Inclined Roof System Trimoterm SNV

Total Page:16

File Type:pdf, Size:1020Kb

Inclined Roof System Trimoterm SNV Inclined Roof System Trimoterm SNV Technical Document No. 35 / Version 3.1 / April 2010 CONTENT 1.0 Technical Description of Roof System Trimoterm SNV [1] 1.1 General [1] 1.2 Panel profile [1] 1.3 Panel composition [1] 1.4 Technical data [1] 1.4.1 Basic technical data [1] 1.4.2 Coatings [2] 2.0 Design Procedure [3] 2.1 Panel thickness selection [3] 2.2 Structural design data [3] 2.3 Fixing method [4] 2.4 Snow guards [4] 2.4.1 General [4] 2.4.2 Snow guards arrangement and fixing [4] 2.5 Lightning rods [6] 3.0 Assembly Instructions [6] 3.1 Installation recommendations [6] 3.2 Sealing [9] 3.2.1 Sealing the longitudinal joint between panels [9] 3.2.2 Assurance of roof water-tightness [10] 3.2.3 Water vapour diffusion [11] 3.3 Panel fixing [12] 3.4 Lifting methods [13] 3.5 Installation details [14] 3.5.1 Roof extension detail [14] 3.5.2 Ridge detail [15] 3.5.3 External gutter detail [16] 3.5.4 Valley gutter detail [17] 3.5.5 Snow guard detail [18] 3.5.6 Lightning rods detail [19] 4.0 Packing, Transport and Storage [20] 4.1 Packing [20] 4.2 Transport [20] 4.3 Storage [21] 5.0 Maintenance [21] 5.1 Annual checking of a roof [21] 5.2 General recommendations [21] All rights to alteration reserved. The last versions of documents is available on www.trimo.si 1.0 Technical Description of Roof System Trimoterm SNV 1.1 General Trimoterm SNV roof panels in a standard module width of 1000 mm represent basic Trimo roof system. They are fixed on roof purlins that are placed over the roof slope at specified spans. The SNV roof system offers excellent technical properties, a long life span and allows creative design freedom. The assembly system using Trimoterm fire-proof panels excels in high fire-resistance, excellent thermal and sound insulation. The range of application of SNV roofs is extremely wide. They are suitable for business, commercial, production buildings, as well as those constructed for representative purposes. Trimoterm SNV panels can be also used as façades. 1.2 Panel Profile The top steel sheet is a uniform trapezoid form, but there are three possibilities for the bottom steel sheet: s-profile - SNVs, smooth - SNVg, v-profile - SNVv. Fig.1: Possible forms of Trimoterm SNV roof panels side A side B Trapezoid profile S-profile Profile Type Side A Side B Trapezoid • V-profile S-profile • V-profile • Smooth profile Smooth profile • 1.3 Panel Composition Trimoterm SNV fireproof panels consist of a completely galvanised shallow and deep-profiled, colour coated steel sheet of 0.5 mm and 0.6 mm thicknesses. The steel sheet is bonded to the panel core which is of incombustible lamellated class A1 mineral wool (EN ISO 1182). All three layers make a solid panel with a thickness ranging between 60 - 200 mm depending on the required load-bearing capacity, tightness and assembly requirements. A protective polyethylene foil is applied to the panel surface to protect it during handling, transport and assembly. The foil is removed after the assembly has been completed. Panels can be up to 14 m long. 1.4 Technical Data 1.4.1 Basic Technical Data Table1: Technical data for Trimoterm SNV roof panels Tehnical Data SNV SNV 60 SNV 80 SNV100 SNV 120 SNV 150 SNV 172 SNV 200 Panel thickness (mm) 60 80 100 120 150 172 200 Weight SNV (kg/m2) Fe 0.6 / Fe 0.6 18.9 21.3 23.7 26.1 29.7 32.4 35.7 U Thermal conductivity (W/m2K) [EN ISO 10211-2] 0.61 0.47 0.38 0.32 0.26 0.23 0.20 Fire-resistance class REI [acc to EN 1365-2]* REI 30 REI 60 REI 90 REI 120 REI 180 Combustibility of insulant core [acc to EN13501-1] Non-combustible, class A1 Rw Sound reduction (dB) [EN ISO 140-3] 32 Min. roof slope 3° with additional sealing Cover width (mm) 1000 Panel length (m) up to 14 * Required control of spans relating to the static system and loading. No.35/V-3/7-2006 1 1.4.2 Coatings Two types of colour coatings are used: - Polyester based marked as SP − standard protection. - Polyvinylidenfluoride based marked as PVDF (available on request). First the steel sheet is galvanised with a zinc layer thickness of 275 g (Zn)/m2 (EN 10326, EN 10327). The steel sheet is coil coated representing painting between cylinders and drying in a furnace at a min. temperature of 200°C. All shades of the RAL scale are possible. Standard colour shades of Trimoterm SNV panels (valid for protection based on polyester - SP) are: RAL 9002 − grey while, RAL 9006 − aluminium white, RAL 8017 − Trimo brown, RAL 7035 − light grey, RAL 5010 − gentian blue, RAL 3009 − oxide red. Steel sheet can be coated using colour on base upon a special request (e.g. on PVC, silicone, polyester, etc.) that may have other properties. Per client’s request or project requirements coatings such as Plastisol, Corus HPS200, Corus Celestia etc. are also available. Table 2: Basic properties of an individual type of protection TYPE OF CORROSION PROTECTION SP SP PVDF PVDF+ PUR PVC(P) PVC+F Corrosion classification [DIN 55928-8] II III III III III III III Total organic thickness (my) [EN 13523-1] 15 25 25 35 50 175-200 120-200 Corrosion resistance External EN 10169-2 — RC3 RC3 RC4 RC5 RC5 — category ** Internal EN 10169-3 CPI2 CPI3 — CPI4 CPI5 CPI4 CPI5 Rural - normal C2 — ••• ••• ••• ••• •*** — Urban and industrial C3 and C4 — •• ••• •••• ••• •*** — 0 < 10 km from sea C5 - M — — •• ••• ••• •*** — Martitme 10 < 20 km from sea C4 — • •• ••• •••• •*** — [EN 10169-2] atmosphere / atmosphere Types of outdoor Types corrosivity category corrosivity category Severe industrial C5 - I — — — • • •*** — Non-corrosive atmosphere Ai1 Routine upkeep - normal -40°Cà25°C •• •• — •• ••• •• ••• Low humidity 0% - 40%* Non-corrosive atmosphere Ai2 Routine upkeep - normal 0°Cà25°C •• •• — •• ••• •• ••• Medium humidity 40% - 60%* Non-corrosive atmosphere Ai3 Non-intensive cleaning 0°Cà25°C — • — •• ••• •• ••• High humidity 60% - 80%* Slightly corrosive atmosphere Ai4 Non-intensive cleaning à Humid 0°C 30°C — — — •• ••• •• ••• [EN 10169-3] (risk of condensation) 60% - 80%* Corrosive atmosphere Ai5 Intensive cleaning à Very humid (frequent risk of 0°C 35°C — — — — — — •• condensation) 80% - 90%* Types of indoor atmosphere /corrosivity category of indoor atmosphere Types Highly corrosive atmosphere Ai6 Highly intensive cleaning à Satureted (permanent risk of 0°C 40°C — — — — — — — condensation) 90% - 100%* Temperture resistance (°C) +70 +80 +110 +110 +110 +70 +70 UV resistance category [EN 13523-10] — Ruv3 Ruv4 Ruv4 Ruv4 Ruv2 — Flexibility •• •• ••• •••• •••• •••• •••• Staining resistance •• ••• •••• •••• •••• •• •••• Note: •••• suitable without reservations ••• very suitable •• suitable • suitable with reservations/contact Trimo - unsuitable * Temperature must not fall below condensation point when cleaning. See table for details: Condensation point temperature is shown at specific ambient temperature and relative humidity. In case of cooling down, working temperature must be 3° C above condensation point. ** Corrosion categories are defined by climatic conditions of external and internal building environment. Standard external climatic conditions: C1, C2, C3, C4, C5-M and C5-1. Example: outside atmosphere C3 --> steel sheet of corrosion category RC3 or RC4 is selected. *** Recommended for use North of 45th parallel latitude and maximum temperature 70° C. 2 No.35/V-3.1/4-2010 2.0 Design Procedure 2.1 Panel Thickness Selection Thickness of Trimoterm SNV panel is determined with respect to the client’s request or in accordance with the legislation. Panel thickness selection has a direct influence on the load-bearing capacity, thermal insulation of the roof and thermal stability of the structure. 2.2 Structural Design Data Max. allowed span supports are determined in relation to the selected panel thickness, loads and support widths. Spans indicated in the diagrams below should be used only as a guide. Diagrams are valid for steel sheet of 0.6 mm thickness and limited deflection to less than L/100 for single, double and multi-span static systems. Full structural design calculation is to be performed by Trimo technical department for each individual project. Diagram 1: Max. spans allowed for Trimoterm SNV roof panells Span (m) Span Snow loads (kN/m2) Span (m) Span Snow loads (kN/m2) No.35/V-3.1/4-2010 3 2.3 Fixing Method Structural engineer will determine the required number of screws in accordance with the standards and regulations of an individual country. A detailed calculation prepared by Trimo’s technical department is recommended for each individual building. The principle of screw arrangement relating to the calculated number is shown in Fig. 2. Fig. 2: Fixing arrangement 1 screw per panel in each purlin 2 screws per panel in each purlin 3 screws per panel in each purlin 4 screws per panel in each purlin The main factors influencing the fixing calculation are: - Wind load: - basic wind load, - height of building above the ground, - area on the roof (edge and corner areas are more exposed to wind suction). - Building type: - Open, partly open, closed buildings. Various loads appear on the roof in relation to the factors mentioned and the fixing method should be adjusted to accommodate them. Fig. 3 shows the characteristic fixing points. Tables for the calculation of fixing are given in the Appendix to the catalogue. Fig. 3: Characteristic fixing areas 2.4 Snow Guards 2.4.1 General Installation of snow guards is recommended for all buildings where sliding of snow may present a danger to people and property. Legislation in various countries prescribes obligatory installation of snow guards on buildings with roofs where the inclination is greater than 22° (e.g.
Recommended publications
  • Palm Oil Research Centre (Ppks) and Agency of Sumatera Plantation Companies (Bks - Pps)
    STUDY OF THE ELEMENTS OF FAÇADE OF COLONIAL BUILDINGS, CASE STUDY: PALM OIL RESEARCH CENTRE (PPKS) AND AGENCY OF SUMATERA PLANTATION COMPANIES (BKS - PPS) Diana Harefa*, Shanty Silitonga; Raimundus Pakpahan Architecture Department, Faculty of Engineering, Catholic University of Saint Thomas, Medan, North Sumatera Email: [email protected] ABSTRACT Dutch plantation expansion in the city of Medan left many historical buildings. The plantation building is a historical legacy that must be preserved. G.H Mulder was one of the architects of the time, with his work on the Palm Oil Research Center (PPKS) and the Sumatra Plantation Cooperation Agency (BKS-PPS). The facade is an inseparable element of the architectural product, which is the first element that we capture visually. This research studied and analyzed the elements of colonial architecture that form the facade of The Plantation Development of the Oil Palm Research Center (PPKS) and the building of the Sumatra Plantation Cooperation Agency (BKS-PPS). The research method used in this study is a qualitative method with variables such as walls, columns, doors, windows, vents, roofs, balcony, and ground floor zones. The study founded that the two estate buildings had the characteristics of the transitional colonial architectural period, accompanied by a grouping of similarities in the elements of the two facade. Despite having the same function, architect, and construction period, the two buildings still have differences in the characteristics in facade elements and the visual quality Keywords: Colonial building, Elements of façade INTRODUCTION is seen at first, the facade also displays the history of human civilization [1]. Medan is a historic city; it was known as Therefore, researchers are interested in Paris Van Sumatra.
    [Show full text]
  • Kalzip® Systems Products and Applications
    Kalzip® systems Products and applications 1 Kalzip GmbH 2020 Kalzip Systems Office building Messchenveld (NL) Profile type 65/400, RAL 9007 Architect: Axes Architecten, Assen Content Kalzip roof and façade systems The future of building 3 Sustainable building 4 Kalzip Products All systems in one view 6 Kalzip Liner roof system 12 Kalzip structural deck system 14 Kalzip Deck roof construction 16 Kalzip low U-value system 20 Kalzip DuoPlus and Kalzip Duo 22 Kalzip roof systems for residentials 26 Kalzip ProDach 30 Kalzip Vario LB roof refurbishment system 34 Kalzip + Foamglas® 40 Kalzip FlexiCon RR 80 42 Kalzip Additive Systeme Kalzip NatureRoof 44 Kalzip AluPlusSolar 48 Kalzip SolarClad 50 Additive systems and materials 52 Colours and surfaces 54 Rollforming 60 System components and accessories 62 Kalzip Service 63 2 Kalzip GmbH 2020 Products & Application Railway station Newport (UK), Profile type: 65/xtail, stucco-embossed Architect: Grimshaw Architects Innovative performance and proven system solutions for creative architectural design Creative people all over the world are opting Kalzip building systems meet the highest cons- for it, to implementable visionary high-tech truction physical and design requirements for architecture with Kalzip. Roofs and facades are the realisation of roofs and facades that are impressively set in scene through puristically functionally inspiring and visually appealing. elegant restraint or as a design element - Kalzip fascinate. creates solitaires, giving every building its own character. The result is buildings that set new Building with Kalzip also means being able to standards and are trend-setting in form and draw on many years of know-how. function.
    [Show full text]
  • ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS (Coverings of Outer Walls by Plaster Or Other Porous Material E04F 13/00)
    CPC - E04D - 2019.08 E04D ROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS (coverings of outer walls by plaster or other porous material E04F 13/00) Definition statement This place covers: Roof coverings including any similar kind of watertight covering against rain, snow, hail, or the like for other parts of buildings; sky-lights for flat or sloped roofs; roof drainage and gutters; roof-working tools References Limiting references This place does not cover: Coverings of outer walls by plaster of other porous material E04F 13/00 Informative references Attention is drawn to the following places, which may be of interest for search: Solar heat collectors on roofs F24S 20/67 Photovoltaic panels on or for roofs H02S 20/25 E04D 1/00 Roof covering by making use of tiles, slates, shingles, or other small roofing elements (roofing supports {or underlayers} E04D 12/00) Definition statement This place covers: Small roof covering elements, like grooved or vaulted tiles, slates, shingles (E04D 1/02 - E04D 1/22); Special small roof covering elements characterized by their structure or their purpose (E04D 1/24 - E04D 1/30); Fastenings for small roof covering elements and devices for sealing the spaces between small roof covering elements (E04D 1/34 - E04D 1/365). References Limiting references This place does not cover: Roofing supports and under-layers E04D 12/00 Informative references Attention is drawn to the following places, which may be of interest for search: Solar heat collectors in the form of shingles or tiles F24S 20/69 Photovoltaic panels on or for roofs H02S 20/23 Special rules of classification Use E04D 1/00 - E04D 1/36 to classify the additional non-inventive aspects 1 CPC - E04D - 2019.08 E04D 1/02 Grooved or vaulted roofing elements (E04D 1/28, E04D 1/30 take precedence) Definition statement This place covers: Small grooved or vaulted roof covering elements, like Spanish, Roman or Barrel tiles References Limiting references This place does not cover: Roofing elements comprising two or more layers, e.g.
    [Show full text]
  • Design Review District Design Manual 3Rd Edition Revised December 3, 2019 Design Review District Design Manual – 3Rd Edition
    Design Review District Design Manual 3rd Edition Revised December 3, 2019 Design Review District Design Manual – 3rd Edition Table of Contents The Vision for Pella………………………………………………………….……….. 2 Community Development Committee………………………………………………... 2 The Design Review Process…………………………………………………………... 3 Design Assistance…….………………………………………………………………. 5 Pictorial Examples of Commercial Dutch Architecture……………………………… 6 Typical Dutch Commercial Building Elements……………………………………… 12 Pictorial Examples of Typical Dutch Elements……………………………………… 13 Architectural Facades, Exterior Walls and Elevations……………………….……… 15 Gables………………………………………………………………………………… 15 Roofs…………………………………………………………………………………. 15 Shutters………………………………………………………………………………. 16 Attention to Detail……………………………………………………………………. 16 Variety in Design…………………………………………………………………….. 16 Architectural Colors…………………………………………………………………. 16 360 Degree Architecture……………………………………………………………… 17 360 Degree Architecture Example: Applebee’s …………………………………….. 18 Design Parameters for Metal Buildings in Periphery Areas…………………………. 19 Design Parameters for Large Commercial Buildings………………………………… 19 Design Guidelines for Non-Building Features……………………………………….. 21 Cart Corrals ………………………………………………………………………….. 21 Cart Storage ………………………………………………………………………… 22 Dumpster Enclosures…………………………………………………………………. 22 LED Lighting ………………………………………………………………………… 22 Signage Design Parameters…………………………………………………………… 23 Examples of Signage in the CBD District……………………………………………. 24 Examples of Signage in the CUC District……………………………………………. 26 Examples
    [Show full text]
  • The Rural Vernacular Habitat, a Heritage in Our Landscape
    FFuturopauturopa For a new vision of landscape and territory A Council of Europe Magazine no 1 / 2008 – English Landscape Territory Nature The rural vernacular habitat, Culture Heritage a heritage Human beings in our landscape Society Sustainable development Ethics Aesthetic Inhabitants Perception Inspiration Genius loci kg712953_Futuropa.indd 1 25/03/08 15:46:52 n o 1 – 2008 Chief Editors Robert Palmer Director of Culture and Cultural and FFuturopauturopa Natural Heritage of the Council of Europe Daniel Thérond Deputy Director of Culture and Cultural and Natural Heritage of the Council of Europe Editorial Director of publication Maguelonne Dejeant-Pons Gabriella Battani-Dragoni ..............................................................................3 Head of the Cultural Heritage, Landscape and Spatial Planning Presentation Division of the Council of Europe The vernacular rural heritage: from the past to the future With the cooperation of Alison Cardwell, Adminstrator, Franco Sangiorgi ..............................................................................................4 Cultural Heritage, Landscape and Spatial Planning Division Pascale Doré, Assistant, Cultural Rural Vernacular Heritage and Landscape in Europe Heritage, Landscape and Spatial Farms and landscape of the Netherlands: rural vernacular architecture Planning Division of the Low Countries Ellen Van Olst ...........................................................6 Concept and editing Barbara Howes The industrial architecture of the Llobregat valleys in Spain:
    [Show full text]
  • Type-Planned Houses
    Type-planned houses My intertextual study is about very common type of finnish house, better known as”veteran- house” or “type-planned house”. These houses were build after the Second World War and they were one of the key factors in solving the huge housing shortage after the war. Finland ceded most of Finnish Karelia, Salla, and Pechenga to Soviet Union and half a million people had to leave their homes. Over half of the evacuees were agricultural population. They received new farms in Southern Finland as compensation for their losses. The huge rebuilding project was organised by the government, helped by countless organisations. They promised land to war invalids, war widows and veterans with families. Sweden also donated 2000 houses after the war. The most important co-operator was the Finnish Association of Architects, whose members voluntarily and free of charge developed and designed type-planned houses and town plans. File was created for the publication of type- planned house blueprints, building instructions and individual standards. There were dozens of different models of the type-planned houses, but the most common model became the 1,5-storied clapboard house with a saddle roof. These houses spread from the rural Finland to population centres and towns. All in all, around 75.000 veteran’s houses were built during the reconstruction era 1940-1960. After the war Finland had a shortage of everything else, except land, timber and working hands. For example people re-used old nails, straightened them and nailed again and they mixed stones with concrete. For years, the industrial production went to the Soviet Union as war indemnities.
    [Show full text]
  • CWL0059 Project Planning
    GB Project Planning Risk Analysis Maintenance Plan Roof Shovelling Plan Retailer: © CWL 2016-10 This brochure is protected by copyright and may not be copied or reproduced without the written approval of CW Lundberg AB. The prohibition against copying applies to individual images and texts, entire paragraphs and to the document in its entirety. The information herein is subject to changes in construction, design or documentation made after this date. Content PROJECT PLANNING Project Planning RISK ANALYSIS Risk Analysis Risk Assessment Risk Inventorying MAINTENANCE Maintenance Instructions Maintenance Plan/Inspection Protocol ROOF SHOVELLING Roof Shovelling Plan Project Planning Upon Planning The developer shall ensure that a work environment plan is prepared and made available before the building site is established. The plan shall contain those measures that are to be taken in order for the working environment to be satisfactory. The plan must particularly take into account the risks present during construction such as roof work. The work environment plan may contain the requirement that the persons installing roof safety devices have the appropriate training. The work environment must always undergo a risk analysis in order to prevent illness and accidents from occurring at work. Upon Project Planning The property owner is responsible for the correct roof safety equipment being installed. The developer, along with the consultants he engages, shall ensure that the project planning is done in order to create the conditions necessary for a good working environment at and within the building structure, not only when it is being used but also during the construction period. The developer, along with the consultants he engages within their fields, shall create the conditions necessary to end up with a building with as few accident risks and other risks of injury as possible.
    [Show full text]
  • Protruding Saddle Roof Structure of Toraja, Minang and Toba Batak House: Learning from Traditional Structure System
    Protruding Saddle Roof Structure of Toraja, Minang and Toba Batak House: Learning from Traditional Structure System Esti Asih Nurdiah Department of Architecture, Faculty of Civil Engineering and Planning, Petra Christian University, Indonesia [email protected] ABSTRACT Structure system of Nusantara Architecture has been known for its durability. Traditional structure knowledge was passed from generation through folksong, storytelling or old verse. Toraja, Minang, and Toba Batak have similar house roof shape which is gable roof with protruding at the end like buffalo horn. The similarities in structural system need to be elaborate. This paper attempts to seek the structural system of Toraja, Minangkabau and Toba Batak house, especially the roof structure system. The research conducted to discover the similarities of the roof structure system, study the construction and tectonics, and also learn the load transfer. By learning from local knowledge of building structure system, people can learn to build new buildings using local wisdom, instead of only imitate the form. © 2011 12th SENVAR. All rights reserved. Keywords: Structure system, Toraja, Batak Toba, Minang house 1. Introduction Nusantara archipelago has thousands of islands which scattered in Pacific and Indian ocean. Indonesia itself has more than 13,000 islands, inhabited by many tribes with different culture, tradition and architecture. Moreover, the beauty and uniqueness of house form represent as identity for each tribe. Every tribe who lives in different location has different form and shape of house, especially the roof shape. The houses are the symbolic center of a web of customs, social relations, traditional laws, taboos, myths and religion (Dawson & Gillow, 1994:10) Structure system of Nusantara Architecture, which also known as traditional architecture, has been known for its durability.
    [Show full text]
  • “Keongan” Ventilation Roof on Local Houses in Semarang City Indonesia
    International Journal of Scientific and Research Publications, Volume 6, Issue 12, December 2016 130 ISSN 2250-3153 “Keongan” Ventilation Roof on Local Houses in Semarang City Indonesia Sukawi*, Agung Dwiyanto**, Suzanna Ratih Sari**, Gagoek Hardiman** * Study Program of D3 Architectural Design, Faculty of Engineering, Diponegoro University Semarang, Indonesia ** Department of Architecture, Faculty of Engineering, Diponegoro University Semarang, Indonesia Abstract- Keongan is a kind of roof ventilation usually used in indonesian local houses. In a humid tropical climate, in general, the building is designed with natural ventilation system that maximizes the speed of wind in order to cooling the building structure or reach the achievement of physiological comfort. Some of the building design features in a tropical climate, such as the existence of wide openings, roofs with a slope angle, have a plafond, and maximizing the shades around the building. The density of buildings is one of the factors which affect the principle of micro-climatic conditions and determine the conditions of ventilation and air temperature. Heat symptoms in main cities affected by urban density rather than the size of the city itself, the more dense, the worse the condition of the building ventilation. Architecture of buildings, tried to adapt to the nature and tried to blend with nature. Norms, customs, climate, culture, beliefs and local materials will be given its own color in the development of vernacular architecture. The long journey through trial and error with the local genius, is capable to displaying it’s identity. Several features of houses in Semarang Village include : symmetrical floorplans extends to the rear, circulation straight from front to rear, limasan roof or saddle roof, three openings (doors) on the facade, door consists of two doors, Ornaments eaves (lisplank) on the front facade, the Consul made of iron or wood with the formation of ornamentation, Ornaments on bouven above the door.
    [Show full text]
  • RUUKKI RWS SIBA Brochure 2017
    Original Scandinavian rainwater system Siba Siba Square Contents Siba rainwater systems 3 Measuring 15-16 Siba 4-9 Gutter brackets 18-19 Siba Square 10-11 Gutters 20-23 Materials 12 Angles 24 Technical specifications 13 Downpipes 24-25 Assembly instructions 14-25 Shoes 26 2 ORIGINAL SCANDINAVIAN RAINWATER SYSTEM Siba rainwater systems Rainwater systems not only drain storm water from the Our selection includes gutters, downpipes, gutter roof but they also contribute to the overall look of the brackets and innovative accessories in many sizes and building facade. Siba rainwater systems are a perfect colours. Our product range is available in round and match for all types of roofing including steel roofs, square variant. ceramic, asphalt, shingle, etc. Water is a fierce element; a single drop can break a rock. Siba constitutes a complete system comprising all Siba rainwater systems are therefore made of the best elements required to assemble ideal storm water materials available on the market. Our systems are made drainage system. of top grade Swedish steel. We offer our standardized steel systems in nine colours. Sophisticated and elegant solution for all types of roofs black* metallic graphite graphite* ~ RAL 9005 ~ RAL 9007 ~ RAL 7024 red brick metallic silver* ~ RAL 3009 ~ RAL 8004 ~ RAL 9006 chocolate brown dark brown white ~ RAL 8017 ~ RAL 8019 ~ RAL 9010 * colours available for SIBA Square ORIGINAL SCANDINAVIAN RAINWATER SYSTEM 3 A perfect harmony of aesthetics and functionality Siba Siba rainwater systems are suitable both for family houses and for larger agricultural, industrial and commercial structures. High-quality materials ensure precise finish and long service lifetime.
    [Show full text]
  • LITTLE CHUTE DESIGN MANUAL Adopted by the Village Board on August 26, 2009
    LITTLE CHUTE DESIGN MANUAL Adopted by the Village Board on August 26, 2009 The Vision for Little Chute Creating and retaining the vision of a heritage destination will become a critical challenge of Village of Little Chute government as the Village will become a tourist destination after the authentic, full-scale, working windmill is built in 2010. Working with developers to form new ideas in commercial and housing developments to achieve the character and identity of an established Old World European community while meeting business needs is often a delicate balance. It is the desire of this community to remain strong in its vision by retaining its long term integrity through the reflection of the buildings and signage in our community. With the following design parameters, the Village of Little Chute hopes to lay the groundwork necessary for you to become a working part of our community. Old World European architecture, colors and key building elements will be explained to help you make an informed decision about building anew or updating an existing business or sign in Little Chute. Purpose The purpose of this manual is to preserve, create, and promote the unique charm, atmosphere, quaint, and romantic character, natural beauty and historical aspects of the community. This design review shall relate to the proposed appearance, colors, texture, materials and architectural design of the exterior, including the front, sides, rear and roof of the proposed building as well as any signs, graphics, visual display, outdoor furniture or fixtures. Any new construction, additions, alterations, modifications or repairs to commercial structures or signs in the Central Business District are to be reviewed by the Design Review Board (DRB).
    [Show full text]
  • Installation Instructions Skylux Climax.Pdf
    CANOPY EN Climax® Installation instructions Self-supporting aluminium profile system Art.N° 36178 Safety Take the necessary and required safety precautions, such as safety nets and lifelines when installing from the outside, safety goggles, gloves, hard hat, etc. Do not step on the glass. Falling from height • When using ladders to go on the roof: - Ladder in good condition? - Set up correctly at an angle of 75°? - Secured below and on top against moving? - Don’t take heavy material with you on the ladder (3-point contact rule)! If possible, use a crane to lift the material. • If you are going on the roof, make sure there is a walking surface that is wide enough and that supports on the beams of the lower structure. • When using an aerial work platform: always wear and secure your harness (mandatory)! Leaving the cage is forbidden. • Never walk backwards on a roof, always walk forwards. • Make sure there’s enough light in the working zone. Low-hanging obstacles and falling loads • Forbidden to walk under or within a radius of 1 m of a hanging or lifted load. • Demarcate the danger zone below the zone where there is a risk of material falling down during the installation of the veranda. • It’s prohibited to enter these danger zones during construction. Crushing hazard • All working tools are in good condition, provided with a valid CE label and all necessary safety regulations. These cannot be removed. • People who use these working tools are educated for this purpose. Protections are always present on all working tools.
    [Show full text]