Simultaneous Determination of Sugar Alcohols in Cigarettes by LC-MS/MS

Total Page:16

File Type:pdf, Size:1020Kb

Simultaneous Determination of Sugar Alcohols in Cigarettes by LC-MS/MS Simultaneous determination of sugar alcohols in cigarettes by LC-MS/MS Tomoaki Ogawa 1 , Tetsuya Tobita 1 , Norimichi Orikata 1 , Shinsuke Sato 2 , Masaki Ninomiya 1 1 Japan Tobacco INC., Product Quality Research Center, 2 JTI Ökolab GmbH Introduction & Objectives Results & Discussion Sugar alcohols are used as sweeteners and humectants in the food industry. Some sugar alcohols are Method validation present in tobacco leaves and tobacco products such as cigarettes. There is a CORESTA recommended The peaks for the nine sugar alcohols in the mixed standard solution were clearly separated (Figure 1). The method for analysis of sorbitol in tobacco and tobacco products 1, and Wang et al. recently reported a calibration curves for the sugar alcohols were linear with good correlation coefficients (R2 > 0.999). The limits method for some sugar alcohols, sugars, and humectants in tobacco products 2. However there is no of detection were approximately 20 µg/g. All sugar alcohols had good average recovery rates (98 %–115 %) 2018_STPOST37_Ogawa.pdf method for simultaneous determination of sugar alcohols which might be contained in cigarette cut filler. The with relative standard deviations between 2.4 % and 13.3 % (Table 5). purpose of this study was to develop a method for simultaneous determination of such nine sugar alcohols Table 5 Calibration range and liniarity, limits of detection, and recoveries for analytes. (meso-erythritol, xylitol, D-pinitol, D-sorbitol, D-mannitol, myo-inositol, maltitol, lactitol, and palatinit) in cut 3 5 Calibration range Spiked level※ Mean recovery RSD Analyte Liniarity R2 filler. To obtain analytical results with high selectivity, we used liquid chromatography tandem mass (μg/mL) (μg/g) (%) (%) spectrometry (LC-MS/MS). 1 4 meso-erythritol 0.005 - 0.5 0.9998 101.4 104 10.6 2 xylitol 0.005 - 0.5 0.9995 99.8 107 7.0 D-pinitol 0.005 - 0.5 0.9996 102.8 102 6.6 7 D-sorbitol 0.005 - 0.5 0.9996 100.0 115 10.1 Materials & Methods 8 6 9 D-mannitol 0.005 - 0.5 0.9994 100.0 109 12.6 Samples myo-inositol 0.005 - 2.5 0.9999 814.4 100 13.3 • CORESTA monitor test piece No. 8 (CM8) Figure 1. LC-MS/MS chromatogram for sugar alcohols maltitol 0.005 - 0.5 0.9997 106.0 101 3.4 at 0.1 µg/mL. 1: meso-erythritol, 2: xylitol, 3: D-pinitol, • University of Kentucky Reference Cigarette 3R4F lactitol 0.005 - 0.5 0.9999 103.4 98 2.4 4: D-sorbitol, 5: D-mannitol, 6: myo-inositol, 7: maltitol, palatinit 0.005 - 0.5 0.9998 100.0 98 3.9 • 24 commercial cigarettes (A–X) 8: lactitol, and 9: palatinit RSD: relative standard deviation, ※Spiked to CM8 Sample preparation Application to cigarette cut filler Ground cut filler (0.5 g) was mixed with 20 mL of ultrapure water and shaken for 60 min. After shaking, the Sugar alcohols in reference (CM8 and 3R4F) and commercial (24 brands) cigarette cut filler samples were water extract was passed through a filter (PTFE, 0.45 μm) and then ultrafiltrated. The ultrafiltrate was diluted analysed by the developed method. Some sugar alcohols were detected in the CM8, 3R4F, and commercial to 100 times the initial volume with a water-acetonitrile mixture (2:8, v/v) and passed through another filter cigarette cut filler samples (Figure 2). (PTFE, 0.2 μm) before LC-MS/MS analysis. μg/g μg/g μg/g Instrumentation The instrument conditions and parameters are shown in Tables 1–4. sample sample sample Table 1 LC conditions. Table 2 Gradient program of the mobile phase. μg/g μg/g μg/g Instrument: Agilent 1290 Infinity Time Flow rate Mobile phase Column: Imtakt Unison UK-Amino HT, (min) (μL/min) A (%) B (%) 2 x 150 mm, 3μm 0 200 10 90 Guard column: Imtakt guard column system for Unison 7 200 10 90 UK-Amino, 2 x 5 mm 35 200 20 80 Column temerature: 40 ˚C 38 200 90 10 sample sample sample Injection volume: 5 μL 40 200 90 10 μg/g μg/g μg/g Flow rate: 0.2 mL/min 40.1 200 10 90 Mobile phase A: 10 mM ammonium acetate in water 46 200 10 90 Mobile phase B: Acetonitorile Table 3 MS conditions. Table 4 MRM transitions and compound dependent MS parameters. sample sample sample Instrument: AB SCIEX TRIPLE QUAD 5500 Precursor ion Product ion Figure 2. Sugar alcohol contents in cut filler samples (CM8, 3R4F, and 24 commercial cigarette brands). Ionization mode: ESI (-) Analyte RT (min) DP (V) CE (V) (m/z) (m/z) Bars show standard deviations for three measurements. Ion spray voltage: -4500 V - meso-erythritol 4.8 [M+CH COO] 181.1 121.0 -50 -9 Ion source temperature: 350 ˚C 3 - Conclusions curtain gas: 30 psi xylitol 6.5 [M+CH3COO] 211.0 59.0 -40 -32 - nitrogen collision gas: 4 psi D-pinitol 7.1 [M+CH3COO] 253.1 193.0 -58 -12 We developed a LC-MS/MS method for simultaneous analysis of nine sugar alcohols (meso-erythritol, xylitol, ion source gas 1: 50 psi - D-sorbitol 9.5 [M-H] 180.9 88.9 -120 -20 D-pinitol, D-sorbitol, D-mannitol, myo-inositol, maltitol, lactitol, and palatinit) in cigarette cut filler. The method ion source gas 2: 80 psi D-mannitol 10.6 [M-H]- 180.9 88.9 -120 -20 has high selectivity, good linearity, and good reproducibility. Some sugar alcohols were detected in the cut myo-inositol 19.0 [M-H]- 178.9 87.0 -138 -21 fillers of CM8, 3R4F, and commercial cigarettes. maltitol 23.0 [M-H]- 343.1 178.9 -130 -19 lactitol 24.5 [M-H]- 343.1 178.9 -130 -19 References palatinit 26.2 [M-H]- 343.1 178.9 -130 -19 1. CORESTA Recommended Methods No. 61:2015 RT: retention time, DP: dissociation energy, CE: collision energy Determination of 1,2-Propylene Glycol, Glycerol and Sorbitol in Tobacco and Tobacco Products by High Performance Liquid Chromatography (HPLC) 2. Wang, L., Cardenas, R. B. & Watson, C. (2017). An isotope dilution ultra high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of sugars and humectants in tobacco products. Journal of Chromatography A, 1514, 95-102. Visit www.jt-science.com Congress2018 - Document not peer-reviewed by CORESTA.
Recommended publications
  • GRAS Notice 789 for Erythritol
    GRAS Notice (GRN) No. 789 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory. Toi• Strategies ~~~~G~~[)) JUN 7 20'8 Innovative solutions Sound science OFFICE OF FOOD ADDITIVE SAFE1Y June 5, 2018 Dr. Dennis Keefe Director, Division of Biotechnology and GRAS Notice Review Office of Food Additive Safety (HFS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Paint Branch Parkway College Park, MD 20740-3835 Subject: GRAS Notification - Erythritol Dear Dr. Keefe: On behalf of Cargill, Incorporated, ToxStrategies, Inc. (its agent) is submitting, for FDA review, a copy of the GRAS notification as required. The enclosed document provides notice of a claim that the food ingredient, erythritol, described in the enclosed notification is exempt from the premarket approval requirement of the Federal Food, Drug, and Cosmetic Act because it has been determined to be generally recognized as safe (GRAS), based on scientific procedures, for addition to food. If you have any questions or require additional information, please do not hesitate to contact me at 630-352-0303, or [email protected]. Sincerely, (b) (6) Donald F. Schmitt, M.P.H. Senior Managing Scientist ToxStrategies, Inc., 931 W. 75th St. , Suite 137, PMB 263, Naperville, IL 60565 1 Office (630) 352-0303 • www.toxstrategies.com GRAS Determination of Erythritol for Use in Human Food JUNES,2018 Innovative solutions s ,..,.,',--.r-.r--.r--. OFFICE OF FOOD ADDITIVE SAFE1Y GRAS Determination of Erythritol for Use in Human Food SUBMITTED BY: Cargill, Incorporated 15407 McGinty Road West Wayzata, MN 55391 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park MD 20740-3835 CONTACT FOR TECHNICAL OR OTIIER INFORMATION Donald F.
    [Show full text]
  • “Polyols: a Primer for Dietetic Professionals” Is a Self-Study
    1 “Polyols: A primer for dietetic professionals” is a self-study module produced by the Calorie Control Council, an accredited provider of continuing professional education (CPE) for dietetic professionals by the Commission on Dietetic Registration. It provides one hour of level 1 CPE credit for dietetic professionals. The full text of the module is in the notes section of each page, and is accompanied by summary points and/or visuals in the box at the top of the page. Directions for obtaining CPE are provided at the end of the module. 2 After completing this module, dietetic professionals will be able to: • Define polyols. • Identify the various types of polyols found in foods. • Understand the uses and health effects of polyols in foods. • Counsel clients on how to incorporate polyols into an overall healthful eating pattern. 3 4 Polyols are carbohydrates that are hydrogenated, meaning that a hydroxyl group replaces the aldehyde or ketone group found on sugars. Hydrogenated monosaccharides include erythritol, xylitol, sorbitol, and mannitol. Hydrogenated disaccharides include lactitol, isomalt, and maltitol. And hydrogenated starch hydrolysates (HSH), or polyglycitols (a wide range of corn syrups and maltodextrins), are formed from polysaccharides (Grabitske and Slavin 2008). 5 Nearly 54 percent of Americans are trying to lose weight, more than ever before. Increasingly, they are turning toward no- and low-sugar, and reduced calorie, foods and beverages to help them achieve their weight loss goals (78% of Americans who are trying to lose weight) (CCC 2010). Polyols, found in many of these foods, are becoming a subject of more interest. 6 They are incompletely digested , therefore are sometimes referred to as “low- digestible carbohydrates.” Polyols are not calorie free, as there is some degree of digestion and absorption of the carbohydrate.
    [Show full text]
  • Effects of Polyols on the Processing and Qualities of Wheat Tortillas'
    BREADMAKING Effects of Polyols on the Processing and Qualities of Wheat Tortillas' E. L. SUHENDRO, 2 R. D. WANISKA,2 L. W. ROONEY, 2 and M. H. GOMEZ 3 ABSTRACT Cereal Chem. 72(l):122-127 Effects of polyols on processing of hot-press wheat tortillas were evalu- Doughs containing 6% polyols, except maltitol, were stickier and less ated. Hot-press wheat tortillas with 0, 2, 4, or 6% glycerol were prepared machinable than control doughs. Tortillas prepared from 10.2% protein from wheat flour of 10.2, 11.0, or 11.5% protein content. Tortillas with flour with or without polyols were less rollable during storage compared 2, 4, or 6% propylene glycol, sorbitol, or maltitol were prepared from to those prepared from higher protein flours. Tortillas containing glycerol the 11.0% protein flour. Farinograph and alveograph values, dough mixing had less moisture, higher liquid content, and improved shelf-stability, characteristics and machinability, rollability over time, sensory evaluation, except when prepared from low protein flour. Water activity decreased water holding capacity, total liquid content, and water activity were deter- with increasing polyol level. Propylene glycol and glycerol were more mined. Low protein (10.2%) flour required less water, shorter mixing effective in decreasing water activity than sorbitol and maltitol. Formulas time, and yielded tortilla doughs that were less machinable compared containing 4% polyols and Ž11.0% protein flour had good machinability to other flours. Water absorption decreased with increasing polyol level. and yielded acceptable tortillas with improved rollability during storage. The increased production of wheat tortillas in the United States Propylene glycol (J.T.
    [Show full text]
  • Polyols Have a Variety of Functional Properties That Make Them Useful Alternatives to Sugars in Applications Including Baked Goods
    Polyols have a variety of functional properties that make them useful alternatives to sugars in applications including baked goods. Photo © iStockphoto.com/Synergee pg 22 09.12 • www.ift.org BY LYN NABORS and THERESA HEDRICK SUGAR REDUCTION WITH Polyols Polyols are in a unique position to assist with reduced-sugar or sugar-free reformulations since they can reduce calories and complement sugar’s functionality. ugar reduction will be an important goal over the of the product’s original characteristics may still be main- next few years as consumers, government, and in- tained with the replacement of those sugars by polyols. Sdustry alike have expressed interest in lower-calorie In addition, excellent, good-tasting sugar-free products and lower-sugar foods. The 2010 Dietary Guidelines for can be developed by using polyols. Polyols are in a unique Americans put a strong emphasis on consuming fewer position to assist with reduced-sugar or sugar-free refor- calories and reducing intake of added sugars. The In- mulations; since they are only partially digested and ab- stitute of Medicine (IOM) held a public workshop in sorbed, they can reduce calories and complement sugar’s November 2010 to discuss ways the food industry can functionality. Polyols provide the same bulk as sugars and use contemporary and innovative food processing tech- other carbohydrates. Additionally, polyols have a clean, nologies to reduce calorie intake in an effort to reduce sweet taste, which is important since consumers are not and prevent obesity, and in October 2011 recommended likely to sacrifice taste for perceived health benefits. Poly- front-of-package labeling that includes rating the product ols have a host of other functional properties that make based on added sugars content.
    [Show full text]
  • Sweet Sensations by Judie Bizzozero | Senior Editor
    [Confections] July 2015 Sweet Sensations By Judie Bizzozero | Senior Editor By R.J. Foster, Contributing Editor For many, terms like “reduced-sugar” or “sugar-free” do not go with the word “candy.” And yet, the confectionery industry is facing growing demand for treats that offer the taste people have grown to love without the adverse health effects they’re looking to avoid. Thankfully, there is a growing palette of ingredients from which candy makers can paint a new picture of sweetness that will be appreciated by the even most discerning of confectionery critics. SUGAR ALCOHOLS Also referred to as polyols, sugar alcohols are a common ingredient in reduced-sugar and sugar-free applications, especially confections. Funny thing, they’re not sugars or alcohols. Carbohydrate chains composed of monomeric, dimeric and polymeric units, polyols resemble both sugars and alcohols, but do not contain an ethanol molecule. All but two sugar alcohols are less sweet than sugar. Being only partially digestible, though, replacing a portion of a formulation’s sugar with a sugar alcohol reduces total calories without losing bulk (which can occur when replacing sugar with high-intensity sweeteners). Unique flavoring, texturizing and moisture-controlling effects also make polyols well-suited for confectionery products. Two very common and very similar monomeric polyols are sorbitol and mannitol. Present in a variety of fruits and vegetables, both are derived from products of cornstarch hydrolysis. Sorbitol is made via hydrogenation of glucose, which is why sorbitol is sometimes referred to as glucitol. Mannitol is created when fructose hydrogenation converts fructose into mannose, for which the final product, mannitol, is named.
    [Show full text]
  • Sugar Alcohols a Sugar Alcohol Is a Kind of Alcohol Prepared from Sugars
    Sweeteners, Good, Bad, or Something even Worse. (Part 8) These are Low calorie sweeteners - not non-calorie sweeteners Sugar Alcohols A sugar alcohol is a kind of alcohol prepared from sugars. These organic compounds are a class of polyols, also called polyhydric alcohol, polyalcohol, or glycitol. They are white, water-soluble solids that occur naturally and are used widely in the food industry as thickeners and sweeteners. In commercial foodstuffs, sugar alcohols are commonly used in place of table sugar (sucrose), often in combination with high intensity artificial sweeteners to counter the low sweetness of the sugar alcohols. Unlike sugars, sugar alcohols do not contribute to the formation of tooth cavities. Common Sugar Alcohols Arabitol, Erythritol, Ethylene glycol, Fucitol, Galactitol, Glycerol, Hydrogenated Starch – Hydrolysate (HSH), Iditol, Inositol, Isomalt, Lactitol, Maltitol, Maltotetraitol, Maltotriitol, Mannitol, Methanol, Polyglycitol, Polydextrose, Ribitol, Sorbitol, Threitol, Volemitol, Xylitol, Of these, xylitol is perhaps the most popular due to its similarity to sucrose in visual appearance and sweetness. Sugar alcohols do not contribute to tooth decay. However, consumption of sugar alcohols does affect blood sugar levels, although less than that of "regular" sugar (sucrose). Sugar alcohols may also cause bloating and diarrhea when consumed in excessive amounts. Erythritol Also labeled as: Sugar alcohol Zerose ZSweet Erythritol is a sugar alcohol (or polyol) that has been approved for use as a food additive in the United States and throughout much of the world. It was discovered in 1848 by British chemist John Stenhouse. It occurs naturally in some fruits and fermented foods. At the industrial level, it is produced from glucose by fermentation with a yeast, Moniliella pollinis.
    [Show full text]
  • Biomaterials Formed by Nucleophilic Addition
    (19) & (11) EP 1 181 323 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08G 63/48 (2006.01) C08G 63/91 (2006.01) 29.06.2011 Bulletin 2011/26 C12N 11/02 (2006.01) C12N 11/04 (2006.01) C12N 11/06 (2006.01) C12N 11/08 (2006.01) (2006.01) (2006.01) (21) Application number: 00910049.6 G01N 33/544 G01N 33/545 G01N 33/546 (2006.01) G01N 33/549 (2006.01) A61K 9/00 (2006.01) A61K 9/06 (2006.01) (22) Date of filing: 01.02.2000 A61K 47/48 (2006.01) A61L 24/00 (2006.01) A61L 24/04 (2006.01) A61L 26/00 (2006.01) A61L 27/26 (2006.01) A61L 27/52 (2006.01) A61L 31/04 (2006.01) A61L 31/14 (2006.01) C08G 81/00 (2006.01) (86) International application number: PCT/US2000/002608 (87) International publication number: WO 2000/044808 (03.08.2000 Gazette 2000/31) (54) BIOMATERIALS FORMED BY NUCLEOPHILIC ADDITION REACTION TO CONJUGATED UNSATURATED GROUPS BIOMATERIALIEN DIE DURCH NUKLEOPHILE REAKTION AUF KONJUGIERTEN UNGESÄTTIGTEN GRUPPEN ADDIERT SIND BIOMATERIAUX FORMES PAR REACTION D’ADDITION NUCLEOPHILE A DES GROUPES NON SATURES CONJUGUES (84) Designated Contracting States: • LUTOLF, Matthias AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU CH-8005 Zurich (CH) MC NL PT SE • PRATT, Alison CH-8044 Zurich (CH) (30) Priority: 01.02.1999 US 118093 P • SCHOENMAKERS, Ronald CH-8044 Zurich (CH) (43) Date of publication of application: • TIRELLI, Nicola 27.02.2002 Bulletin 2002/09 CH-8006 Zurich (CH) • VERNON, Brent (60) Divisional application: CH-8157 Dielsdorf (CH) 10181654.4 / 2 311 895 (74) Representative: Klunker .
    [Show full text]
  • Erythritol As Sweetener—Wherefrom and Whereto?
    Applied Microbiology and Biotechnology (2018) 102:587–595 https://doi.org/10.1007/s00253-017-8654-1 MINI-REVIEW Erythritol as sweetener—wherefrom and whereto? K. Regnat1 & R. L. Mach1 & A. R. Mach-Aigner1 Received: 1 September 2017 /Revised: 12 November 2017 /Accepted: 13 November 2017 /Published online: 1 December 2017 # The Author(s) 2017. This article is an open access publication Abstract Erythritol is a naturally abundant sweetener gaining more and more importance especially within the food industry. It is widely used as sweetener in calorie-reduced food, candies, or bakery products. In research focusing on sugar alternatives, erythritol is a key issue due to its, compared to other polyols, challenging production. It cannot be chemically synthesized in a commercially worthwhile way resulting in a switch to biotechnological production. In this area, research efforts have been made to improve concentration, productivity, and yield. This mini review will give an overview on the attempts to improve erythritol production as well as their development over time. Keywords Erythritol . Sugar alcohols . Polyols . Sweetener . Sugar . Sugar alternatives Introduction the range of optimization parameters. The other research di- rection focused on metabolic pathway engineering or genetic Because of today’s lifestyle, the number of people suffering engineering to improve yield and productivity as well as to from diabetes mellitus and obesity is increasing. The desire of allow the use of inexpensive and abundant substrates. This the customers to regain their health created a whole market of review will present the history of erythritol production- non-sugar and non-caloric or non-nutrient foods. An impor- related research from a more commercial viewpoint moving tant part of this market is the production of sugar alcohols, the towards sustainability and fundamental research.
    [Show full text]
  • HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia Lipolytica
    G C A T T A C G G C A T genes Article HOG-Independent Osmoprotection by Erythritol in Yeast Yarrowia lipolytica Dorota A. Rzechonek 1, Mateusz Szczepa ´nczyk 1, Guokun Wang 2, Irina Borodina 2 and Aleksandra M. Miro ´nczuk 1,* 1 Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland; [email protected] (D.A.R.); [email protected] (M.S.) 2 The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] (G.W); [email protected] (I.B.) * Correspondence: [email protected]; Tel.: +48-71-320-7736 Received: 12 October 2020; Accepted: 19 November 2020; Published: 27 November 2020 Abstract: Erythritol is a polyol produced by Yarrowia lipolytica under hyperosmotic stress. In this study, the osmo-sensitive strain Y. lipolytica yl-hog1D was subjected to stress, triggered by a high concentration of carbon sources. The strain thrived on 0.75 M erythritol medium, while the same concentrations of glucose and glycerol proved to be lethal. The addition of 0.1 M erythritol to the medium containing 0.75 M glucose or glycerol allowed the growth of yl-hog1D. Supplementation with other potential osmolytes such as mannitol or L-proline did not have a similar effect. To examine whether the osmoprotective effect might be related to erythritol accumulation, we deleted two genes involved in erythritol utilization, the transcription factor Euf1 and the enzyme erythritol dehydrogenase Eyd1. The strain eyd1D yl hog1D, which lacked the erythritol utilization enzyme, reacted to the erythritol supplementation significantly better than yl-hog1D.
    [Show full text]
  • Lansoprazole Delayed Release Orally Disintegrating Tablets,116 15 Mg
    45 14 5 Proposed Draft Labeling 4188168 ID: Reference NDA 208025 Lansoprazole Delayed Release Orally Disintegrating Tablets,116 15 mg 14 Tablets (Inner Carton) 14.5 sorbitol, sucralose, sugar spheres, talc, titanium dioxide, triethyl citrate triethyl dioxide, titanium talc, spheres, sugar sucralose, sorbitol, you develop a rash or joint pain joint or rash a develop you diarrhea get you I I polysorbate 80, propylene glycol, silicon dioxide, sodium stearyl fumarate, fumarate, stearyl sodium dioxide, silicon glycol, propylene 80, polysorbate you need to take more than 1 course of treatment every 4 months 4 every treatment of course 1 than more take to need you I 8U174 00 V5 EXP Batch No. maize maltodextrin, maltitol, mannitol, meglumine, microcrystalline cellulose, cellulose, microcrystalline meglumine, mannitol, maltitol, maltodextrin, maize you need to take this product for more than 14 days 14 than more for product this take to need you I copovidone, crospovidone, flavor, hypromellose, hypromellose phthalate, phthalate, hypromellose hypromellose, flavor, crospovidone, copovidone, Stop use and ask a doctor if doctor a ask and use Stop your heartburn continues or worsens or continues heartburn your I Inactive ingredients Inactive ascorbic acid, cetyl alcohol, colloidal silicon dioxide, dioxide, silicon colloidal alcohol, cetyl acid, ascorbic methotrexate (arthritis medicine) (arthritis methotrexate I I atazanavir (medicine for HIV infection) HIV for (medicine atazanavir I protect product from moisture from product protect I tacrolimus or mycophenolate mofetil (immune system medicines) system (immune mofetil mycophenolate or tacrolimus I keep product out of high heat and humidity and heat high of out product keep (68-77°F) 20-25°C at store I I theophylline (asthma medicine) (asthma theophylline I keep the carton and package insert.
    [Show full text]
  • Valorization Studies on Ice-Cream Wastewater and Whey Permeate
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 2020 Valorization Studies on Ice-Cream Wastewater and Whey Permeate Maryam Enteshari South Dakota State University Follow this and additional works at: https://openprairie.sdstate.edu/etd Part of the Dairy Science Commons, and the Food Chemistry Commons Recommended Citation Enteshari, Maryam, "Valorization Studies on Ice-Cream Wastewater and Whey Permeate" (2020). Electronic Theses and Dissertations. 4189. https://openprairie.sdstate.edu/etd/4189 This Dissertation - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. VALORIZATION STUDIES ON ICE-CREAM WASTEWATER AND WHEY PERMEATE BY MARYAM ENTESHARI A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Major in Biological Sciences Specialization in Dairy Science South Dakota State University 2020 ii DISSERTATION ACCEPTANCE PAGE Maryam Enteshari This dissertation is approved as a creditable and independent investigation by a candidate for the Doctor of Philosophy degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. Sergio Martinez-Monteagudo Advisor Date Vikram Mistry Department Head Date Dean, Graduate School Date iii This dissertation is dedicated to my amazing mother who sacrificed her entire life for my success and encouraged me to pursue my dreams and finish Ph.D.
    [Show full text]
  • Sugar Alcohols Fact Sheet
    International Food Information Council Sugar Alcohols Fact Sheet September 2004 BACKGROUND Sugar alcohols or polyols, as they are also called, have a long history of use in a wide variety of foods. Recent technical advances have added to the range of sugar alcohols available for food use and expanded the applications of these sugar replacers in diet and health-oriented foods. They have been found useful in sugar-free and reduced-sugar products, in foods intended for individuals with diabetes, and most recently in new products developed for carbohydrate controlled eating plans. Sugar alcohols are neither sugars nor alcohols. They are carbohydrates with a chemical structure that partially resembles sugar and partially resembles alcohol, but they don’t contain ethanol as alcoholic beverages do. They are incompletely absorbed and metabolized by the body, and consequently contribute fewer calories. The polyols commonly used include sorbitol, mannitol, xylitol, maltitol, maltitol syrup, lactitol, erythritol, isomalt and hydrogenated starch hydrolysates. Their calorie content ranges from 1.5 to 3 calories per gram compared to 4 calories per gram for sucrose or other sugars. Most are approximately half as sweet as sucrose; maltitol and xylitol are about as sweet as sucrose. Sugar alcohols occur naturally in a wide variety of fruits and vegetables, but are commercially produced from other carbohydrates such as sucrose, glucose, and starch. Along with adding a sweet taste, polyols perform a variety of functions such as adding bulk and texture, providing a cooling effect or taste, inhibiting the browning that occurs during heating and retaining moisture in foods. While polyols do not actually prevent browning, they do not cause browning either.
    [Show full text]