1 mL/min; 5 mL/fraction; 80 mL prerun V; 480 ml total V (Eluent) Model 2110 Fraction Collector: 80 Fractions Model EM-1 Econo UV Monitor: AUFS 1.0; Detection Wavelength 254 nm Model 1327 Econo Recorder: Range: 100 mV; Chart Speed: 6 cm/hr Model SV-3 Diverter Ventil Buffer Recirculation Pump: Flow Rate: 95 mL/min (Electrophoresis Buffer) Stock Solutions 1) 200 mM Tris-HCl 10 mM NaN3 pH 10.00 – Keep RT. 2) 200 mM Tris-HCl 10 mM NaN3 pH 8.00 – Keep RT. 3) 40 % Acrylamide/Bis 2.67 % C - Keep 4°C. 4) 10 % Ammonium Persulfate (APS) - Keep 4°C (freshly prepared). Electrophoresis Buffer 20 mM Tris-HCL 1 mM NaN3 pH 10.00 degassed – Keep 4°C Upper Electrophoresis Chamber (Prep Cell): 500 mL Electrophoresis Buffer Lower Electrophoresis Chamber (Prep Cell): 2000 mL Electrophoresis Buffer Eluent 20 mM Tris-HCL 1 mM NaN3 pH 8.00 degassed – Keep 4°C Elution Chamber (Prep Cell): 700 mL Elution Buffer Separating Gel Acrylamide 4% T Volume: 40 mL ingredients: 4 mL 40 % Acrylamide/Bis 2.67 % C 4 mL 200 mM Tris-HCl 10 mM NaN3 pH 10.00 32 mL H2O 200 µL 10% APS 20 µL TEMED Add TEMED and APS at the end. -
Pulsenet International
Food and Agriculture Organization of the United Nations International Food Safety Authorities Network (INFOSAN) 18 November 2009 INFOSAN Information Note No. 4/2009 – PulseNet International PulseNet International SUMMARY NOTES • To address the growing concern of responding to foodborne disease (FBD) threats, other emerging infectious diseases, or acts of bioterrorism in a timely and effective manner, the PulseNet International network was established. • PulseNet International is a network of networks dedicated to detecting and tracing foodborne infections worldwide. There are currently six independent networks within PulseNet International, with a total of 81 Member countries. • PulseNet International can contribute to increased efficient information flow between laboratories and food safety officials to quicker identify food safety events and the establishment of an effective global early warning system through its laboratory network. • PulseNet International and INFOSAN are working to improve information sharing between the two networks to strengthen FBD surveillance and control globally. Introduction Due to increased global trade, more outbreaks are occurring in different regions of the world than where the implicated food was produced. As a result, a greater number of dispersed outbreaks can be traced back to sources in food exporting countries with no outbreak related cases. For example, in 2007, an international outbreak of Salmonella Senftenberg was detected in both the United States of America (USA) and Europe by pulsed field gel electrophoresis (PFGE) analysis performed according to the PulseNet Salmonella protocol. The information shared by researchers in Europe and the USA through their respective PulseNet networks determined the infection was associated with the consumption of fresh basil imported from Israel1 The rate of international travel has risen simultaneously with global trade, compounding the opportunity for foodborne diseases to spread globally. -
Case 1:16-Cv-00141-KPF Document 49 Filed 06/17/16 Page 1 of 127
Case 1:16-cv-00141-KPF Document 49 Filed 06/17/16 Page 1 of 127 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK x SUSIE ONG, Individually and on Behalf of All : Civil Action No. 1:16-cv-00141-KPF Others Similarly Situated, : : CLASS ACTION Plaintiff, : : AMENDED COMPLAINT FOR vs. : VIOLATIONS OF THE FEDERAL : SECURITIES LAWS CHIPOTLE MEXICAN GRILL, INC., M. : STEVEN ELLS, MONTGOMERY F. : DEMAND FOR JURY TRIAL MORAN and JOHN R. HARTUNG, : : Defendants. : x Case 1:16-cv-00141-KPF Document 49 Filed 06/17/16 Page 2 of 127 TABLE OF CONTENTS Page NATURE OF THE ACTION ..........................................................................................................1 JURISDICTION AND VENUE ......................................................................................................6 PARTIES .........................................................................................................................................7 CLASS ACTION ALLEGATIONS ..............................................................................................11 PLAINTIFFS’ ALLEGATIONS ARE SUPPORTED BY INFORMATION PROVIDED BY FORMER EMPLOYEES ........................................................................................................13 SUBSTANTIVE ALLEGATIONS ...............................................................................................14 Chipotle and Its Focus on “Food With Integrity” ..............................................................14 Chipotle Failed to Adequately Disclose Critical Changes -
Protein Blotting Guide
Electrophoresis and Blotting Protein Blotting Guide BEGIN Protein Blotting Guide Theory and Products Part 1 Theory and Products 5 Chapter 5 Detection and Imaging 29 Total Protein Detection 31 Transfer Buffer Formulations 58 5 Chapter 1 Overview of Protein Blotting Anionic Dyes 31 Towbin Buffer 58 Towbin Buffer with SDS 58 Transfer 6 Fluorescent Protein Stains 31 Stain-Free Technology 32 Bjerrum Schafer-Nielsen Buffer 58 Detection 6 Colloidal Gold 32 Bjerrum Schafer-Nielsen Buffer with SDS 58 CAPS Buffer 58 General Considerations and Workflow 6 Immunodetection 32 Dunn Carbonate Buffer 58 Immunodetection Workflow 33 0.7% Acetic Acid 58 Chapter 2 Methods and Instrumentation 9 Blocking 33 Protein Blotting Methods 10 Antibody Incubations 33 Detection Buffer Formulations 58 Electrophoretic Transfer 10 Washes 33 General Detection Buffers 58 Tank Blotting 10 Antibody Selection and Dilution 34 Total Protein Staining Buffers and Solutions 59 Semi-Dry Blotting 11 Primary Antibodies 34 Substrate Buffers and Solutions 60 Microfiltration (Dot Blotting) Species-Specific Secondary Antibodies 34 Stripping Buffer 60 Antibody-Specific Ligands 34 Blotting Systems and Power Supplies 12 Detection Methods 35 Tank Blotting Cells 12 Colorimetric Detection 36 Part 3 Troubleshooting 63 Mini Trans-Blot® Cell and Criterion™ Blotter 12 Premixed and Individual Colorimetric Substrates 38 Transfer 64 Trans-Blot® Cell 12 Immun-Blot® Assay Kits 38 Electrophoretic Transfer 64 Trans-Blot® Plus Cell 13 Immun-Blot Amplified AP Kit 38 Microfiltration 65 Semi-Dry Blotting Cells -
Genomic Epidemiology and Recent Update on Nucleic Acid–Based Diagnostics for COVID-19
Current Tropical Medicine Reports https://doi.org/10.1007/s40475-020-00212-3 COVID-19 IN THE TROPICS: IMPACT AND SOLUTIONS (AJ RODRIGUEZ-MORALES, SECTION EDITOR)) Genomic Epidemiology and Recent Update on Nucleic Acid–Based Diagnostics for COVID-19 Ali A. Rabaan1 & Shamsah H. Al-Ahmed2 & Ranjit Sah3 & Jaffar A. Al-Tawfiq4,5,6 & Shafiul Haque7 & Harapan Harapan8,9,10 & Kovy Arteaga-Livias11,12 & D. Katterine Bonilla Aldana13,14 & Pawan Kumar 15 & Kuldeep Dhama16 & Alfonso J. Rodriguez-Morales12,13,14,17 Accepted: 10 September 2020 # Springer Nature Switzerland AG 2020 Abstract Purpose of the Review The SARS-CoV-2 genome has been sequenced and the data is made available in the public domain. Molecular epidemiological investigators have utilized this information to elucidate the origin, mode of transmission, and contact tracing of SARS-CoV-2. The present review aims to highlight the recent advancements in the molecular epidemiological studies along with updating recent advancements in the molecular (nucleic acid based) diagnostics for COVID-19, the disease caused by SARS-CoV-2. Recent Findings Epidemiological studies with the integration of molecular genetics principles and tools are now mainly focused on the elucidation of molecular pathology of COVID-19. Molecular epidemiological studies have discovered the mutability of SARS-CoV-2 which is of utmost importance for the development of therapeutics and vaccines for COVID-19. The whole world is now participating in the race for development of better and rapid diagnostics and therapeutics for COVID-19. Several molecular diagnostic techniques have been developed for accurate and precise diagnosis of COVID-19. Summary Novel genomic techniques have helped in the understanding of the disease pathology, origin, and spread of COVID- 19. -
Role and Limitations of Epidemiology in Establishing a Causal Association Eduardo L
Seminars in Cancer Biology 14 (2004) 413–426 Role and limitations of epidemiology in establishing a causal association Eduardo L. Franco a,∗, Pelayo Correa b, Regina M. Santella c, Xifeng Wu d, Steven N. Goodman e, Gloria M. Petersen f a Departments of Epidemiology and Oncology, McGill University, 546 Pine Avenue West, Montreal, QC, Canada H2W1S6 b Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, USA c Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA d Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA e Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA f Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA Abstract Cancer risk assessment is one of the most visible and controversial endeavors of epidemiology. Epidemiologic approaches are among the most influential of all disciplines that inform policy decisions to reduce cancer risk. The adoption of epidemiologic reasoning to define causal criteria beyond the realm of mechanistic concepts of cause-effect relationships in disease etiology has placed greater reliance on controlled observations of cancer risk as a function of putative exposures in populations. The advent of molecular epidemiology further expanded the field to allow more accurate exposure assessment, improved understanding of intermediate endpoints, and enhanced risk prediction by incorporating the knowledge on genetic susceptibility. We examine herein the role and limitations of epidemiology as a discipline concerned with the identification of carcinogens in the physical, chemical, and biological environment. We reviewed two examples of the application of epidemiologic approaches to aid in the discovery of the causative factors of two very important malignant diseases worldwide, stomach and cervical cancers. -
Blotting Complete Mini Mini Electro Blot System Electro Blot System
Blotting Complete Mini Mini Electro Blot System Electro Blot System Complete Mini MEBM10 Sub Blot System MEBM10 / MSB10 MV-10CBS Electro Blot Systems are primarily designed for wet electrophoresis of proteins, and offer a combination of increased capacity with economical features. Electro Blot Systems have increased capacity over standard systems. Up to five gel blot cassettes may be utilized at any time for Electro Blot Mini. This is especially intensity coiled electrode and ensures uniform transfer across the blot surface. The cassette’s open architecture that ensures the maximum blot area allows direct transfer of current. Its rigid construction that ensures contact between the gel and membrane is retained throughout the blot and an even pressure is maintained. These units are compatible with magnetic stirrers to aid heat dispersal and prevent pH drifts in the buffer due to incomplete buffer mixing. Each unit includes a cooling pack to further enhance transfer efficiency by removing excess heat. This also saves buffer for added economy. The Complete Electrophoresis Systems include both modules for gel electrophoresis, electroblotting and accessories, to provide a complete Mini gel Complete Mini Electro & Blot System casting, running and electroblotting system. The electroblotting module includes four inter-locking cassettes and sixteen fiber pads. A high intensity current is generated by coiled platinum electrodes. These features, in conjunction with the advanced cooling system allow for rapid electroblotting in as little as one hour. MV-10CBS For MEBM series Features • Ideal for wet electroblotting of proteins – Western Blotting • Hinged cassettes for added convenience • Accommodates gel thickness from 0.25 to 3mm For MV-CBS series Features • Versatile: Interchangeable modules for slab gel and Electroblotting using a single universal buffer tank • Hinged cassettes • High intensity electrodes • blot capacity • Rapid set-up cooling 32 Blotting Cat.