Epidemiology and Community Health, 1988, 42, 311-315

Total Page:16

File Type:pdf, Size:1020Kb

Epidemiology and Community Health, 1988, 42, 311-315 J Epidemiol Community Health: first published as 10.1136/jech.42.4.311 on 1 December 1988. Downloaded from Journal of Epidemiology and Community Health, 1988, 42, 311-315 Review article: Research methods in epidemiology, I Uses and abuses of multivariate methods in epidemiology STEPHEN J W EVANS From the Department ofClinical Epidemiology, The London Hospital Medical College, Turner Street, London El guest. Protected by copyright. Uses is, the lower their blood pressure). This fact that the value of the regression coefficient changes when other The general medical literature is replete with examples variables are in the illustrates of equation both the major so called "multivariate methods". These include use and a major abuse of multivariate methods. multiple regression, logistic regression, discriminant All multivariate methods have this use analysis, "Cox that allows regression" and log linear models. for the effect of a particular variable to be adjusted for They are different types of generalisation of the the effect of other measured variables. The classical method ofsimple linear regression, the object being to of obtain problem confounding can sometimes have a a description of a biological phenomenon, solution in the use of multivariate using an equation. This in methods. For its simplest form is example, to compare the blood pressure in two y = a + bx; y is the outcome (dependent) variable and x different racial is a predictor groups whose height and weight differ, (independent) or explanatory variable. then multiple regression may be used. This will allow The complex calculations which are required when the using these comparison between the groups to be made, methods are easily carried out using differences between the computers and the computer software for them is uncomplicated by any groups widely in height or weight. Any confounding effect of these available. variables has been removed. In Multiple regression is the generalisation to more addition, multiple than regression may be used to see if the relationship one predictor variable; eg, y =a+ bIxI + b2x2. between and blood This equation should be as simple as possible while height, weight pressure is the same for each racial group.' http://jech.bmj.com/ still providing an adequate description, so that extra The terms are only added if model as described is a linear model in two they provide an important senses. The first is that gain. The x variables which are not of particular the effect on blood pressure ofa interest unit change in, say, height is the same at all heights; a in themselves are often referred to as line covariates. If y is blood pressure and xI, x2 are height straight relationship is assumed. A curvilinear and relationship could be obtained by including as a weight, then the equation will provide a much further better description than either equation for blood predictor some particular x variable (such as pressure involving height or weight alone. Blood height) as both x and x2. Part of the art (for it remains pressure is more dependent on how overweight (for an art) of fitting equations to data is in choosing on September 25, 2021 by their height) someone is, than on their weight alone. appropriate types of curve to fit the data. The second The relationship ofblood pressure with height may sense is that even an equation with both an x and x2 in be it as nearly non-existent (b, could be positive, negative or such zero) but ifweight is in the equation the value ofb,, the y=a+bix, +b2x2+b3x12 regression coefficient for height, will very definitely be is still described as a linear function in that there is negative (that is, for a given weight, the taller someone addition of the terms rather than multiplication of 311 J Epidemiol Community Health: first published as 10.1136/jech.42.4.311 on 1 December 1988. Downloaded from 312 Stephen J W Evans them. The word linear is here used in a technical regression and discriminant analysis give similar mathematical sense, but this is the sense of the word results. It should be noted that using ordinary Y outside the when used in a general statistical context. Some regression can give predicted values of 0 1 with logistic statisticians reserve the word "multivariate" for range to which is not possible analysis of multiple outcome variables (several regression. The technique then allows for There are detailed different y variates) and use "multivariable" for discrimination between the groups. regression and the other methods discussed technical discussions of the issues of which method to multiple rule, with two may be useful to distinguish them. use with two groups.5 As a general here, and it variables are is a form of multiple regression groups and where some of the x Logistic regression where the studied is not a continuous categorical rather than continuous, or where the outcome 0-3 to 0 7, is instead a binary probability Y can be outside the range measure like blood pressure, but logistic variable (yes/no, dead/alive, etc). The obvious utility logistic regression (sometimes called in that context) is to be preferred.6 a method in medical research is clear. The discrimination of such analysis may also be used to examine a observations of a binary variable may be coded as 0 Discriminant set of equations which use several predictor variables and 1-for example 0 = alive, 1 = dead. Although any a variable on a nominal scale (unordered will always be 0 or 1, we can to classify particular observation more than two categories. For the probability ofdeath for an individual categories) having talk about P, example, in a study to distinguish three diagnostic group of people. The range of P is from 0 to 1 or a groups such as motor neurone disease, stroke and while P -the odds of death-has a range from 0 to multiple sclerosis, the variables used to distinguish 1-P between the groups can themselves be binary or guest. Protected by copyright. infinity. The logarithm of this ratio-the log odds or continuous, and a nominal variable with n categories logit (P)-has a range from - oo to + oo, making it can be re-expressed as n- 1 binary variables. A scoring suitable for use in a regression equation. Studies ofthe system can then be used to classify cases on the basis of Framingham type2 have used logistic regression to symptoms etc.7 examine many risk factors in predicting death from Cox Regression or proportional hazards regression coronary heart disease. Measures ofmorbidity such as is a form of logistic regression suitable for survival respiratory symptoms and illnesses (coded as present/ analysis where the time to occurrence (survival time) absent) can also be used.3 The odds ratio which is ofan event (usually death) is ofprimary importance. It obtained from the logistic model provides a has the advantage of being able to deal with varying convenient and comprehensible summary of the effect amounts of follow up in a natural way and has of explanatory variables. Recent applications of this provided a very important tool in the study of survival method to the analysis of case-control studies have time. Since it is a type ofregression analysis then all the been particularly useful. The outcome variable here is issues of ordinary multiple regression can apply here. whether an individual is a case or a control. The odds Explanatory variables, whether of primary interest or ratios obtained from the logistic regression may, in the potential confounders, may be incorporated in the situation of a rare disease, be interpreted as relative model. They are assumed to have an effect which risks.4 Care must be taken in the analysis since multiplies the death rate by a certain amount (the different forms of logistic regression should be used equivalent of the slope, or regression coefficient in matched This effect may be depending on whether the study design was ordinary multiple regression). http://jech.bmj.com/ or not. estimated together with its standard error which Discriminant analysis and logistic regression are allows for calculation of confidence intervals and closely related and in many instances may be used statistical significance testing (p values) in the usual interchangeably, their differences being in the way. The "Log-Rank" test is a very similar, though technical form of the equations used. Discriminant less general, technique. The Cox model also has is classically used to derive an equation which applications in the analysis of case-control studies, analysis from will be the best one to predict membership of one of though this is a very specialised area. The results an estimate of relative two groups. Group membership may be treated in this such an analysis may lead to on September 25, 2021 by as a binary outcome variable Y (coded as 0 for risk, with standard errors. case for dealing with both and 1 for the other group). The observed Log-linear models are methods one group data. are a of Y for a particular combination of x values unordered and ordered categorical They average in the way that seen as the probability of being in the second categorical analogue of correlation can be of regression. They group. The discriminant function then becomes logistic regression is an analogue essentially identical to ordinary multiple regression. are mainly used for looking at the inter-relationships 0 3 to 0-7, logit (Y) and Y are of several variables without necessarily concentrating When Y is in the range method is applied to approximately linearly related and so logistic on a single outcome variable. The J Epidemiol Community Health: first published as 10.1136/jech.42.4.311 on 1 December 1988.
Recommended publications
  • A Generalized Linear Model for Principal Component Analysis of Binary Data
    A Generalized Linear Model for Principal Component Analysis of Binary Data Andrew I. Schein Lawrence K. Saul Lyle H. Ungar Department of Computer and Information Science University of Pennsylvania Moore School Building 200 South 33rd Street Philadelphia, PA 19104-6389 {ais,lsaul,ungar}@cis.upenn.edu Abstract they are not generally appropriate for other data types. Recently, Collins et al.[5] derived generalized criteria We investigate a generalized linear model for for dimensionality reduction by appealing to proper- dimensionality reduction of binary data. The ties of distributions in the exponential family. In their model is related to principal component anal- framework, the conventional PCA of real-valued data ysis (PCA) in the same way that logistic re- emerges naturally from assuming a Gaussian distribu- gression is related to linear regression. Thus tion over a set of observations, while generalized ver- we refer to the model as logistic PCA. In this sions of PCA for binary and nonnegative data emerge paper, we derive an alternating least squares respectively by substituting the Bernoulli and Pois- method to estimate the basis vectors and gen- son distributions for the Gaussian. For binary data, eralized linear coefficients of the logistic PCA the generalized model's relationship to PCA is anal- model. The resulting updates have a simple ogous to the relationship between logistic and linear closed form and are guaranteed at each iter- regression[12]. In particular, the model exploits the ation to improve the model's likelihood. We log-odds as the natural parameter of the Bernoulli dis- evaluate the performance of logistic PCA|as tribution and the logistic function as its canonical link.
    [Show full text]
  • The Magic of Randomization Versus the Myth of Real-World Evidence
    The new england journal of medicine Sounding Board The Magic of Randomization versus the Myth of Real-World Evidence Rory Collins, F.R.S., Louise Bowman, M.D., F.R.C.P., Martin Landray, Ph.D., F.R.C.P., and Richard Peto, F.R.S. Nonrandomized observational analyses of large safety and efficacy because the potential biases electronic patient databases are being promoted with respect to both can be appreciable. For ex- as an alternative to randomized clinical trials as ample, the treatment that is being assessed may a source of “real-world evidence” about the effi- well have been provided more or less often to cacy and safety of new and existing treatments.1-3 patients who had an increased or decreased risk For drugs or procedures that are already being of various health outcomes. Indeed, that is what used widely, such observational studies may in- would be expected in medical practice, since both volve exposure of large numbers of patients. the severity of the disease being treated and the Consequently, they have the potential to detect presence of other conditions may well affect the rare adverse effects that cannot plausibly be at- choice of treatment (often in ways that cannot be tributed to bias, generally because the relative reliably quantified). Even when associations of risk is large (e.g., Reye’s syndrome associated various health outcomes with a particular treat- with the use of aspirin, or rhabdomyolysis as- ment remain statistically significant after adjust- sociated with the use of statin therapy).4 Non- ment for all the known differences between pa- randomized clinical observation may also suf- tients who received it and those who did not fice to detect large beneficial effects when good receive it, these adjusted associations may still outcomes would not otherwise be expected (e.g., reflect residual confounding because of differ- control of diabetic ketoacidosis with insulin treat- ences in factors that were assessed only incom- ment, or the rapid shrinking of tumors with pletely or not at all (and therefore could not be chemotherapy).
    [Show full text]
  • (Meta-Analyses of Observational Studies in Epidemiology) Checklist
    MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist A reporting checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A. Reporting Criteria Reported (Yes/No) Reported on Page No. Reporting of Background Problem definition Hypothesis statement Description of Study Outcome(s) Type of exposure or intervention used Type of study design used Study population Reporting of Search Strategy Qualifications of searchers (eg, librarians and investigators) Search strategy, including time period included in the synthesis and keywords Effort to include all available studies, including contact with authors Databases and registries searched Search software used, name and version, including special features used (eg, explosion) Use of hand searching (eg, reference lists of obtained articles) List of citations located and those excluded, including justification Method for addressing articles published in languages other than English Method of handling abstracts and unpublished studies Description of any contact with authors Reporting of Methods Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested Rationale for the selection and coding of data (eg, sound clinical principles or convenience) Documentation of how data were classified
    [Show full text]
  • A Simple Censored Median Regression Estimator
    Statistica Sinica 16(2006), 1043-1058 A SIMPLE CENSORED MEDIAN REGRESSION ESTIMATOR Lingzhi Zhou The Hong Kong University of Science and Technology Abstract: Ying, Jung and Wei (1995) proposed an estimation procedure for the censored median regression model that regresses the median of the survival time, or its transform, on the covariates. The procedure requires solving complicated nonlinear equations and thus can be very difficult to implement in practice, es- pecially when there are multiple covariates. Moreover, the asymptotic covariance matrix of the estimator involves the density of the errors that cannot be esti- mated reliably. In this paper, we propose a new estimator for the censored median regression model. Our estimation procedure involves solving some convex min- imization problems and can be easily implemented through linear programming (Koenker and D'Orey (1987)). In addition, a resampling method is presented for estimating the covariance matrix of the new estimator. Numerical studies indi- cate the superiority of the finite sample performance of our estimator over that in Ying, Jung and Wei (1995). Key words and phrases: Censoring, convexity, LAD, resampling. 1. Introduction The accelerated failure time (AFT) model, which relates the logarithm of the survival time to covariates, is an attractive alternative to the popular Cox (1972) proportional hazards model due to its ease of interpretation. The model assumes that the failure time T , or some monotonic transformation of it, is linearly related to the covariate vector Z 0 Ti = β0Zi + "i; i = 1; : : : ; n: (1.1) Under censoring, we only observe Yi = min(Ti; Ci), where Ci are censoring times, and Ti and Ci are independent conditional on Zi.
    [Show full text]
  • Cluster Analysis, a Powerful Tool for Data Analysis in Education
    International Statistical Institute, 56th Session, 2007: Rita Vasconcelos, Mßrcia Baptista Cluster Analysis, a powerful tool for data analysis in Education Vasconcelos, Rita Universidade da Madeira, Department of Mathematics and Engeneering Caminho da Penteada 9000-390 Funchal, Portugal E-mail: [email protected] Baptista, Márcia Direcção Regional de Saúde Pública Rua das Pretas 9000 Funchal, Portugal E-mail: [email protected] 1. Introduction A database was created after an inquiry to 14-15 - year old students, which was developed with the purpose of identifying the factors that could socially and pedagogically frame the results in Mathematics. The data was collected in eight schools in Funchal (Madeira Island), and we performed a Cluster Analysis as a first multivariate statistical approach to this database. We also developed a logistic regression analysis, as the study was carried out as a contribution to explain the success/failure in Mathematics. As a final step, the responses of both statistical analysis were studied. 2. Cluster Analysis approach The questions that arise when we try to frame socially and pedagogically the results in Mathematics of 14-15 - year old students, are concerned with the types of decisive factors in those results. It is somehow underlying our objectives to classify the students according to the factors understood by us as being decisive in students’ results. This is exactly the aim of Cluster Analysis. The hierarchical solution that can be observed in the dendogram presented in the next page, suggests that we should consider the 3 following clusters, since the distances increase substantially after it: Variables in Cluster1: mother qualifications; father qualifications; student’s results in Mathematics as classified by the school teacher; student’s results in the exam of Mathematics; time spent studying.
    [Show full text]
  • The Detection of Heteroscedasticity in Regression Models for Psychological Data
    Psychological Test and Assessment Modeling, Volume 58, 2016 (4), 567-592 The detection of heteroscedasticity in regression models for psychological data Andreas G. Klein1, Carla Gerhard2, Rebecca D. Büchner2, Stefan Diestel3 & Karin Schermelleh-Engel2 Abstract One assumption of multiple regression analysis is homoscedasticity of errors. Heteroscedasticity, as often found in psychological or behavioral data, may result from misspecification due to overlooked nonlinear predictor terms or to unobserved predictors not included in the model. Although methods exist to test for heteroscedasticity, they require a parametric model for specifying the structure of heteroscedasticity. The aim of this article is to propose a simple measure of heteroscedasticity, which does not need a parametric model and is able to detect omitted nonlinear terms. This measure utilizes the dispersion of the squared regression residuals. Simulation studies show that the measure performs satisfactorily with regard to Type I error rates and power when sample size and effect size are large enough. It outperforms the Breusch-Pagan test when a nonlinear term is omitted in the analysis model. We also demonstrate the performance of the measure using a data set from industrial psychology. Keywords: Heteroscedasticity, Monte Carlo study, regression, interaction effect, quadratic effect 1Correspondence concerning this article should be addressed to: Prof. Dr. Andreas G. Klein, Department of Psychology, Goethe University Frankfurt, Theodor-W.-Adorno-Platz 6, 60629 Frankfurt; email: [email protected] 2Goethe University Frankfurt 3International School of Management Dortmund Leipniz-Research Centre for Working Environment and Human Factors 568 A. G. Klein, C. Gerhard, R. D. Büchner, S. Diestel & K. Schermelleh-Engel Introduction One of the standard assumptions underlying a linear model is that the errors are inde- pendently identically distributed (i.i.d.).
    [Show full text]
  • Quasi-Experimental Studies in the Fields of Infection Control and Antibiotic Resistance, Ten Years Later: a Systematic Review
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Infect Control Manuscript Author Hosp Epidemiol Manuscript Author . Author manuscript; available in PMC 2019 November 12. Published in final edited form as: Infect Control Hosp Epidemiol. 2018 February ; 39(2): 170–176. doi:10.1017/ice.2017.296. Quasi-experimental Studies in the Fields of Infection Control and Antibiotic Resistance, Ten Years Later: A Systematic Review Rotana Alsaggaf, MS, Lyndsay M. O’Hara, PhD, MPH, Kristen A. Stafford, PhD, MPH, Surbhi Leekha, MBBS, MPH, Anthony D. Harris, MD, MPH, CDC Prevention Epicenters Program Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland. Abstract OBJECTIVE.—A systematic review of quasi-experimental studies in the field of infectious diseases was published in 2005. The aim of this study was to assess improvements in the design and reporting of quasi-experiments 10 years after the initial review. We also aimed to report the statistical methods used to analyze quasi-experimental data. DESIGN.—Systematic review of articles published from January 1, 2013, to December 31, 2014, in 4 major infectious disease journals. METHODS.—Quasi-experimental studies focused on infection control and antibiotic resistance were identified and classified based on 4 criteria: (1) type of quasi-experimental design used, (2) justification of the use of the design, (3) use of correct nomenclature to describe the design, and (4) statistical methods used. RESULTS.—Of 2,600 articles, 173 (7%) featured a quasi-experimental design, compared to 73 of 2,320 articles (3%) in the previous review (P<.01). Moreover, 21 articles (12%) utilized a study design with a control group; 6 (3.5%) justified the use of a quasi-experimental design; and 68 (39%) identified their design using the correct nomenclature.
    [Show full text]
  • Epidemiology and Biostatistics (EPBI) 1
    Epidemiology and Biostatistics (EPBI) 1 Epidemiology and Biostatistics (EPBI) Courses EPBI 2219. Biostatistics and Public Health. 3 Credit Hours. This course is designed to provide students with a solid background in applied biostatistics in the field of public health. Specifically, the course includes an introduction to the application of biostatistics and a discussion of key statistical tests. Appropriate techniques to measure the extent of disease, the development of disease, and comparisons between groups in terms of the extent and development of disease are discussed. Techniques for summarizing data collected in samples are presented along with limited discussion of probability theory. Procedures for estimation and hypothesis testing are presented for means, for proportions, and for comparisons of means and proportions in two or more groups. Multivariable statistical methods are introduced but not covered extensively in this undergraduate course. Public Health majors, minors or students studying in the Public Health concentration must complete this course with a C or better. Level Registration Restrictions: May not be enrolled in one of the following Levels: Graduate. Repeatability: This course may not be repeated for additional credits. EPBI 2301. Public Health without Borders. 3 Credit Hours. Public Health without Borders is a course that will introduce you to the world of disease detectives to solve public health challenges in glocal (i.e., global and local) communities. You will learn about conducting disease investigations to support public health actions relevant to affected populations. You will discover what it takes to become a field epidemiologist through hands-on activities focused on promoting health and preventing disease in diverse populations across the globe.
    [Show full text]
  • Linear, Ridge Regression, and Principal Component Analysis
    Linear, Ridge Regression, and Principal Component Analysis Linear, Ridge Regression, and Principal Component Analysis Jia Li Department of Statistics The Pennsylvania State University Email: [email protected] http://www.stat.psu.edu/∼jiali Jia Li http://www.stat.psu.edu/∼jiali Linear, Ridge Regression, and Principal Component Analysis Introduction to Regression I Input vector: X = (X1, X2, ..., Xp). I Output Y is real-valued. I Predict Y from X by f (X ) so that the expected loss function E(L(Y , f (X ))) is minimized. I Square loss: L(Y , f (X )) = (Y − f (X ))2 . I The optimal predictor ∗ 2 f (X ) = argminf (X )E(Y − f (X )) = E(Y | X ) . I The function E(Y | X ) is the regression function. Jia Li http://www.stat.psu.edu/∼jiali Linear, Ridge Regression, and Principal Component Analysis Example The number of active physicians in a Standard Metropolitan Statistical Area (SMSA), denoted by Y , is expected to be related to total population (X1, measured in thousands), land area (X2, measured in square miles), and total personal income (X3, measured in millions of dollars). Data are collected for 141 SMSAs, as shown in the following table. i : 1 2 3 ... 139 140 141 X1 9387 7031 7017 ... 233 232 231 X2 1348 4069 3719 ... 1011 813 654 X3 72100 52737 54542 ... 1337 1589 1148 Y 25627 15389 13326 ... 264 371 140 Goal: Predict Y from X1, X2, and X3. Jia Li http://www.stat.psu.edu/∼jiali Linear, Ridge Regression, and Principal Component Analysis Linear Methods I The linear regression model p X f (X ) = β0 + Xj βj .
    [Show full text]
  • Testing Hypotheses for Differences Between Linear Regression Lines
    United States Department of Testing Hypotheses for Differences Agriculture Between Linear Regression Lines Forest Service Stanley J. Zarnoch Southern Research Station e-Research Note SRS–17 May 2009 Abstract The general linear model (GLM) is often used to test for differences between means, as for example when the Five hypotheses are identified for testing differences between simple linear analysis of variance is used in data analysis for designed regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The studies. However, the GLM has a much wider application contrast approach is presented as an easy and complete method for testing and can also be used to compare regression lines. The for overall differences between the regressions and for making pairwise GLM allows for the use of both qualitative and quantitative comparisons. Use of the Bonferroni adjustment to ensure a desired predictor variables. Quantitative variables are continuous experimentwise type I error rate is emphasized. SAS software is used to illustrate application of these concepts to an artificial simulated dataset. The values such as diameter at breast height, tree height, SAS code is provided for each of the five hypotheses and for the contrasts age, or temperature. However, many predictor variables for the general test and all possible specific tests. in the natural resources field are qualitative. Examples of qualitative variables include tree class (dominant, Keywords: Contrasts, dummy variables, F-test, intercept, SAS, slope, test of conditional error. codominant); species (loblolly, slash, longleaf); and cover type (clearcut, shelterwood, seed tree). Fraedrich and others (1994) compared linear regressions of slash pine cone specific gravity and moisture content Introduction on collection date between families of slash pine grown in a seed orchard.
    [Show full text]
  • 5. Dummy-Variable Regression and Analysis of Variance
    Sociology 740 John Fox Lecture Notes 5. Dummy-Variable Regression and Analysis of Variance Copyright © 2014 by John Fox Dummy-Variable Regression and Analysis of Variance 1 1. Introduction I One of the limitations of multiple-regression analysis is that it accommo- dates only quantitative explanatory variables. I Dummy-variable regressors can be used to incorporate qualitative explanatory variables into a linear model, substantially expanding the range of application of regression analysis. c 2014 by John Fox Sociology 740 ° Dummy-Variable Regression and Analysis of Variance 2 2. Goals: I To show how dummy regessors can be used to represent the categories of a qualitative explanatory variable in a regression model. I To introduce the concept of interaction between explanatory variables, and to show how interactions can be incorporated into a regression model by forming interaction regressors. I To introduce the principle of marginality, which serves as a guide to constructing and testing terms in complex linear models. I To show how incremental I -testsareemployedtotesttermsindummy regression models. I To show how analysis-of-variance models can be handled using dummy variables. c 2014 by John Fox Sociology 740 ° Dummy-Variable Regression and Analysis of Variance 3 3. A Dichotomous Explanatory Variable I The simplest case: one dichotomous and one quantitative explanatory variable. I Assumptions: Relationships are additive — the partial effect of each explanatory • variable is the same regardless of the specific value at which the other explanatory variable is held constant. The other assumptions of the regression model hold. • I The motivation for including a qualitative explanatory variable is the same as for including an additional quantitative explanatory variable: to account more fully for the response variable, by making the errors • smaller; and to avoid a biased assessment of the impact of an explanatory variable, • as a consequence of omitting another explanatory variables that is relatedtoit.
    [Show full text]
  • Principal Component Analysis (PCA) As a Statistical Tool for Identifying Key Indicators of Nuclear Power Plant Cable Insulation
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Principal component analysis (PCA) as a statistical tool for identifying key indicators of nuclear power plant cable insulation degradation Chamila Chandima De Silva Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, Mechanics of Materials Commons, and the Statistics and Probability Commons Recommended Citation De Silva, Chamila Chandima, "Principal component analysis (PCA) as a statistical tool for identifying key indicators of nuclear power plant cable insulation degradation" (2017). Graduate Theses and Dissertations. 16120. https://lib.dr.iastate.edu/etd/16120 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Principal component analysis (PCA) as a statistical tool for identifying key indicators of nuclear power plant cable insulation degradation by Chamila C. De Silva A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Materials Science and Engineering Program of Study Committee: Nicola Bowler, Major Professor Richard LeSar Steve Martin The student author and the program of study committee are solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred.
    [Show full text]