Are Stygofauna Really Protected in Western Australia?

Total Page:16

File Type:pdf, Size:1020Kb

Are Stygofauna Really Protected in Western Australia? MBMB BOREBORE Are Stygofauna Really Protected In Western Australia? PERCIFORMES DECAPODA by Sarah Elizabeth Goater BSc(Env) Hons. This thesis is presented for the degree of Doctor of Philosophy DSO BORE The University of Western Australia School of Animal Biology and Law School August 2009 i ABSTRACT The question of whether the regulatory framework in Western Australia (WA) - ostensibly designed to protect stygofauna - really achieves that objective is the subject of my thesis. In WA, there is heavy reliance on groundwater resources for human consumption, irrigation, stock and industrial uses as they provide a relatively cheap and low-risk source of suitable water. At the same time, these systems provide refuge and habitat for subterranean aquatic fauna (stygofauna) intrinsically reliant on the sustainable management of these resources. Consequently, conflict now exists over prioritising the use of ground water for human consumption and restricting supply to maintain ecosystem functions without causing deleterious changes. Addressing this conflict in WA is the joint responsibility of the Water Corporation of WA (the Government-owned water services provider) and the relevant regulatory decision-making authorities: the Department of Water (DoW), the Department of Environment and Conservation (DEC) and the Environmental Protection Authority (EPA). I have adopted a multidiscipline approach in the development of my hypothesis, generating discussion from the nexus of legal and scientific fields. My primary focus throughout was to identify and test the efficacy of both the relevant legislation and also the regulatory management tools in place to provide for the direct and indirect protection of stygofauna in WA. To strengthen and focus my approach, I anchored my investigations to a case-study of 8 years monitoring data collected from the Corporation’s Exmouth water supply borefield. The data set is a product of the Corporation’s regulatory obligations to protect stygofauna locally at Exmouth, but equally reflects a prevailing scientific paradigm of the early 1990s applied to the north-west of WA as the stygofauna of the region became internationally recognised. Consequently, I followed two approaches; covering both legal and scientific aspects. I based my analysis of the legal and regulatory tools on an exhaustive search of the statutory, administrative and case-study material publicly available, supplemented by correspondence within and between relevant agencies (Chapter 2). I then tested the efficacy of these legislative and regulatory controls against a post-hoc evaluation of the 8 year-long monitoring dataset, using scientific protocols to identify and highlight assumptions, limitations and statistical rigour of the sampling design and techniques (Chapters 3- 4). My case-study findings applied to the Exmouth borefield show that, while legislative tools are in place to meet the overall objective of stygofauna protection, the regulatory framework in place to administer them combined with a dearth of local knowledge on stygofauna biology, ultimately hinders effective protective measures from being realised. My investigation highlights the reality and consequences of not developing clear, strategic objectives on why and how effective protection of stygofauna is going to be achieved though all phases of a proposed project, from scoping a ii proposed development through to on-going, long-term operation, or to short-term decommissioning requirements. In Chapter 5, I take a broader perspective of my case-study findings to deliberate briefly whether, in fact, the overall objective of protection of stygofauna in WA is being realised. A summary of my findings is as follows. 1) While legislation does exist in WA to protect all forms of stygofauna directly, these statutory tools are currently not used to full effect, as stygofauna in WA are not universally subject to the same suite of environmental laws as other surface-dwelling or vertebrate biota, confounded by inconsistencies between relevant statutory and policy objectives. 2) Regulatory mechanisms to protect stygofauna indirectly (via protection of the groundwater resources upon which they depend) are limited by focused application to large-scale projects, as opposed to a state-wide or catchment-scale approaches, and rely heavily on project specific environmental commitments set to ‘protect and maintain’ local stygofauna populations. 3) The underlying objective of environmental commitments to ‘protect and maintain’ stygofauna populations cannot be met using traditional sampling methods due to a distinct absence of knowledge of the ecological and biological drivers of species richness and abundances changes in the monitoring data. 4) Little consideration is given to competing priorities between environmental laws for the protection of stygofauna, and those promoting groundwater resources developments for human use, highlighting the need for a multi-discipline approach to stygofauna conservation in WA. Consequently, I conclude that the current regulatory frameworks to conserve stygofauna in WA and the groundwater resources they depend upon do not provide adequately for their protection. The inadequacy of the current framework reflects prevailing societal conscience, combined with limited integration of legal and biological tools to implement effective management practices. Thus, I propose here a proactive new adaptive management system to research, evaluate and protect stygofauna collectively in WA. iii TABLE OF CONTENTS TITLE PAGE ABSTRACT i TABLE OF CONTENTS iii SPECIES CITED IN THE TEXT, WITH AUTHORITIES v ABBREVIATED TERMS CITEDIN THE TEXT vii PROLOGUE ix ACKNOWLEDGEMENTS xi STATEMENT OF CANDIDATE’S CONTRIBUTION xiii CHAPTER 1: ARE STYGOFAUNA REALLY PROTECTED IN WA? 1. INTRODUCTION .......................................................................................................................... 1 1.1. ENVIRONMENTAL LAW IN AUSTRALIA ............................................................................... 1 1.2. A MULTIDISCIPLINE APPROACH IS REQUIRED ................................................................... 2 1.3. DECISION-MAKING AUTHORITIES IN WESTERN AUSTRALIA......................................... 2 1.4. STYGOFAUNA RESEARCH ........................................................................................................ 3 1.5. GROUNDWATER AS A RESERVOIR, A HABITAT, AND A RESOURCE ............................ 5 1.6. INTERNATIONAL POLICY FOR GROUNWATER DEPENDENT ECOSYSTEMS ............... 8 1.7. A NATIONAL APPROACH TOWARDS PROTECTING GROUNDWATER FAUNA ............. 9 1.8. WA POLICY FOR THE PROTECTION OF STYGOFAUNA .................................................... 12 1.9. SOCIAL DETERMINANTS OF STYGOFAUNA PROTECTION IN AUSTRALIA .............. 13 1.10. CASE-STUDY EXAMPLE: EXMOUTH, NORTH-WESTERN AUSTRALIA ......................... 14 1.11. THE EXMOUTH GROUNDWATER RESOURCE .................................................................... 15 1.12. THE CAPE RANGE GROUP STYGOFAUNA .......................................................................... 19 1.13. HYPOTHESIS .............................................................................................................................. 21 1.14. THESIS STRUCTURE AND OBJECTIVES ............................................................................... 21 CHAPTER 2: WHY THE WATER CORPORATION IS REQUIRED TO MONITOR STYGOFAUNA WITHIN THE EXMOUTH BOREFIELD 2. INTRODUCTION ......................................................................................................................... 27 2.1. CHANGES IN WA GROUNDWATER ADMINSTRATIVE BODIES ........................... 28 2.2. DIRECT LEGISLATIVE PROTECTION OF STYGOFAUNA .................................................. 28 2.3. INDIRECT LEGISLATIVE PROTECTION OF STYOGAUNA ................................................ 32 2.4. CONFLICTS BETWEEN PROTECTING HUMAN HEALTH & STYGOFAUNA ................. 34 2.5. EPA ASSESSMENT AND MINISTERIAL ENVIRONMENTAL COMMITMENTS ............... 36 2.6. IMPLICATIONS OF CHANGES IN LEGISLATION ................................................................. 39 iv 2.7. DISCUSSION ............................................................................................................................... 48 2.8. CASE-STUDY APPROACH ........................................................................................................ 52 CHAPTER 3: CAN A CHANGE IN STYGOFAUNA POPULATIONS WITHIN THE EXMOUTH BOREFIELD BE DETECTED FROM MONITORING PROTOCOLS IN PLACE? 3. INTRODUCTION ......................................................................................................................... 55 3.1. METHODS ................................................................................................................................... 58 3.2. RESULTS ..................................................................................................................................... 61 3.3. DISCUSSION ............................................................................................................................... 67 3.4. RECOMMENDATIONS ............................................................................................................. 73 CHAPTER 4: IS SALINITY AN EFFECTIVE CRITERION TO TRIGGER MANAGEMENT ACTIONS FOR STYGOFAUNA PROTECTION WITHIN THE EXMOUTH BOREFIELD? 4. INTRODUCTION ........................................................................................................................
Recommended publications
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Adec Preview Generated PDF File
    Records ofthc ¥Yestelll AlIstral/{1Il MlIsclIlIl19: 4h9-472 (1999) Short communication The distribution of Australian cave fishes W.F. Humphreys Museum of Natural Science, Western Australian Museum, Francis Street, Perth, Western Australia hOOD, Australia INTRODUCTION Barrow Island stygofauna have been sampled Worldwide only 84 species of fish are known to widely (W.F. Humphreys, unpublished). occur in hypogean waters with 13 instances of two The number of sites from which M. veritas has species and three instances of three species been recorded has increased steadily over time occurring in sympatry (Proudlove 1997; G.S. (Table 1: bottom line) and there is still an upward Proudlove, pers. comm. 1999). Two species of blind trend in comparable data for O. candidum. However, cave fish are known from Australia, namely the a number of access sites have been lost in the Blind Gudgeon, Milyeringa veritas Whitely, 1945 interval from infilling (Table 1; C361, AB5, Site D), (Perciformes: Gobiidae) and the Cave Eel, drying (C-282, C-362) or siltation (C-23), and a Ophisternon candidum (Mees, 1962) (Synbranch­ number of sites are close to planned developments iformes: Synbranchidae). They are found in (C25, AB5), are within periurban areas (C23, C27, sympatry on the Cape Range peninsula of C105, C282, C361, C-452, C-495, WC 15, WC 44), northwestern Australia. Both species are listed as or in an unmanaged military area (C28, C506, C endangered under Western Australian fauna 507). While there has been a significant extension of legislation. This note presents the known occurrence the range of M. veritas to Barrow Island, the of these cave fishes and includes a major range inclusive known range of the two species on the extension of M.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • Three New Species of Misophrioid Copepods from Oceanic Islands
    Three new species of misophrioid copepods from oceanic islands GEOFFREY A. BOXSHALL and THOMAS M. ILIFFEt Department of Zoology, British Museum (Natural History), Cromwell Road, London SW7 5BD, England, ?Department of Marine Biology, Texas A&M University at Galveston, P.O. Box 1675, Galveston, Texas 77553, USA (Accepted 3 December 1989) Three new species of misophrioid copepods are described from anchialine habitats on oceanic islands. Expansophria galapagensis n.sp. is described from two localities on Santa Cruz, Galapagos Islands, Speleophria campaneri n.sp. from Ngamduk Cave, Angaur Island, Palau and S. scottodicarloi n.sp. from Chalk Cave on Bermuda. KEYWORDS:Misophrioid copepods, anchialine caves, oceanic islands. Introduction Half of the described species of the order Misophrioida are known from anchialine habitats on oceanic islands. They have been found in caves on Bermuda (Boxshall and Iliffe, 1986) and in flooded lava tubes and lava pools on the Canary Islands (Boxshall and Iliffe, 1987; Huys, 1988) in the Atlantic, and in caves and sinkholes on islands in the Palau group (Boxshall and Iliffe, 1987) in the Indo-Pacific. During an expedition to the Galapagos islands in 1987 one of us (T.M.I.) collected a large number of misophrioids I on Santa Cruz island. These represent a new species of Expansophria Boxshall and Iliffe, 1987 and are described below. This is the third species of Expansophria to be discovered, the other two being found on Lanzarote in the Canaries and on Ngeruktabel Island, Palau (Boxshall and Iliffe, 1987). Two new species of Speleophria are also described, one from a cave on Angaur island in the Palau archipelago, the other from a cave in Bermuda.
    [Show full text]
  • The First Record of a Trans-Oceanic Sister-Group Relationship Between Obligate Vertebrate Troglobites
    The First Record of a Trans-Oceanic Sister-Group Relationship between Obligate Vertebrate Troglobites Prosanta Chakrabarty1*, Matthew P. Davis2, John S. Sparks3 1 Louisiana State University, Museum of Natural Science, Department of Biological Sciences, Baton Rouge, Louisiana, United States of America, 2 The Field Museum, Department of Zoology, Chicago, Illinois, United States of America, 3 American Museum of Natural History, Department of Ichthyology, Division of Vertebrate Zoology, New York, New York, United States of America Abstract We show using the most complete phylogeny of one of the most species-rich orders of vertebrates (Gobiiformes), and calibrations from the rich fossil record of teleost fishes, that the genus Typhleotris, endemic to subterranean karst habitats in southwestern Madagascar, is the sister group to Milyeringa, endemic to similar subterranean systems in northwestern Australia. Both groups are eyeless, and our phylogenetic and biogeographic results show that these obligate cave fishes now found on opposite ends of the Indian Ocean (separated by nearly 7,000 km) are each others closest relatives and owe their origins to the break up of the southern supercontinent, Gondwana, at the end of the Cretaceous period. Trans-oceanic sister-group relationships are otherwise unknown between blind, cave-adapted vertebrates and our results provide an extraordinary case of Gondwanan vicariance. Citation: Chakrabarty P, Davis MP, Sparks JS (2012) The First Record of a Trans-Oceanic Sister-Group Relationship between Obligate Vertebrate Troglobites. PLoS ONE 7(8): e44083. doi:10.1371/journal.pone.0044083 Editor: Michael Schubert, Ecole Normale Supe´rieure de Lyon, France Received January 10, 2012; Accepted July 31, 2012; Published August 28, 2012 Copyright: ß 2012 Chakrabarty et al.
    [Show full text]
  • The Subterranean Fauna of Barrow Island, North-Western Australia: 10 Years On
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 83 145–158 (2013) SUPPLEMENT The subterranean fauna of Barrow Island, north-western Australia: 10 years on Garth Humphreys1,2,3,8, Jason Alexander1, Mark S. Harvey2,3,4,5,6 and William F. Humphreys2,3,7 1 Biota Environmental Sciences Pty Ltd, PO Box 155, Leederville, Western Australia 6903, Australia. 2 Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. 3 School of Animal Biology, University of Western Australia, Crawley, Western Australia 6009, Australia. 4 Division of Invertebrate Zoology, American Museum of Natural History, 79th Street at Central Park West, New York, New York 10024-5192, U.S.A. 5 Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA 94103-3009, U.S.A. 6 School of Natural Sciences, Edith Cowan University, Joondalup, Western Australia 6009, Australia. 7 School of Earth and Environmental Sciences, University of Adelaide, South Australia 5005, Australia 8 Corresponding author: Email: [email protected] ABSTRACT – Barrow Island, situated off the north-west Australian coast, is well recognised for its subterranean fauna values. Sampling for both stygobitic and troglobitic fauna has taken place on the island since 1991, and Humphreys (2001) summarised the then current state of knowledge of the island’s subterranean fauna. Sampling for impact assessment purposes on the island over the past decade has substantially increased the recorded species richness of Barrow Island. The number of documented stygal taxa has more than doubled since 2001, from 25 to 63 species now known. Troglobitic diversity has also substantially increased, with six species known in 2001 and 19 troglobitic taxa known today.
    [Show full text]
  • American Museum Novitates
    AMERICAN MUSEUM NOVITATES Number 3764, 28 pp. December 11, 2012 Revision of the Endemic Malagasy Cavefish Genus Typhleotris (Teleostei: Gobiiformes: Milyeringidae), with Discussion of its Phylogenetic Placement and Description of a New Species JOHN S. SPARKS1 AND Prosanta chakraBartY2 ABstract Troglobitic cavefishes of the genus Typhleotris, endemic to coastal southwestern Mada- gascar, are taxonomically reviewed and a new darkly pigmented species, Typhleotris mara- rybe, is described from an isolated karst sinkhole on the coastal plain below the Mahafaly Plateau. The new species, known only from Grotte de Vitane (Vitany) near the town of Itampolo, is unique among blind cavefishes in being uniformly darkly pigmented, rather than fully depigmented or exceptionally light in coloration. In addition to its dark coloration (vs. depigmented, translucent white body in congeners), the new species can be distinguished from its two congeners, Typhleotris madagascariensis and T. pauliani, by the sculpted, bony (vs. fleshy) appearance of its head with strongly protruding lateral ethmoid, sphenotic, and pterotic bones, and an elevated vertebral count. Key Words: Eocene, Grotte de Vitane, karst, Mahafaly Plateau, sinkhole, subterranean, Typhleotris mararybe, sp. nov., Vitany IntrodUction Troglobitic freshwater fishes, the typically blind and pigment-free obligate cave-dwelling lin- eages, represent an enigmatic and intriguing, yet poorly understood, group of vertebrates 1 American Museum of Natural History, Department of Ichthyology, Division of Vertebrate Zoology, Central Park West at 79th Street, New York, NY 10024. 2 Museum of Natural Science (Fish Section), Department of Biological Sciences, Louisiana State University, 119 Foster Hall, Baton Rouge, LA 70803. Copyright © American Museum of Natural History 2012 ISSN 0003-0082 2 American MUseUM Novitates NO.
    [Show full text]
  • A New Genus and Species of Blind Sleeper (Teleostei: Eleotridae) from Oaxaca, Mexico: First Obligate Cave Gobiiform in the Western Hemisphere Author(S): Stephen J
    A New Genus and Species of Blind Sleeper (Teleostei: Eleotridae) from Oaxaca, Mexico: First Obligate Cave Gobiiform in the Western Hemisphere Author(s): Stephen J. Walsh and Prosanta Chakrabarty Source: Copeia, 104(2):506-517. Published By: The American Society of Ichthyologists and Herpetologists DOI: http://dx.doi.org/10.1643/CI-15-275 URL: http://www.bioone.org/doi/full/10.1643/CI-15-275 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Copeia 104, No. 2, 2016, 506–517 A New Genus and Species of Blind Sleeper (Teleostei: Eleotridae) from Oaxaca, Mexico: First Obligate Cave Gobiiform in the Western Hemisphere Stephen J. Walsh1 and Prosanta Chakrabarty2 Caecieleotris morrisi, new genus and species of sleeper (family Eleotridae), is described from a submerged freshwater cave in a karst region of the northern portion of the State of Oaxaca, Mexico, R´ıo Papaloapan drainage, Gulf of Mexico basin.
    [Show full text]
  • Notifiable Instrument
    Australian Capital Territory Nature Conservation Protected Native Species List 2015 (No 1)* Notifiable Instrument NI2015–317 made under the Nature Conservation Act 2014 s 111 (Minister to make protected native species list) s 407 (Protected fish, invertebrates, native plants and native animals to be protected species) 1 Name of instrument This instrument is the Nature Conservation Protected Native Species List 2015 (No 1). 2 Commencement This instrument commences on the day after notification. 3 List of threatened species I make the protected native species list and relevant categories in the schedule. Note 1: Section 407 of the Nature Conservation Act 2014 (the Act) is a transitional provision. Section 407 refers to declarations made under section 34 of the former Nature Conservation Act 1980 (1980 Act) to the effect that a fish, invertebrate, native plant or native animal is protected. Under section 407 any fish, invertebrate, native plant or native animal so declared at the time of commencement of the Act is taken to be eligible to be included in the restricted trade category on the protected native species list under section 112 (Protected native species list—eligibility) of the Act. Note 2: The fish, invertebrates, native plants and native animals listed in the schedule were previously declared as protected under the 1980 Act (refer to Nature Conservation Declaration of Protected and Exempt Flora and Fauna 2002 (No 2) DI2003-6). Note 3: Section 111 of the Act requires the Minister to make a list of native species that are protected
    [Show full text]
  • Interim Recovery Plan No
    CAMERONS CAVE TROGLOBITIC COMMUNITY, CAMERONS CAVE MILLIPEDE AND CAMERONS CAVE PSEUDOSCORPION INTERIM RECOVERY PLAN 2012-2017 A harvestman (Glennhuntia glennhunti). INTERIM RECOVERY PLAN NUMBER.324 May 2012 Department of Environment and Conservation Species and Communities Branch Locked Bag 104, Bentley Delivery Centre, WA, 6983 FOREWORD Interim Recovery Plans (IRPs) are developed within the framework laid down in Department of Conservation and Land Management (CALM) Policy Statements Nos. 44 and 50. The Department of CALM formally became the Department of Environment and Conservation (DEC) in July 2006. DEC will continue to adhere to these Policy Statements until they are revised and reissued. IRPs outline the recovery actions that are required to urgently address threatening processes most affecting the ongoing survival of threatened taxa or threatened ecological communities, and provide a formal framework for the recovery efforts that are generally initiated prior to development of the plan. DEC is committed to ensuring that threatened taxa and communities are conserved through the preparation and implementation of Recovery Plans (RPs) or IRPs, and by ensuring that conservation action commences as soon as possible and, in the case of critically endangered (CR) taxa and communities, always within one year of endorsement of that rank by the Minister. This Interim Recovery Plan replaces plan number 76 Camerons Cave Troglobitic Community, Camerons Cave Millipede and Camerons Cave Pseudoscorpion Interim Recovery Plan No. 76 by S. Black, A. Burbidge, D. Brooks, P. Green, W. F. Humphreys, P. Kendrick, D. Myers, R. Shepherd and J. Wann, 2000-2003. This IRP will operate from May 2012 to April 2017 but will remain in force until withdrawn or replaced.
    [Show full text]
  • Milyeringa Veritas (Eleotridae), a Remarkably Versatile Cave Fish From
    Environmental Biology of Fishes 62: 297–313, 2001. © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Milyeringa veritas (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia William F. Humphreys Terrestrial Invertebrate Zoology, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia (e-mail: [email protected]) Received 13 April 2000 Accepted 10 January 2001 Key words: stable isotope, allozymes, physico-chemical environment, hydrogen sulphide, anoxia, food, anchialine Synopsis The blind cave gudgeon Milyeringa veritas is restricted to groundwaters of Cape Range and Barrow Island, northwestern Australia. It occurs in freshwater caves and in seawater in anchialine systems. It is associated with the only other stygobitic cave vertebrate in Australia, the blind cave eel, Ophisternon candidum, the world’s longest cave fish, and a diverse stygofauna comprising lineages with ‘tethyan’ tracks and widely disjunct distributions, often from North Atlantic caves. The cave gudgeon inhabits a karst wetland developed in Miocene limestones in an arid area. There is an almost complete lack of information on the basic biology of this cave fish, despite it being listed as threatened under the Western Australian Wildlife Conservation Act. Allozyme frequencies and distributions indicate significant population sub-structuring on the Cape Range peninsula such that the populations are essentially isolated genetically suggesting that more than one biological species is present. Further, they suggest that the vicariant events may have been associated with a series of eustatic low sealevels. Analysis of intestinal contents indicates that they are opportunistic feeders, preying on stygofauna and accidentals trapped in the water, at least at the sites sampled which were open to the surface, a conclusion supported by the results of stable isotope ratio analysis.
    [Show full text]