Childhood Epidemics and the Demographic

Total Page:16

File Type:pdf, Size:1020Kb

Childhood Epidemics and the Demographic CHILDHOOD EPIDEMICS AND THE DEMOGRAPHIC LANDSCAPE OF THE ÅLAND ARCHIPELAGO ______________________________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia ______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy ______________________________________________________ by ERIN LEE MILLER Dr. Lisa Sattenspiel, Dissertation Supervisor MAY 2018 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled CHILDHOOD EPIDEMICS AND THE DEMOGRAPHIC LANDSCAPE OF THE ÅLAND ARCHIPELAGO presented by Erin Lee Miller, a candidate for the degree of Doctor of Philosophy, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Lisa Sattenspiel Professor Todd VanPool Professor Mary Shenk Professor Enid Schatz Associate Dean James Mielke, University of Kansas ACKNOWLEDGEMENTS This research was made possible by the aid and support of many friends, family, and colleagues over the years. I would first like to express my deepest appreciation to my committee chair Professor Lisa Sattenspiel. Without her guidance and support over the years, this dissertation would not have been possible. As a mentor, Dr. Sattenspiel has always had an open door and willingness to provide support for whatever path her students chose. I also owe thanks to my Dissertation Committee members, Professor Todd VanPool, Professor Mary Shenk, and Professor Enid Schatz, for their insight, guidance, and time through the research and writing process. The dedication of these professors has enriched my life professionally and inspired me personally. I owe special thanks to Associate Dean James Mielke (who also served on my Dissertation Committee) for providing archival records from Åland, Finland for the purposes of this research. I am grateful to Dr. Mielke and Dr. Kari Pitkänen (University of Jyväskylä, Finland) for working with me to better understand the archival records and the history of the Åland Islands. Dr. Pitkänen is owed additional thanks for providing translation references and assistance in the early stages of this project. In addition, I would like to thank Associate Professor Corey Sparks (University of Texas at San Antonio) for his instruction in adapting demographic methods for historical populations and encouragement during the dissertation process. I am also deeply grateful for the family and friends who provided the motivation and support needed to make it through graduate school. I would like to thank my parents; whose love and support are always with me. They provided financial, mental, and moral support through this long, and sometimes difficult, journey. Thank you to my sister, and ii best friend, who is always there for me no matter how far apart we are. To Kate Trusler, my inspiration fairy, who took time out of her days to provide encouragement and laughter with a few simple texts. Finally, to other family, friends, and colleagues who provided advice and support during this process, thank you. iii TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................................................................................................... ii LIST OF FIGURES ..................................................................................................................................................... v LIST OF TABLES ...................................................................................................................................................... vi ABSTRACT ............................................................................................................................................................... vii CHAPTER 1: INTRODUCTION ............................................................................................................................. 1 CHAPTER 2: USING AN ANTHROPOLOGICAL FRAMEWORK TO EXPLORE HISTORICAL EPIDEMICS ................................................................................................................................................................. 6 Sociocultural Approaches to Health and Disease ................................................................................ 7 Critical Medical Anthropology and the Social Determinants of Health ................................. 9 Syndemic Theory .................................................................................................................................... 11 Physical/Biological Approaches to Health and Disease................................................................. 12 Transition Theory: Perspectives from Demography and Epidemiology ............................. 14 Demographic transition theory ................................................................................................. 14 Epidemiological transition theory ........................................................................................... 17 CHAPTER 3: THE ÅLAND ARCHIPELAGO ................................................................................................... 22 Åland Households and Communities: An Overview ....................................................................... 26 Pre-20th Century Åland, Finland: Demography, Mortality, and Epidemiology .................... 29 CHPATER 4: MEASLES ........................................................................................................................................ 37 The Biology of Infection ............................................................................................................................. 38 Syndemic Interactions ................................................................................................................................ 40 Comparing Measles and Smallpox ......................................................................................................... 43 Measles Epidemiology: Quantitative Studies .................................................................................... 46 CHAPTER 5: THE ARCHIVES OF ÅLAND ..................................................................................................... 50 Translating Causes of Death ..................................................................................................................... 52 Understanding Archival Data in Demographic Research ............................................................. 55 iv CHAPTER 6: METHODS ...................................................................................................................................... 57 Graphic Analyses: Identifying Epidemics and Non-epidemics .................................................. 58 Age-specific Death Rates: Bridging Gaps in Data ............................................................................. 59 Excess Mortality and Frequency Analysis .......................................................................................... 62 Demographic Impacts of Epidemic Mortality ................................................................................... 65 CHAPTER 7: RESULTS ........................................................................................................................................ 67 Age-specific Death Rates ............................................................................................................................ 70 Excess Mortality and Frequency Analysis .......................................................................................... 73 Long-term Demographic Consequences of Epidemic Mortality ................................................ 83 CHAPTER 8: DISCUSSION AND CONCLUSIONS ........................................................................................ 93 Excess Mortality ............................................................................................................................................ 94 Infant mortality ...................................................................................................................................... 95 Excess mortality at ages 1-9 .............................................................................................................. 96 Excess mortality for individuals 50 years and older ................................................................. 97 Demographic Impacts of Epidemic Mortality ................................................................................... 99 Implications, Limitations, and Conclusions .................................................................................... 104 REFERENCES ....................................................................................................................................................... 107 APPENDIX A: Cause of Death (COD) Translations: Some Examples ............................................. 124 APPENDIX B: Age-specific Death Rates by Study Period Only ........................................................ 125 APPENDIX C: Infant Mortality Rate Confidence Intervals ................................................................ 128 APPENDIX D: Life Tables ................................................................................................................................ 130 VITA ........................................................................................................................................................................
Recommended publications
  • STI Screening Timetable
    Patient Education Information from University Health Center’s STI Screening Clinic Page 1 of 1 STI Screening Timetable How long until STI (sexually transmitted infection) screening tests turn positive? How long until STI symptoms might show up? The time between infection and a positive test, or between infection and symptoms, is variable and depends on many factors, including the behavior of the infectious agent, how and where the body is infected, and the state of a person’s immune system and personal health. Many STIs don’t have any symptoms. The incubation period times listed in the chart below are averages only. If you have further questions or concerns, you can schedule an appointment with a clinician at 541-346-2770. STI screening test Window period (time from exposure until Incubation period (time between exposure and screening test turns positive) when symptoms appear) Chlamydia (urine specimen or swab of 1 week most of the time Often no symptoms vagina, rectum, throat) 2 weeks catches almost all 1-3 weeks on average Gonorrhea (urine specimen on swab of 1 week most of the time Often no symptoms, especially vaginal vagina, rectum, throat) 2 weeks catches almost all infections usually within 2-8 days but can be up to 2 weeks Syphilis (blood test, RPR) 1 month catches most Often symptoms too mild to notice 3 months catches almost all 10-90 days average 21 days HIV (oral cheek swab) 1 month catches most Sometimes mild body aches and fever within 1-2 3 months catches almost all weeks then can be months to years HIV (blood test, antigen/antibody
    [Show full text]
  • Incubation Period and Other Epidemiological
    Journal of Clinical Medicine Article Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data 1, 1, 1 1 Natalie M. Linton y , Tetsuro Kobayashi y, Yichi Yang , Katsuma Hayashi , Andrei R. Akhmetzhanov 1 , Sung-mok Jung 1 , Baoyin Yuan 1, Ryo Kinoshita 1 and Hiroshi Nishiura 1,2,* 1 Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan; [email protected] (N.M.L.); [email protected] (T.K.); [email protected] (Y.Y.); katsuma5miff[email protected] (K.H.); [email protected] (A.R.A.); [email protected] (S.-m.J.); [email protected] (B.Y.); [email protected] (R.K.) 2 Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan * Correspondence: [email protected]; Tel.: +81-11-706-5066 These authors contributed equally to this work. y Received: 25 January 2020; Accepted: 10 February 2020; Published: 17 February 2020 Abstract: The geographic spread of 2019 novel coronavirus (COVID-19) infections from the epicenter of Wuhan, China, has provided an opportunity to study the natural history of the recently emerged virus. Using publicly available event-date data from the ongoing epidemic, the present study investigated the incubation period and other time intervals that govern the epidemiological dynamics of COVID-19 infections. Our results show that the incubation period falls within the range of 2–14 days with 95% confidence and has a mean of around 5 days when approximated using the best-fit lognormal distribution.
    [Show full text]
  • Population Behavioural Dynamics Can Mediate the Persistence
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.03.21256551; this version posted May 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 1 Population behavioural dynamics can mediate the 2 persistence of emerging infectious diseases 1;∗ 1 1 2 3 Kathyrn R Fair , Vadim A Karatayev , Madhur Anand , Chris T Bauch 4 1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1 5 2 Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 6 3G1 7 *[email protected] 8 Abstract 9 The critical community size (CCS) is the minimum closed population size in which a 10 pathogen can persist indefinitely. Below this threshold, stochastic extinction eventu- 11 ally causes pathogen extinction. Here we use a simulation model to explore behaviour- 12 mediated persistence: a novel mechanism by which the population response to the pathogen 13 determines the CCS. We model severe coronavirus 2 (SARS-CoV-2) transmission and 14 non-pharmaceutical interventions (NPIs) in a population where both individuals and gov- 15 ernment authorities restrict transmission more strongly when SARS-CoV-2 case numbers 16 are higher. This results in a coupled human-environment feedback between disease dy- 17 namics and population behaviour. In a parameter regime corresponding to a moderate 18 population response, this feedback allows SARS-CoV-2 to avoid extinction in the trough 19 of pandemic waves.
    [Show full text]
  • Population Behavioural Dynamics Can Mediate the Persistence of Emerging Infectious Diseases
    1 Supplementary information - Population behavioural dynamics can mediate the persistence of emerging infectious diseases Kathyrn R Fair1;∗, Vadim A Karatayev1, Madhur Anand1, Chris T Bauch2 1 School of Environmental Sciences, University of Guelph, Guelph, ON, Canada, N1G 2W1 2 Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada, N2L 3G1 *[email protected] 2 Supplementary methods Within the model, individuals states are updated based on the following events: 1. Exposure: fS; ·} individuals are exposed to SARS-CoV-2 with probability λ(t), shifting to fE; ·}. 2. Onset of infectious period: fE; ·} individuals become pre-symptomatic and infectious with probability (1 − π)α, shifting to fP; ·}. Alternatively, they become asymptomatic and infectious (with probability πα), shifting to fA; ·}. 3. Onset of symptoms: fP; ·} individuals become symptomatic with probability σ, shifting to fI; ·}. 4. Testing: fI;Ug individuals are tested with probability τI shifting to fI;Kg. 5. Removal: fI; ·} and fA; ·} individuals cease to be infectious with probability ρ, shifting to fR; ·}. With probability m = 0:0066 [1], individuals transitioning from the symptomatic and infec- tious state (fI; ·}) to the removed (i.e. no longer infectious) state are assigned as COVID-19 deaths. Individuals who have died due to COVID-19 do not factor into subsequent birth and non-COVID-19 death calculations. At the onset of infectiousness, newly infected individuals have a probability s = 0:2 of being assigned as super-spreaders [2]. We differentiate between super-spreaders and non-super-spreaders using subscripts (s and ns respectively), such that we have Ps, Pns, As, Ans, Is, Ins. Super-spreaders have their probability of infecting others increased by a factor of (1 − s)=s.
    [Show full text]
  • Using Proper Mean Generation Intervals in Modeling of COVID-19
    ORIGINAL RESEARCH published: 05 July 2021 doi: 10.3389/fpubh.2021.691262 Using Proper Mean Generation Intervals in Modeling of COVID-19 Xiujuan Tang 1, Salihu S. Musa 2,3, Shi Zhao 4,5, Shujiang Mei 1 and Daihai He 2* 1 Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, 3 Department of Mathematics, Kano University of Science and Technology, Wudil, Nigeria, 4 The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China, 5 Shenzhen Research Institute of Chinese University of Hong Kong, Shenzhen, China In susceptible–exposed–infectious–recovered (SEIR) epidemic models, with the exponentially distributed duration of exposed/infectious statuses, the mean generation interval (GI, time lag between infections of a primary case and its secondary case) equals the mean latent period (LP) plus the mean infectious period (IP). It was widely reported that the GI for COVID-19 is as short as 5 days. However, many works in top journals used longer LP or IP with the sum (i.e., GI), e.g., >7 days. This discrepancy will lead to overestimated basic reproductive number and exaggerated expectation of Edited by: infection attack rate (AR) and control efficacy. We argue that it is important to use Reza Lashgari, suitable epidemiological parameter values for proper estimation/prediction. Furthermore, Institute for Research in Fundamental we propose an epidemic model to assess the transmission dynamics of COVID-19 Sciences, Iran for Belgium, Israel, and the United Arab Emirates (UAE).
    [Show full text]
  • Malaria and COVID-19: Common and Different Findings
    Tropical Medicine and Infectious Disease Viewpoint Malaria and COVID-19: Common and Different Findings Francesco Di Gennaro 1 , Claudia Marotta 1,*, Pietro Locantore 2, Damiano Pizzol 3 and Giovanni Putoto 1 1 Operational Research Unit, Doctors with Africa CUAMM, 35121 Padova, Italy; [email protected] (F.D.G.); [email protected] (G.P.) 2 Institute of Endocrinology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; [email protected] 3 Italian Agency for Development Cooperation, Khartoum 79371, Sudan; [email protected] * Correspondence: [email protected] or [email protected] Received: 31 July 2020; Accepted: 3 September 2020; Published: 6 September 2020 Abstract: Malaria and COVID-19 may have similar aspects and seem to have a strong potential for mutual influence. They have already caused millions of deaths, and the regions where malaria is endemic are at risk of further suffering from the consequences of COVID-19 due to mutual side effects, such as less access to treatment for patients with malaria due to the fear of access to healthcare centers leading to diagnostic delays and worse outcomes. Moreover, the similar and generic symptoms make it harder to achieve an immediate diagnosis. Healthcare systems and professionals will face a great challenge in the case of a COVID-19 and malaria syndemic. Here, we present an overview of common and different findings for both diseases with possible mutual influences of one on the other, especially in countries with limited resources. Keywords: malaria; SARS-CoV-2; COVID-19; preparedness; Africa; emergency; pandemic 1. Background On 11 March 2020, the WHO declared the outbreak of SARS-CoV-2 to be a pandemic infection.
    [Show full text]
  • Prediction of the Incubation Period for COVID-19 and Future Virus Disease Outbreaks Ayal B
    Gussow et al. BMC Biology (2020) 18:186 https://doi.org/10.1186/s12915-020-00919-9 RESEARCH ARTICLE Open Access Prediction of the incubation period for COVID-19 and future virus disease outbreaks Ayal B. Gussow†, Noam Auslander*†, Yuri I. Wolf and Eugene V. Koonin* Abstract Background: A crucial factor in mitigating respiratory viral outbreaks is early determination of the duration of the incubation period and, accordingly, the required quarantine time for potentially exposed individuals. At the time of the COVID-19 pandemic, optimization of quarantine regimes becomes paramount for public health, societal well- being, and global economy. However, biological factors that determine the duration of the virus incubation period remain poorly understood. Results: We demonstrate a strong positive correlation between the length of the incubation period and disease severity for a wide range of human pathogenic viruses. Using a machine learning approach, we develop a predictive model that accurately estimates, solely from several virus genome features, in particular, the number of protein-coding genes and the GC content, the incubation time ranges for diverse human pathogenic RNA viruses including SARS-CoV-2. The predictive approach described here can directly help in establishing the appropriate quarantine durations and thus facilitate controlling future outbreaks. Conclusions: The length of the incubation period in viral diseases strongly correlates with disease severity, emphasizing the biological and epidemiological importance of the incubation period. Perhaps, surprisingly, incubation times of pathogenic RNA viruses can be accurately predicted solely from generic features of virus genomes. Elucidation of the biological underpinnings of the connections between these features and disease progression can be expected to reveal key aspects of virus pathogenesis.
    [Show full text]
  • Sexually Transmitted Infections Treatment Guidelines, 2021
    Morbidity and Mortality Weekly Report Recommendations and Reports / Vol. 70 / No. 4 July 23, 2021 Sexually Transmitted Infections Treatment Guidelines, 2021 U.S. Department of Health and Human Services Centers for Disease Control and Prevention Recommendations and Reports CONTENTS Introduction ............................................................................................................1 Methods ....................................................................................................................1 Clinical Prevention Guidance ............................................................................2 STI Detection Among Special Populations ............................................... 11 HIV Infection ......................................................................................................... 24 Diseases Characterized by Genital, Anal, or Perianal Ulcers ............... 27 Syphilis ................................................................................................................... 39 Management of Persons Who Have a History of Penicillin Allergy .. 56 Diseases Characterized by Urethritis and Cervicitis ............................... 60 Chlamydial Infections ....................................................................................... 65 Gonococcal Infections ...................................................................................... 71 Mycoplasma genitalium .................................................................................... 80 Diseases Characterized
    [Show full text]
  • Intersecting Infections of Public Health Significance Page I Intersecting Infections of Public Health Significance
    Intersecting Infections of Public Health Significance Page i Intersecting Infections of Public Health Significance The Epidemiology of HIV, Viral Hepatitis, Sexually Transmitted Diseases, and Tuberculosis in King County 2008 Intersecting Infections of Public Health Significance was supported by a cooperative agreement from the Centers for Disease Control and Prevention Published December 2009 Alternate formats of this report are available upon request Intersecting Infections of Public Health Significance Page ii David Fleming, MD, Director Jeffrey Duchin, MD, Director, Communicable Disease Epidemiology & Immunization Program Matthew Golden, MD, MPH, Director, STD Program Masa Narita, MD, Director, TB Program Robert Wood, MD, Director, HIV/AIDS Program Prepared by: Hanne Thiede, DVM, MPH Elizabeth Barash, MPH Jim Kent, MS Jane Koehler, DVM, MPH Other contributors: Amy Bennett, MPH Richard Burt, PhD Susan Buskin, PhD, MPH Christina Thibault, MPH Roxanne Pieper Kerani, PhD Eyal Oren, MS Shelly McKeirnan, RN, MPH Amy Laurent, MSPH Cover design and formatting by Tanya Hunnell The report is available at www.kingcounty.gov/health/hiv For additional copies of this report contact: HIV/AIDS Epidemiology Program Public Health – Seattle & King County 400 Yesler Way, 3rd Floor Seattle, WA 98104 206-296-4645 Intersecting Infections of Public Health Significance Page iii Table of Contents INDEX OF TABLES AND FIGURES ········································································ vi EXECUTIVE SUMMARY ······················································································
    [Show full text]
  • Chlamydial Genital Infection(Chlamydia Trachomatis)
    Chlamydial Genital Infection (Chlamydia trachomatis) February 2003 1) THE DISEASE AND ITS EPIDEMIOLOGY A. Etiologic Agent Chlamydial genital infection (CGI) is caused by the obligate, intracellular bacterium Chlamydia trachomatis immunotypes D through K. B. Clinical Description and Laboratory Diagnosis A sexually transmitted genital infection that manifests in males primarily as urethritis and in females as mucopurulent cervicitis. Clinical manifestations are difficult to distinguish from gonorrhea. Males may present with a mucopurulent discharges of scanty to moderate quantity, urethral itching and dysuria. Asymptomatic infection may be found in 1%-25% of sexually active men. Possible complications include epididymitis, infertility and Reiter syndrome. Anorectal intercourse may result in chlamydial proctitis. Women frequently present with a mucopurulent endocervical discharge including edema, erythema and easily induced endocervical bleeding. However, most women with endocervical or urethral infections are asymptomatic. Possible complications include salpingitis with subsequent risk of infertility and ectopic pregnancy. Asymptomatic chronic infections of the endometrium and fallopian tubes may lead to the same outcomes. Less frequent manifestations include bartholinitis, urethral syndrome with dysuria and pyuria, perihepatitis (Fitz-Hugh-Curtis syndrome), and proctitis. Infection during pregnancy may result in premature rupture of membranes and preterm delivery and conjunctival and pneumonic infection of the newborn. Laboratory diagnosis is based upon the identification of Chlamydia in intraurethral or endocervical smear by direct immunofluorescence test, enzyme immunoassay, DNA probe, and nucleic acid amplification test (NAAT) or cell culture. NAAT can be used with urine specimens. C. Vectors and Reservoirs Humans. D. Modes of Transmission By sexual contact and through perinatal exposure to the mother’s infected cervix.
    [Show full text]
  • Modeling Infectious Disease Dynamics in the Complex Landscape of Global Health Hans Heesterbeek Et Al
    RESEARCH ◥ REVIEW SUMMARY linear systems in which infections evolve and spread and where key events can be governed by unpredictable pathogen biology or human EPIDEMIOLOGY behavior. In this Review, we start with an ex- amination of real-time outbreak response using the West African Ebola epidemic as an Modeling infectious disease dynamics example. Here, the challenges range from un- ◥ derreporting of cases and in the complex landscape of ON OUR WEB SITE deaths, and missing infor- Read the full article mation on the impact of at http://dx.doi. control measures to under- global health org/10.1126/ standing human responses. science.aaa4339 The possibility of future .................................................. Hans Heesterbeek,* Roy M. Anderson, Viggo Andreasen, Shweta Bansal, zoonoses tests our ability Daniela De Angelis, Chris Dye, Ken T. D. Eames, W. John Edmunds, to detect anomalous outbreaks and to esti- Simon D. W. Frost, Sebastian Funk, T. Deirdre Hollingsworth, Thomas House, mate human-to-human transmissibility against Valerie Isham, Petra Klepac, Justin Lessler, James O. Lloyd-Smith, C. Jessica E. Metcalf, a backdrop of ongoing zoonotic spillover while Denis Mollison, Lorenzo Pellis, Juliet R. C. Pulliam, Mick G. Roberts, also assessing the risk of more dangerous Cecile Viboud, Isaac Newton Institute IDD Collaboration strains evolving. Increased understanding of the dynamics of infections in food webs and BACKGROUND: Despitemanynotablesuc- lenges for prevention and control. Faced with ecosystems where host and nonhost species cesses in prevention and control, infectious this complexity, mathematical models offer interact is key. Simultaneous multispecies diseases remain an enormous threat to human valuable tools for understanding epidemio- infections are increasingly recognized as a and animal health.
    [Show full text]
  • Incubation Periods Impact the Spatial Predictability of Cholera and Ebola Outbreaks in Sierra Leone
    Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone Rebecca Kahna,1, Corey M. Peaka,1, Juan Fernández-Graciaa,b, Alexandra Hillc, Amara Jambaid, Louisa Gandae, Marcia C. Castrof, and Caroline O. Buckeea,2 aCenter for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115; bInstitute for Cross-Disciplinary Physics and Complex Systems, Universitat de les Illes Balears - Consell Superior d’Investigacions Científiques, E-07122 Palma de Mallorca, Spain; cDisease Control in Humanitarian Emergencies, World Health Organization, CH-1211 Geneva 27, Switzerland; dDisease Control and Prevention, Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone FPGG+89; eCountry Office, World Health Organization, Freetown, Sierra Leone FPGG+89; and fDepartment of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved January 22, 2020 (received for review July 29, 2019) Forecasting the spatiotemporal spread of infectious diseases during total number of secondary infections by an infectious individual in an outbreak is an important component of epidemic response. a completely susceptible population (i.e., R0) (13, 14). Indeed, the However, it remains challenging both methodologically and with basis of contact tracing protocols during an outbreak reflects the respect to data requirements, as disease spread is influenced by need to identify and contain individuals during the incubation numerous factors, including the pathogen’s underlying transmission period, and the relative effectiveness of interventions such as parameters and epidemiological dynamics, social networks and pop- symptom monitoring or quarantine significantly depends on the ulation connectivity, and environmental conditions.
    [Show full text]