Pragian Boundary Stratotype (Lower Devonian)

Total Page:16

File Type:pdf, Size:1020Kb

Pragian Boundary Stratotype (Lower Devonian) Decis沙 on 嚓 Lochkovian A-W }j 一.rragian rDounciary Stratotype (Low er D evon ia n ) 妙 Ivo Chlup k and W illiam A . O liver, Jr. T he Global Stratotype Section and Point (G SSP) for the represent a p r o g r e s sio n from low to high energy environ- Lochkovian-Pragian Stage (m iddle Low er D evonian) has now m e n t s. C e rna ro kle h a s the best m egafauna w hile C ik5nka been agreed upon. The boundary is defined at the first Q uarry h a s t h e m o s t a b u n d a n t c o n o d o n t fauna. Velkg occurrence of the zone conodont Eognathodus sulcatus C h u c h le is inte rm e d ia te a nd w as s e le c te d as stratotype sulcatus at the base of bed 12 in the V elkfi C huchle Q uarry, b e c a u se of the good interm ixture of conodonts and m ega- 下丽万而rthwest part of Prague, Czechoslovakia. fo s s ils. R anges key species a t th e t hre e lo ca litie s a r e v e ry In tro du ctio n of sim ilar; a L each locality the 翌竺丝些 boundary is a sh o rt The Low er D evonian stages, from oldest to youngest, are d ist a n c e b e lo w t h e p reviously accepted m egafossil Lochkovian, P ragian, and Em sian. The base of the Loch- bounda四. ChlupA6 and others (1985) published e x t e n s iv e ko via n co inc ide s w ith the ba se o f th e L o w e r D evo n ian S eries range charts and lists of fossils from these a n d o t h e r and of the D evonian System and has been form ally defined boundary sections, together w ith discussions of the as the Silurian-D evonian boundary (M artinsson, ed., 1977). stratigraphic significance and usefulness of the m ajor groups The boundary betw een the Lochkovian and the Pragian is the of fossils of the Lochkovian-Pragian interval. subject of this paper. That betw een the Pragian and Em sian is undefined and is the subject of ongoing discussions w ithin T he boundary is closely related to an event-stratigraphy level of probable global im portance, nam ely the "Loch- the International Subcom m ission on D evonian Stratigraphy kovian-P ragian Boundary E vent," w hich, how ever, lies close (SD S), a unit of the International C om m ission on Stratig- above the Pragian base. T his event-boundary (m ost likely a raphy (ICS) of IU GS. The nam es of the Lower D evonian e u s ta t ic fall in sea level) m ay be useful i n identifying the Stages w ere adopted by SD S in 1983, recom m ended to IC S in w o rld w id e b ro a d e r boundary interval on . scale (co m pare 1984, and ratified by IU G S in 1985 (Bassett, 1985). ,a In Ia Johnson, M apper and the interval before Cycle In. R egional Setting Sandberg 1985, and applications the stratotype area, in C hlupA6 and K ukal 1986, 1988). Paleom agnetic studies a r e T he boundary beds have been studied in detail at several in progress by D r. M . K rs in Prague. P relim inary results localities in the B arrandian area, southw est of Prague su gg est t hat tne ve tKa 七h uc hle sec tio n ha s b ee n (F ig. 1). Three localities w ere described in detail by both rem agnetized. T he color alteration index of VelkA C buchle W eddigQ.0 987) and ChlupA6, Lukeg and W eddige (1988). The conodonts is 3 (Sch6nlaub, w ritten com m unication, 1989). three, C ernA rokle, V elkA C huchle and C ikfinka Q uarry, 乙少户 Prior to the nam ing of the Pragian Stage in 1958 and its -‘甲-厂一厂N ~es 尸‘es 一一-厂- 七产只代 了-又 acceptance by SD S in 1983, the "Siegenian Stage" w as used 芙 by m any w orkers for the m iddle stage o f the Low er 一 P R A H A D evonian. This w as based on benthic, near-shore fossils, p rincipally brachiopods, and w as sufficiently useful up to about 1950 w hen pelagic fossils such as conodonts began to V elk6 C hu chle predom inate in long-range correlations. W ith continuing I 伙a R B E R O U N 降 refinem ent of intercontinental correlations, it becam e clear 洲 马、 that the I'Siegenian Stage" could not be satisfactorily 冲创 defined in its type area (W est G erm any) and the shift to }1 P ragian resulted. R ecent studies in northern Spain, B rittany and W est G erm any show that the base of the Pragian is nearly correl- ative w ith the base of the "Siegenian" in the sense of C arls 。一}1_1 I (1987). O ne option w ould have been to select a G SSP for the R O K YC A N Y }! I 称舒 "Siegenian" in a pelagic facies (e.g., C zechoslovakia), but the SD S decision to use the term "Pragian" reflects the feeling that the term "Siegenian" is too closely regarded in 邓 term s of a R henish, near-shore clastic, benthic facies, 1 0 2 0 k m ‘ 一一一」 w hereas "P ragian" signifies a diverse fossil assem blage that includes w idespread pelagic fossils. 1田11 2F刀 3区次}注一墓 I I二口 6压 团 7国 。口 B oundary Stratotype (G SSP ) Figure 1 : Geographic and geologic setting of the stratotype section in the Barrandian area of cen tral T he position of the Lochkovian-Pragian boundary and the B oh em ia . 1 一 Pr o ter o zo ic , 2 - Cam b ria n , 3- O rd ov ic i an , G SSP for it w ere accepted by the International Subcom m is- 4- Silurian and Devonian, 5- m etamorphic Proterozoic sion on D evonian Stratigrap hy in A ugust-O ctober 1988, and and lower Paleozoic, 6- granitoids, 7- continental approved by the International C om m ission on Stratigraphy Upper Carboniferous, 8- 〔孕per Cretaceous and and ratified by the Executive C om m ittee of IU G S during Te rti a ry s ed im en ta ry r ock s . Januarv-F ebruary 1989. T he stratotype is to be m arked by E PISO D ES, Vol. 12, N o. 2, June 1989 1 0 9 a plaque w ith explanation, and a perm anent m etal line is to planes are knobby; the characteristic nodular structure is be inserted in the rock face at the boundary. M arking and developed in m icrites and biom icrites with Chondrites m aintenance w ill be done by the G eological Survey of burrow s that start 2 to 3 m above the stage boundary. C zechoslovakia, in collaboration w ith the C enter for Natural R eserves, also in Prague. B oundary L evel (base of Pragian) T he G SS P of the sulcatus boundary is in southw estern T he stage boundary w as chosen by SD S in 1988 to coincide Prague, in the secti而不r e_IkA C huchle (Fig. 1). This is an w ith the low er boundary of the Eognathodus sulcatus cono- old quarry 。。 ihp rnqri from Praha-VeIkA C huchle to dont Zone defined by the first occurrence of 互.一s ulca生us S liv e n e c o n V dolich Street V fdoli), 8 km southw est of the sulca生矍 P hilip, 1965. In som e discussions this has been city center. T he quarry is on the nature reserve called referred to as the sulcatus boundary. The E . sulcatus Z one "H om olka," in the district of Prague 5; the distance from a w as fi rst defined by Fahraeus, 1971, and has since been city bus term inus is about 400 m (Figs. 2 and 3). In the accepted as part of the standard conodont zonal sequence (K Iapper and Johnson, 1982). T he nam e taxon and zone are VeIk9 C huchle section, the stage boundary is defined as the base of B ed 12, at the first occurrence of E. suicatus now recognized in C zechoslovakia, G erm any, A ustria, su lc a tu s. C hina, A ustralia, U .S.A . (N evada, A laska) and C anada (see W eddige, 1987, p. 484-5, for details). A lthough nearly w orld-w ide in distribution, it has not yet been recorded or 一‘} M C I6 /“ recognized in the Soviet U nion or eastern N o rth A m erica. /下,‘,Ch些}I T hese are m ajor geograp hic gaps, but it seem s likely that 匕二,’ the form er, at least, w ill be filled. M axim um provincialism \ and inappropriate lithofacies in eastern N orth A m erica 、 爪 个 小个 小‘{ m ake it less likely that the zone w ill be recognized in this 。 __. ), area, but other criteria perm it approxim ate correlations.
Recommended publications
  • University of Michigan University Library
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN VOL. XI NO.6, pp. 101-157 (12 pk., 1 map) MARCH25, 1953 TRILOBITES OF THE DEVONIAN TRAVERSE GROUP OF MICHIGAN BY ERWIN C. STUMM UNIVERSITY OF MICHIGAN PRESS ANN ARBOR CONTMBUTIONS FROM THE MUSEUM OF PALEONTOLOGY UNIVERSITY OF MICHIGAN MUSEUM OF PALEONTOLOGY Director: LEWIS B. KELLUM The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and also to individuals upon request. Correspondence should be directed to the University of Michigan Press. A list of the separate papers in Volumes II-IX will be sent upon request. VOL. I. The Stratigraphy and Fauna of the Hackberry Stage of the Upper Devonian, by C. L. Fenton and M. A. Fenton. Pages xi+260. Cloth. $2.75. VOL. 11. Fourteen papers. Pages ix+240. Cloth. $3.00. Parts sold separately in paper covers. VOL. 111. Thirteen papers. Pages viii+275. Cloth. $3.50. Parts sold separately in paper covers. VOL. IV. Eighteen papers. Pages viiif295. Cloth. $3.50. Parts sold separately in paper covers, VOL. V. Twelve papers. Pages viii+318. Cloth. $3.50. Parts sold separately in paper covers. VOL. VI. Ten papers. Pages vii+336. Paper covers. $3.00. Parts sold separately. VOLS. VII-IX. Ten numbers each, sold separately. (Continued on inside back cover) VOL.
    [Show full text]
  • A New Species of Tiaracrinus from the Latest Emsian of Morocco and Its Phylogeny
    A new species of Tiaracrinus from the latest Emsian of Morocco and its phylogeny CHRISTIAN KLUG, KENNETH DE BAETS, CAROLE JUNE NAGLIK, and JOHNNY WATERS Klug, C., De Baets, K., Naglik, C.J., and Waters, J. 2014. A new species of Tiaracrinus from the latest Emsian of Morocco and its phylogeny. Acta Palaeontologica Polonica 59 (1): 135–145. We describe a new species of the unusual crinoid Tiaracrinus, T. jeanlemenni sp. nov. from the latest Emsian of the fa- mous mudmound locality Hamar Laghdad, Morocco. It differs from the previously known species in the higher number of ribs and the vaulted rib-fields, which is corroborated by the comparison of simple quantitative characters and ratios as well as by the results of a cluster analysis and a Principal Component Analysis. Based on the new material and the published specimens, we discuss the phylogeny of the genus and suggest that T. oehlerti and T. moravicus represent the ancestral forms of this small clade. Key words: Crinoidea, mudmounds, phylogeny, morphometry, symmetry, Devonian, Morocco. Christian Klug [[email protected]] and Carole J. Naglik [[email protected]], Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid-Strasse 4, CH-8006 Zürich, Switzerland; Kenneth De Baets [[email protected]], GeoZentrum Nordbayern, Fachgruppe PaläoUmwelt, Universität Erlan- gen, Loewenichstr. 28, D-91054 Erlangen, Germany; Johnny Waters [[email protected]], Department of Geology, Appalachian State University, ASU Box 32067, Boone, NC 28608-2067, USA. Received 30 November 2011, accepted 4 June 2012, available online 6 June 2012. Copyright © 2014 C. Klug et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Comments on the GSSP for the Basal Emsian Stage Boundary: the Need for Its Redefinition
    Comments on the GSSP for the basal Emsian stage boundary: the need for its redefinition PETER CARLS, LADISLAV SLAVÍK & JOSÉ I. VALENZUELA-RÍOS The redefinition of the lower boundary of a traditional stage by means of a GSSP must be adapted as closely as practica- ble to the traditional boundary level because divergence between the original sense of the stage concept and name and the new GSSP creates confusing nomenclature. The present GSSP for the lower boundary of the Emsian Stage in the Zinzilban section (Kitab Reserve, SE Uzbekistan) is too low in the section to fulfill this requirement. Accordingly, a re- definition of the boundary of the lower Emsian by the International Subcommission on Devonian Stratigraphy (SDS) and the IUGS Commission on Stratigraphy is necessary. A new GSSP must be defined at a higher level and this could be done in strata of the present stratotype area. The stratigraphic correlation of the traditional Lower Emsian boundary and the GSSP is based on Mauro-Ibero-Armorican and Rheno-Ardennan benthic and pelagic faunas. • Key words: Pragian-Emsian GSSP, Inter-regional correlation, biostratigraphy, GSSP redefinition. CARLS, P., SLAVÍK,L.&VALENZUELA-RÍOS, J.I. 2008. Comments on the GSSP for the basal Emsian stage boundary: the need for its redefinition. Bulletin of Geosciences 83(4), 383–390 (1 figure). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received July 3, 2008; accepted in revised form October 8, 2008; issued December 31, 2008. Peter Carls, Institut für Umweltgeologie, Technische Universität Braunschweig, Pockelsstrasse 3, D-38023 Braunschweig, Germany • Ladislav Slavík (corresponding author), Institute of Geology AS CR, v.v.i., Rozvojová 269, CZ-16502 Praha, Czech Republic; [email protected] • José Ignacio Valenzuela-Ríos, Department of Geology, Univer- sity of València, C/.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Lower Devonian (Emsian) Rugose Corals from the Cantabrian Mountains, Northern Spain
    Lower Devonian (Emsian) rugose corals from the Cantabrian Mountains, northern Spain STEFAN SCHRÖDER and FRANCISCO SOTO Schröder, S. and Soto, F. 2003. Lower Devonian (Emsian) rugose corals from the Cantabrian Mountains, northern Spain. Acta Palaeontologica Polonica 48 (4): 547–558. Two species of Lower Devonian rugose corals are described from the Cantabrian Mountains of Spain: Cantabriastraea cantabrica gen. et sp. nov. and Tabulophyllum bonarense sp. nov. The development of root− or buffer−like attachment structures (“rhizoid processes”) in T. bonarense indicates adaption to the soft substrate and supports corallite stabilisa− tion. Because of their strongly everted calices and a corresponding arrangement of trabeculae, the colonies of the genus Cantabriastraea are assigned tentatively to the Paradisphyllinae, constituting the first record of the subfamily in Western Europe. Some specimens give information on colony−formation of this taxon, which is induced by strong lateral budding (nonparricidal increase) of a remarkable large and long−lasting protocorallite. Key words: Rugosa, Cantabriastraea, Tabulophyllum, Devonian, Emsian, Cantabrian Mountains, ecology. Stefan Schröder [[email protected]], Geologisches Institut, Zülpicher Strasse 49A, D−50674 Köln, Germany; Francisco Soto [[email protected]],Departamento de Geologia,Universidad de Oviedo,c/ Arias de Velasco s/n, E−33005 Oviedo, Spain. Introduction Sedimentological investigations by Truyols et al. (1984), Keller (1988) and Vera de la Puente (1989) suggested that During the last 150 years a wide range of Palaeozoic fossils the lower part of the La Vid Group (Felmin Formation) cor− has been described from the Cantabrian Mountains and with responds to a supra−tidal environment, while the upper part regard to Devonian faunas the so−called “Sabero−fossils” are (La Pedrosa and Coladilla Formations) was deposited in a especially famous.
    [Show full text]
  • Adec Preview Generated PDF File
    Records of the Western Australian Museum 20: 353-378 (2002). Lower Devonian trilobites from Cobar, New South Wales MaIte Christian Ebach Present address: School of Botany, University of Melbourne, 3010, Australia Department of Earth and Planetary Sciences, Western Australian Museum, Francis Street Perth, Western Australia 6000, Australia e-mail: [email protected] Abstract -A Lower Devonian (Lochkovian-Pragian) trilobite fauna from the Biddabirra Formation near Cobar, New South Wales, Australia includes 11 previously undescribed species (Alberticoryphe sp., Cornuproetus sp., Gerastos sandfordi sp. nov., Cyphaspis mcnamarai sp. nov., Kainops cf. ekphymus, Paciphacops sp., AcantJwpyge (Lobopyge) edgecombei sp. nov., Crotalocephalus sp. and Leonaspis sp., a styginid sp., and a harpetid sp.). Three species belonging to the genera Paciphacops, Kainops, AcantJwpyge (Lobopyge), and Leonaspis are preserved with sufficient detail to provide enough information to be coded and analysed by two cladistic analyses. The resulting cladograms provide justification for the monophyly of Paciphacops and further support for Kainops. Leonaspis sp. is placed as the most plesiomorphic species within the monophyletic Leonaspis. INTRODUCTION P. crawfordae, P. waisfeldae and P. sp.). The Leonaspis The Lochkovian-Pragian Biddabirra Formation analysis, using Ramsk6ld and Chatterton's (1991) (Glen 1987) has yielded a trilobite fauna containing characters, includes Leonaspis sp. from Cobar. The twelve species, of which eleven have previously analysis will attempt to use species with more than been undescribed. The species include the 45% of their characters coded. fragmentary material of a styginid and harpetid, All photographed and type specimens are held in internal and external moulds of Alberticoryphe sp., the Australian Museum (prefix number AMF).
    [Show full text]
  • Evaluating the Frasnian-Famennian Mass Extinction: Comparing Brachiopod Faunas
    Evaluating the Frasnian-Famennian mass extinction: Comparing brachiopod faunas PAUL COPPER Copper, P. 1998. Evaluating the Frasnian-Famennian mass extinction: Comparing bra- chiopod faunas.- Acta Palaeontologica Polonica 43,2,137-154. The Frasnian-Famennian (F-F) mass extinctions saw the global loss of all genera belonging to the tropically confined order Atrypida (and Pentamerida): though Famen- nian forms have been reported in the literafure, none can be confirmed. Losses were more severe during the Givetian (including the extinction of the suborder Davidsoniidina, and the reduction of the suborder Lissatrypidina to a single genus),but ońgination rates in the remaining suborder surviving into the Frasnian kept the group alive, though much reduced in biodiversity from the late Earb and Middle Devonian. In the terminal phases of the late Palmatolepis rhenana and P linguifurmis zones at the end of the Frasnian, during which the last few Atrypidae dechned, no new genera originated, and thus the Atrypida were extĘated. There is no evidence for an abrupt termination of all lineages at the F-F boundary, nor that the Atrypida were abundant at this time, since all groups were in decline and impoverished. Atypida were well established in dysaerobic, muddy substrate, reef lagoonal and off-reef deeper water settings in the late Givetian and Frasnian, alongside a range of brachiopod orders which sailed through the F-F boundary: tropical shelf anoxia or hypońa seems implausible as a cause for aĘpid extinction. Glacial-interglacial climate cycles recorded in South Ameńca for the Late Devonian, and their synchronous global cooling effect in low latitudes, as well as loss of the reef habitat and shelf area reduction, remain as the most likely combined scenarios for the mass extinction events.
    [Show full text]
  • Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
    AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian
    [Show full text]
  • EDITORIAL NOTE Collection of Paleontology Papers in Honor of The
    Anais da Academia Brasileira de Ciências (2019) 91(Suppl. 2): e20191434 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201920191434 www.scielo.br/aabc | www.fb.com/aabcjournal EDITORIAL NOTE Collection of Paleontology Papers in honor of the Centenary of the Brazilian Academy of Sciences ALEXANDER W.A. KELLNER* and MARINA B. SOARES Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia do Museu Nacional/UFRJ, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil How to cite: KELLNER AWA AND SOARES MB. 2019. Collection of Paleontology Papers in honor of the Centenary of the Brazilian Academy of Sciences. An Acad Bras Cienc 91: e20191434. DOI 10.1590/0001-3765201920191434. The Brazilian Academy of Sciences is a non-profit organization (ABC 2019) that has completed one century of existence in 2016. A series of special publications was organized by the Annals of the Brazilian Academy of Sciences (AABC) in celebration of this important date (e.g., Kellner 2017, Crespilho 2018, Cavaleiro 2018). Here we have the pleasure to introduce the final of these volumes gathering 20 original contributions in paleontology, the science dedicated to the study of all evidences of life that have been preserved in layers of deep time. The topics presented here vary from the description of new species and specimens of flying reptiles, dinosaurs, and crocodylomorphs to studies on biogeography, osteohistology, and specific contributions provided by microfossils. Over 70 authors from different countries were involved in this volume, showing the increasing international integration of Brazilian paleontologists.
    [Show full text]
  • University of Alberta
    University of Alberta Select Devonian Proetid Trilobites of southern Morocco by Darrin Molinaro A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science Department of Earth and Atmospheric Sciences © Darrin Molinaro Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87864-4 Our file Notre reference ISBN: 978-0-494-87864-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]