Altruism in Experiments Prepared for the New Palgrave Dictionary of Economics, 2Nd Edition, 2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Game Theory 2: Extensive-Form Games and Subgame Perfection
Game Theory 2: Extensive-Form Games and Subgame Perfection 1 / 26 Dynamics in Games How should we think of strategic interactions that occur in sequence? Who moves when? And what can they do at different points in time? How do people react to different histories? 2 / 26 Modeling Games with Dynamics Players Player function I Who moves when Terminal histories I Possible paths through the game Preferences over terminal histories 3 / 26 Strategies A strategy is a complete contingent plan Player i's strategy specifies her action choice at each point at which she could be called on to make a choice 4 / 26 An Example: International Crises Two countries (A and B) are competing over a piece of land that B occupies Country A decides whether to make a demand If Country A makes a demand, B can either acquiesce or fight a war If A does not make a demand, B keeps land (game ends) A's best outcome is Demand followed by Acquiesce, worst outcome is Demand and War B's best outcome is No Demand and worst outcome is Demand and War 5 / 26 An Example: International Crises A can choose: Demand (D) or No Demand (ND) B can choose: Fight a war (W ) or Acquiesce (A) Preferences uA(D; A) = 3 > uA(ND; A) = uA(ND; W ) = 2 > uA(D; W ) = 1 uB(ND; A) = uB(ND; W ) = 3 > uB(D; A) = 2 > uB(D; W ) = 1 How can we represent this scenario as a game (in strategic form)? 6 / 26 International Crisis Game: NE Country B WA D 1; 1 3X; 2X Country A ND 2X; 3X 2; 3X I Is there something funny here? I Is there something funny here? I Specifically, (ND; W )? I Is there something funny here? -
Embezzlement and Guilt Aversion Giuseppe Attanasi, Claire Rimbaud, Marie Claire Villeval
Embezzlement and Guilt Aversion Giuseppe Attanasi, Claire Rimbaud, Marie Claire Villeval To cite this version: Giuseppe Attanasi, Claire Rimbaud, Marie Claire Villeval. Embezzlement and Guilt Aversion. 2018. halshs-01779145 HAL Id: halshs-01779145 https://halshs.archives-ouvertes.fr/halshs-01779145 Preprint submitted on 26 Apr 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WP 1807 – April 2018 Embezzlement and Guilt Aversion Giuseppe Attanasi, Claire Rimbaud, Marie Claire Villeval Abstract: Donors usually need intermediaries to transfer their donations to recipients. A risk is that donations can be embezzled before they reach the recipients. Using psychological game theory, we design a novel three- player Embezzlement Mini-Game to study whether intermediaries suffer from guilt aversion and whether guilt aversion toward the recipient is stronger than toward the donor. Testing the predictions of the model in a laboratory experiment, we show that the proportion of guilt-averse intermediaries is the same irrespective of the direction of the guilt. However, structural estimates indicate that the effect of guilt on behaviour is higher when the guilt is directed toward the recipient. Keywords: Embezzlement, Dishonesty, Guilt Aversion, Psychological Game Theory, Experiment JEL codes: C91 Embezzlement and Guilt Aversion G. -
Best Experienced Payoff Dynamics and Cooperation in the Centipede Game
Theoretical Economics 14 (2019), 1347–1385 1555-7561/20191347 Best experienced payoff dynamics and cooperation in the centipede game William H. Sandholm Department of Economics, University of Wisconsin Segismundo S. Izquierdo BioEcoUva, Department of Industrial Organization, Universidad de Valladolid Luis R. Izquierdo Department of Civil Engineering, Universidad de Burgos We study population game dynamics under which each revising agent tests each of his strategies a fixed number of times, with each play of each strategy being against a newly drawn opponent, and chooses the strategy whose total payoff was highest. In the centipede game, these best experienced payoff dynamics lead to co- operative play. When strategies are tested once, play at the almost globally stable state is concentrated on the last few nodes of the game, with the proportions of agents playing each strategy being largely independent of the length of the game. Testing strategies many times leads to cyclical play. Keywords. Evolutionary game theory, backward induction, centipede game, computational algebra. JEL classification. C72, C73. 1. Introduction The discrepancy between the conclusions of backward induction reasoning and ob- served behavior in certain canonical extensive form games is a basic puzzle of game the- ory. The centipede game (Rosenthal (1981)), the finitely repeated prisoner’s dilemma, and related examples can be viewed as models of relationships in which each partic- ipant has repeated opportunities to take costly actions that benefit his partner and in which there is a commonly known date at which the interaction will end. Experimen- tal and anecdotal evidence suggests that cooperative behavior may persist until close to William H. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Modeling Strategic Behavior1
Modeling Strategic Behavior1 A Graduate Introduction to Game Theory and Mechanism Design George J. Mailath Department of Economics, University of Pennsylvania Research School of Economics, Australian National University 1September 16, 2020, copyright by George J. Mailath. World Scientific Press published the November 02, 2018 version. Any significant correc- tions or changes are listed at the back. To Loretta Preface These notes are based on my lecture notes for Economics 703, a first-year graduate course that I have been teaching at the Eco- nomics Department, University of Pennsylvania, for many years. It is impossible to understand modern economics without knowl- edge of the basic tools of game theory and mechanism design. My goal in the course (and this book) is to teach those basic tools so that students can understand and appreciate the corpus of modern economic thought, and so contribute to it. A key theme in the course is the interplay between the formal development of the tools and their use in applications. At the same time, extensions of the results that are beyond the course, but im- portant for context are (briefly) discussed. While I provide more background verbally on many of the exam- ples, I assume that students have seen some undergraduate game theory (such as covered in Osborne, 2004, Tadelis, 2013, and Wat- son, 2013). In addition, some exposure to intermediate microeco- nomics and decision making under uncertainty is helpful. Since these are lecture notes for an introductory course, I have not tried to attribute every result or model described. The result is a somewhat random pattern of citations and references. -
Public Goods Agreements with Other-Regarding Preferences
NBER WORKING PAPER SERIES PUBLIC GOODS AGREEMENTS WITH OTHER-REGARDING PREFERENCES Charles D. Kolstad Working Paper 17017 http://www.nber.org/papers/w17017 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 May 2011 Department of Economics and Bren School, University of California, Santa Barbara; Resources for the Future; and NBER. Comments from Werner Güth, Kaj Thomsson and Philipp Wichardt and discussions with Gary Charness and Michael Finus have been appreciated. Outstanding research assistance from Trevor O’Grady and Adam Wright is gratefully acknowledged. Funding from the University of California Center for Energy and Environmental Economics (UCE3) is also acknowledged and appreciated. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer- reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2011 by Charles D. Kolstad. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. Public Goods Agreements with Other-Regarding Preferences Charles D. Kolstad NBER Working Paper No. 17017 May 2011, Revised June 2012 JEL No. D03,H4,H41,Q5 ABSTRACT Why cooperation occurs when noncooperation appears to be individually rational has been an issue in economics for at least a half century. In the 1960’s and 1970’s the context was cooperation in the prisoner’s dilemma game; in the 1980’s concern shifted to voluntary provision of public goods; in the 1990’s, the literature on coalition formation for public goods provision emerged, in the context of coalitions to provide transboundary pollution abatement. -
Experimental Evidence of Dictator and Ultimatum Games
games Article How to Split Gains and Losses? Experimental Evidence of Dictator and Ultimatum Games Thomas Neumann 1, Sabrina Kierspel 1,*, Ivo Windrich 2, Roger Berger 2 and Bodo Vogt 1 1 Chair in Empirical Economics, Otto-von-Guericke-University Magdeburg, Postbox 4120, 39016 Magdeburg, Germany; [email protected] (T.N.); [email protected] (B.V.) 2 Institute of Sociology, University of Leipzig, Beethovenstr. 15, 04107 Leipzig, Germany; [email protected] (I.W.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +49-391-6758205 Received: 27 August 2018; Accepted: 3 October 2018; Published: 5 October 2018 Abstract: Previous research has typically focused on distribution problems that emerge in the domain of gains. Only a few studies have distinguished between games played in the domain of gains from games in the domain of losses, even though, for example, prospect theory predicts differences between behavior in both domains. In this study, we experimentally analyze players’ behavior in dictator and ultimatum games when they need to divide a monetary loss and then compare this to behavior when players have to divide a monetary gain. We find that players treat gains and losses differently in that they are less generous in games over losses and react differently to prior experiences. Players in the dictator game become more selfish after they have had the experience of playing an ultimatum game first. Keywords: dictator game; ultimatum game; gains; losses; equal split; experimental economics 1. Introduction Economists and social scientists have collected an increasing body of literature on the importance of other-regarding preferences for decision-making in various contexts [1]. -
Endogenous Institutions and Game-Theoretic Analysis
Chapter 5 Endogenous Institutions and Game-theoretic Analysis Chapters 3 and 4 illustrate that restricting the set of admissible institutionalized beliefs is central to the way in which game theory facilitates the study of endogenous institutions. Durkheim (1950 [1895], p. 45) recognized the centrality of institutionalized beliefs, arguing that institutions are “all the beliefs and modes of behavior instituted by the collectivity.” But neither Durkheim nor his followers placed any analytic restrictions on what beliefs the collectivity could institute. Because beliefs are not directly observable, however, deductively restricting them, as game theory lets us do, is imperative. The only beliefs that can be instituted by the collectivity—that can be common knowledge—are those regarding equilibrium (self-enforcing) behavior. Furthermore, the behavior that these beliefs motivate should reproduce—not refute or erode—these beliefs. Game theory thus enables us to place more of the “responsibility for social order on the individuals who are part of that order” (Crawford and Ostrom 1995, p. 583). Rather than assuming that individuals follow rules, it provides an analytical framework within which it is possible to study the way in which behavior is endogenously generated—how, through their interactions, individuals gain the information, ability, and motivation to follow particular rules of behavior. It allows us to examine, for example, who applies sanctions and rewards that motivate behavior, how those who are to apply them learn or decide which ones to apply, why they do not shirk this duty, and why offenders do not flee to avoid sanctions. The empirical usefulness of the analytical framework of classical game theory is puzzling, however, because this theory rests on seemingly unrealistic assumptions about cognition, information and rationality. -
Dynamic Games Under Bounded Rationality
Munich Personal RePEc Archive Dynamic Games under Bounded Rationality Zhao, Guo Southwest University for Nationalities 8 March 2015 Online at https://mpra.ub.uni-muenchen.de/62688/ MPRA Paper No. 62688, posted 09 Mar 2015 08:52 UTC Dynamic Games under Bounded Rationality By ZHAO GUO I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) the strategy space is a chain-complete partially ordered set; (2) the response function is certain order-preserving map on strategy space; (3) the evolution of economic system can be described by the Dynamical System defined by the response function under iteration; (4) the existence of pure-strategy Nash equilibria can be guaranteed by fixed point theorems for ordered structures, rather than topological structures. This preference-response framework liberates economics from the utility concept, and constitutes a marriage of normal-form and extensive-form games. Among the common assumptions of classical existence theorems for competitive equilibrium, one is central. That is, individuals are assumed to have perfect rationality, so as to maximize their utilities (payoffs in game theoretic usage). With perfect rationality and perfect competition, the competitive equilibrium is completely determined, and the equilibrium depends only on their goals and their environments. With perfect rationality and perfect competition, the classical economic theory turns out to be deductive theory that requires almost no contact with empirical data once its assumptions are accepted as axioms (see Simon 1959). Zhao: Southwest University for Nationalities, Chengdu 610041, China (e-mail: [email protected]). -
Bounded Rationality in Bargaining Games: Do Proposers Believe That Responders Reject an Equal Split?
No. 11 UNIVERSITY OF COLOGNE WORKING PAPER SERIES IN ECONOMICS BOUNDED RATIONALITY IN BARGAINING GAMES: DO PROPOSERS BELIEVE THAT RESPONDERS REJECT AN EQUAL SPLIT? BEN GREINER Department of Economics University of Cologne Albertus-Magnus-Platz D-50923 Köln Germany http://www.wiso.uni-koeln.de Bounded Rationality in Bargaining Games: Do Proposers Believe That Responders Reject an Equal Split?∗ Ben Greiner† June 19, 2004 Abstract Puzzled by the experimental results of the ’impunity game’ by Bolton & Zwick (1995) we replicate the game and alter it in a systematic manner. We find that although almost nobody actually rejects an offered equal split in a bargaining game, proposers behave as if there would be a considerably large rejection rate for equal splits. This result is inconsistent with existing models of economic decision making. This includes models of selfish play- ers as well as models of social utility and reciprocity, even when combined with erroneous decision making. Our data suggests that subjects fail to foresee their opponent’s decision even for one step in our simple bargaining games. We consider models of bounded rational decision making such as rules of thumb as explanations for the observed behavioral pattern. Keywords: ultimatum game, dictator game, impunity game, social utility, bounded rationality JEL Classification: C72, C92, D3 ∗I thank Bettina Bartels, Hakan Fink and Ralica Gospodinova for research assistance, the Strategic Interaction Group at MPI Jena for comments and serving as pilot participants, especially Susanne B¨uchner, Sven Fischer, Katinka Pantz and Carsten Schmidt for support in the conduction of the experiment, and Werner G¨uth, Axel Ockenfels, Ro’i Zultan, participants at the European ESA Meeting in Erfurt and at the Brown Bag seminars in Jena and Cologne for discussions and valuable comments. -
Chemical Game Theory
Chemical Game Theory Jacob Kautzky Group Meeting February 26th, 2020 What is game theory? Game theory is the study of the ways in which interacting choices of rational agents produce outcomes with respect to the utilities of those agents Why do we care about game theory? 11 nobel prizes in economics 1994 – “for their pioneering analysis of equilibria in the thoery of non-cooperative games” John Nash Reinhard Selten John Harsanyi 2005 – “for having enhanced our understanding of conflict and cooperation through game-theory” Robert Aumann Thomas Schelling Why do we care about game theory? 2007 – “for having laid the foundatiouns of mechanism design theory” Leonid Hurwicz Eric Maskin Roger Myerson 2012 – “for the theory of stable allocations and the practice of market design” Alvin Roth Lloyd Shapley 2014 – “for his analysis of market power and regulation” Jean Tirole Why do we care about game theory? Mathematics Business Biology Engineering Sociology Philosophy Computer Science Political Science Chemistry Why do we care about game theory? Plato, 5th Century BCE Initial insights into game theory can be seen in Plato’s work Theories on prisoner desertions Cortez, 1517 Shakespeare’s Henry V, 1599 Hobbes’ Leviathan, 1651 Henry orders the French prisoners “burn the ships” executed infront of the French army First mathematical theory of games was published in 1944 by John von Neumann and Oskar Morgenstern Chemical Game Theory Basics of Game Theory Prisoners Dilemma Battle of the Sexes Rock Paper Scissors Centipede Game Iterated Prisoners Dilemma -
Moral Labels Increase Cooperation and Costly Punishment in a Prisoner's
www.nature.com/scientificreports OPEN Moral labels increase cooperation and costly punishment in a Prisoner’s Dilemma game with punishment option Laura Mieth *, Axel Buchner & Raoul Bell To determine the role of moral norms in cooperation and punishment, we examined the efects of a moral-framing manipulation in a Prisoner’s Dilemma game with a costly punishment option. In each round of the game, participants decided whether to cooperate or to defect. The Prisoner’s Dilemma game was identical for all participants with the exception that the behavioral options were paired with moral labels (“I cooperate” and “I cheat”) in the moral-framing condition and with neutral labels (“A” and “B”) in the neutral-framing condition. After each round of the Prisoner’s Dilemma game, participants had the opportunity to invest some of their money to punish their partners. In two experiments, moral framing increased moral and hypocritical punishment: participants were more likely to punish partners for defection when moral labels were used than when neutral labels were used. When the participants’ cooperation was enforced by their partners’ moral punishment, moral framing did not only increase moral and hypocritical punishment but also cooperation. The results suggest that moral framing activates a cooperative norm that specifcally increases moral and hypocritical punishment. Furthermore, the experience of moral punishment by the partners may increase the importance of social norms for cooperation, which may explain why moral framing efects on cooperation were found only when participants were subject to moral punishment. Within Economics and Economic Psychology, social dilemma games such as the Ultimatum game 1, the Public Goods game2 and the Prisoner’s Dilemma game3 are used to break down the complexities of human social interactions into specifc payof structures.