Functions and Mechanisms in Contemporary Neuroscience1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions. -
Oxytocin Effects in Mothers and Infants During Breastfeeding
© 2013 SNL All rights reserved REVIEW Oxytocin effects in mothers and infants during breastfeeding Oxytocin integrates the function of several body systems and exerts many effects in mothers and infants during breastfeeding. This article explains the pathways of oxytocin release and reviews how oxytocin can affect behaviour due to its parallel release into the blood circulation and the brain. Oxytocin levels are higher in the infant than in the mother and these levels are affected by mode of birth. The importance of skin-to-skin contact and its association with breastfeeding and mother-infant bonding is discussed. Kerstin Uvnäs Moberg Oxytocin – a system activator increased function of inhibitory alpha-2 3 MD, PhD xytocin, a small peptide of just nine adrenoceptors . Professor of Physiology amino acids, is normally associated The regulation of the release of oxytocin Swedish University of Agriculture O with labour and the milk ejection reflex. is complex and can be affected by different [email protected] However, oxytocin is not only a hormone types of sensory inputs, by hormones such Danielle K. Prime but also a neurotransmitter and a as oestrogen and even by the oxytocin 1,2 molecule itself. This article will focus on PhD paracrine substance in the brain . During Breastfeeding Research Associate breastfeeding it is released into the brain of four major sensory input nervous Medela AG, Baar, Switzerland both mother and infant where it induces a pathways (FIGURES 2 and 3) activated by: great variety of functional responses. 1. Sucking of the mother’s nipple, in which Through three different release pathways the sensory nerves originate in the (FIGURE 1), oxytocin functions rather like a breast. -
Michael M. Merzenich
Michael M. Merzenich BORN: Lebanon, Oregon May 15, 1942 EDUCATION: Public Schools, Lebanon, Oregon (1924–1935) University of Portland (Oregon), B.S. (1965) Johns Hopkins University, Ph.D. (1968) University of Wisconsin Postdoctoral Fellow (1968–1971) APPOINTMENTS: Assistant and Associate Professor, University of California at San Francisco (1971–1980) Francis A. Sooy Professor, University of California at San Francisco (1981–2008) President and CEO, Scientifi c Learning Corporation (1995–1996) Chief Scientifi c Offi cer, Scientifi c Learning Corporation (1996–2003) Chief Scientifi c Offi cer, Posit Science Corporation (2004–present) President and CEO, Brain Plasticity Institute (2008–present) HONORS AND AWARDS (SELECTED): Cortical Discoverer Prize, Cajal Club (1994) IPSEN Prize (Paris, 1997) Zotterman Prize (Stockholm, 1998) Craik Prize (Cambridge, 1998) National Academy of Sciences, U.S.A. (1999) Lashley Award, American Philosophical Society (1999) Thomas Edison Prize (Menlo Park, NJ, 2000) American Psychological Society Distinguished Scientifi c Contribution Award (2001) Zülch Prize, Max-Planck Society (2002) Genius Award, Cure Autism Now (2002) Purkinje Medal, Czech Academy (2003) Neurotechnologist of the Year (2006) Institute of Medicine (2008) Michael M. Merzenich has conducted studies defi ning the functional organization of the auditory and somatosensory nervous systems. Initial models of a commercially successful cochlear implant (now distributed by Boston Scientifi c) were developed in his laboratory. Seminal research on cortical plasticity conducted in his laboratory contributed to our current understanding of the phenomenology of brain plasticity across the human lifetime. Merzenich extended this research into the commercial world by co-founding three brain plasticity-based therapeutic software companies (Scientifi c Learning, Posit Science, and Brain Plasticity Institute). -
Neurotransmitter Actions
Central University of South Bihar Panchanpur, Gaya, India E-Learning Resources Department of Biotechnology NB: These materials are taken/borrowed/modified/compiled from various resources like research articles and freely available internet websites, and are meant to be used solely for the teaching purpose in a public university, and for serving the needs of specified educational programmes. Dr. Jawaid Ahsan Assistant Professor Department of Biotechnology Central University of South Bihar (CUSB) Course Code: MSBTN2003E04 Course Name: Neuroscience Neurotransmitter Actions • Excitatory Action: – A neurotransmitter that puts a neuron closer to an action potential (facilitation) or causes an action potential • Inhibitory Action: – A neurotransmitter that moves a neuron further away from an action potential • Response of neuron: – Responds according to the sum of all the neurotransmitters received at one time Neurotransmitters • Acetylcholine • Monoamines – modified amino acids • Amino acids • Neuropeptides- short chains of amino acids • Depression: – Caused by the imbalances of neurotransmitters • Many drugs imitate neurotransmitters – Ex: Prozac, zoloft, alcohol, drugs, tobacco Release of Neurotransmitters • When an action potential reaches the end of an axon, Ca+ channels in the neuron open • Causes Ca+ to rush in – Cause the synaptic vesicles to fuse with the cell membrane – Release the neurotransmitters into the synaptic cleft • After binding, neurotransmitters will either: – Be destroyed in the synaptic cleft OR – Taken back in to surrounding neurons (reuptake) Excitable cells: Definition: Refers to the ability of some cells to be electrically excited resulting in the generation of action potentials. Neurons, muscle cells (skeletal, cardiac, and smooth), and some endocrine cells (e.g., insulin- releasing pancreatic β cells) are excitable cells. -
Oxytocinergic-System-A-Proposal.Pdf
Opinion Article iMedPub Journals ACTA PSYCHOPATHOLOGICA 2018 www.imedpub.com ISSN 2469-6676 Vol.4 No.3:14 DOI: 10.4172/2469-6676.100170 Oxytocinergic System: A Proposal João Paulo Correia Lima* and Avelino Luiz Rodrigues Received: April 17, 2018; Accepted: May 07, 2018; Published: May 18, 2018 Department of Clinical Psychology and Nucleus of Neuroscience and Behavior, Institute of Psychology, University of Sao Introduction Paulo, Brazil Since 1910, when Ott and Scott [1] published their discovers about the oxytocin participation in milk ejection, the comprehension *Corresponding author: about function and role of oxytocin in several physiological João Paulo Correia Lima functions didn’t stop enlarging and growing. In birth, through his action over uterus contractions, in uterus contractions in [email protected] women’s orgasm and men’s erection [2,3], for instance. However, this approach always considers its peripheral effects. After this, Psychologist for Neuroscience and Behavior, some oxytocin effects had been reported to have actions over Institute of Psychology, University of Sao behavioural traits, like we can see in publishings of Pedersen and Paulo, Brazil. Prange [4] and Winslow and co-workers [5], reporting the oxytocin actions over, respectively, maternal behaviour and pair bonding. Tel: +55-11-32852420; +55-11-983439754 Since then, the increasing data about the oxytocin’s function in behaviour and its central action can’t be ignored. In this short proposal, we’ll consider the opportunity or utility of thinking Citation about oxytocin as a system, instead of a single neurotransmitter. : Lima JPC, Rodrigues AL (2018) Oxytocinergic System: A Proposal. Acta Neurotransmitter or Hormone: Central Psychopathol Vol.4 No.3:14 and Peripheral Actions of Oxytocin Once a molecule could have his function defined through the way death, passive avoidance). -
Reflections on the Past Two Decades of Neuroscience
VIEWPOINT medium of conceptual space is: how do we combine these twin paths to understand Reflections on the past two decades the transmission of representations in the network of the brain? Although answering of neuroscience that question will surely build on the prior paradigms, neither seems equipped to Danielle S. Bassett , Kathleen E. Cullen , Simon B. Eickhoff , provide a complete solution; the former offers the dots within, whereas the latter Martha J. Farah , Yukiko Goda , Patrick Haggard , Hailan Hu , offers the lines between. Yet obtaining such Yasmin L. Hurd , Sheena A. Josselyn , Baljit S. Khakh , Jürgen A. Knoblich , a solution is important for deciphering the Panayiota Poirazi , Russell A. Poldrack , Marco Prinz , Pieter R. Roelfsema , mechanism of the brain’s fundamental goal: Tara L. Spires-Jones , Mriganka Sur and Hiroki R. Ueda information processing. The efforts towards such a solution that I find particularly Abstract | The first issue of Nature Reviews Neuroscience was published 20 years promising are those that move beyond ago, in 2000. To mark this anniversary, in this Viewpoint article we asked a selection descriptive characterization or correlative of researchers from across the field who have authored pieces published in the approaches, and towards theory; that is, journal in recent years for their thoughts on notable and interesting developments theory instantiated in an interpretable and generalizable mathematical model in neuroscience, and particularly in their areas of the field, over the past two that encodes a conceptual principle, and decades. They also provide some thoughts on current lines of research and theory as supported by (but not composed questions that excite them. -
Neuroscience: the Science of the Brain
NEUROSCIENCE SCIENCE OF THE BRAIN AN INTRODUCTION FOR YOUNG STUDENTS British Neuroscience Association European Dana Alliance for the Brain Neuroscience: the Science of the Brain 1 The Nervous System P2 2 Neurons and the Action Potential P4 3 Chemical Messengers P7 4 Drugs and the Brain P9 5 Touch and Pain P11 6 Vision P14 Inside our heads, weighing about 1.5 kg, is an astonishing living organ consisting of 7 Movement P19 billions of tiny cells. It enables us to sense the world around us, to think and to talk. The human brain is the most complex organ of the body, and arguably the most 8 The Developing P22 complex thing on earth. This booklet is an introduction for young students. Nervous System In this booklet, we describe what we know about how the brain works and how much 9 Dyslexia P25 there still is to learn. Its study involves scientists and medical doctors from many disciplines, ranging from molecular biology through to experimental psychology, as well as the disciplines of anatomy, physiology and pharmacology. Their shared 10 Plasticity P27 interest has led to a new discipline called neuroscience - the science of the brain. 11 Learning and Memory P30 The brain described in our booklet can do a lot but not everything. It has nerve cells - its building blocks - and these are connected together in networks. These 12 Stress P35 networks are in a constant state of electrical and chemical activity. The brain we describe can see and feel. It can sense pain and its chemical tricks help control the uncomfortable effects of pain. -
THE IDEA of the BRAIN Also by Matthew Cobb
THE IDEA OF THE BRAIN also by matthew cobb Life’s Greatest Secret: The Race to Crack the Genetic Code The Egg and Sperm Race: The 17th-Century Scientists Who Unravelled the Secrets of Sex, Life and Growth Smell: A Very Short Introduction The Resistance: The French Fight Against the Nazis Eleven Days in August: The Liberation of Paris in 1944 THE IDEA OF THE BRAIN THE PAST AND FUTURE OF NEUROSCIENCE MATTHEW COBB New York Copyright © 2020 by Matthew Cobb Cover design by XXX Cover image [Credit here] Cover copyright © 2020 Hachette Book Group, Inc. Hachette Book Group supports the right to free expression and the value of copyright. The purpose of copyright is to encourage writers and artists to produce the creative works that enrich our culture. The scanning, uploading, and distribution of this book without permission is a theft of the author’s intellectual property. If you would like permission to use material from the book (other than for review purposes), please contact [email protected]. Thank you for your support of the author’s rights. Basic Books Hachette Book Group 1290 Avenue of the Americas, New York, NY 10104 www.basicbooks.com Printed in the United States of America First published in Great Britain in 2020 by Profile Books Ltd First US Edition: April 2020 Published by Basic Books, an imprint of Perseus Books, LLC, a subsidiary of Hachette Book Group, Inc. The Basic Books name and logo is a trademark of the Hachette Book Group. The Hachette Speakers Bureau provides a wide range of authors for speaking events. -
History of Neuroscience Neurobiology & Behavior 255 Winter 2017
History of Neuroscience Neurobiology & Behavior 255 Winter 2017 Course Syllabus “The past is never dead. It isn’t even past.” William Faulkner Course Description: An overview of the conceptual and technical foundations of neuroscience from ancient times to the present. The subjects include synapses, neurons, brain organization, sensory, motor, regulatory and cognitive systems, learning and memory and human brain function and dysfunction. Course Coordinator: Larry Cahill, [email protected] Room 116 Bonney Bldg (inner office) Lecturers: Faculty from several UCI Schools and Departments (see roster) Time: Fridays 9:00 - 11:50 A.M. There will be two lectures per day, starting at 9:00 A.M. and 10:30 A.M., respectively. Place: Room 1201 McGaugh Hall Course text: Minds behind the brain: A history of the pioneers and their discoveries, Stanley Finger, Oxford University Press, 2000. Evaluation: The course grade will be determined primarily by a paper, which is due on the last day of class. No excuses for late papers will be accepted. Late papers will have a reduced grade. Any topic from a historical perspective is OK but it must be approved by Dr. Cahill. The paper should be 20-30 pages in length (double-spaced) plus bibliography, figures, tables and footnotes. Selecting a Topic and Obtaining Materials: Because of the historical nature of the paper, it will be necessary to begin obtaining materials, many of which may have to be gotten through interlibrary loan, about the 4th-5th week. Therefore, the general topic should be selected by the 3rd week. You should do some preliminary bibliographic work and reading at the earliest possible time, refining your topic and preferably formulating a specific question that you will attempt to answer. -
Mechanism for Neurotransmitter-Receptor Matching
Mechanism for neurotransmitter-receptor matching Dena R. Hammond-Weinbergera,1,2, Yunxin Wanga, Alex Glavis-Blooma, and Nicholas C. Spitzera,b,1 aNeurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0357; and bCenter for Neural Circuits and Behavior, Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92161 Contributed by Nicholas C. Spitzer, January 6, 2020 (sent for review September 25, 2019; reviewed by Laura N. Borodinsky and Joshua R. Sanes) Synaptic communication requires the expression of functional neurons lead to the appearance of functional neuromuscular postsynaptic receptors that match the presynaptically released junctions expressing GluR1 and GluR2 (alias GluA1 and GluA2) neurotransmitter. The ability of neurons to switch the transmitter subunits, which are blocked by the AMPA receptor antagonist they release is increasingly well documented, and these switches GYKI 52466 (16, 17). In the central nervous system, the natural require changes in the postsynaptic receptor population. Al- developmental transmitter switch from GABA to glycine in the though the activity-dependent molecular mechanism of neuro- auditory nervous system is accompanied by alterations in the transmitter switching is increasingly well understood, the basis properties of postsynaptic receptors (18, 19). Changes in illumi- of specification of postsynaptic neurotransmitter receptors match- nation during development or in photoperiod in the adult lead to ing the newly expressed transmitter is unknown. Using a func- changes in the numbers of neurons expressing dopamine in the tional assay, we show that sustained application of glutamate to embryonic vertebrate skeletal muscle cells cultured before hypothalamus that are accompanied by corresponding up- or innervation is necessary and sufficient to up-regulate ionotropic down-regulation of dopamine receptor expression in postsynaptic glutamate receptors from a pool of different receptors expressed neurons (5, 7). -
Neurotransmitter Notes
Synapses and Neurotransmitters Notes Chemical Transmitters called “Neurotransmitters” carry a signal across Synapses (& at Neuromuscular Junctions) A point of contact between two neurons is called a synapse At the synapse there is a break in electrical transmission (the action potential cannot cross). Instead chemicals called “neurotransmitters” are released that carry the signal to the next nerve. There is a delay at synapses, because chemical transmission between neurons is slower than electrical transmission (action potential) within a neuron. A neuromuscular junction (NMJ) is a contact between a neuron and a muscle: it is like a synapse in that the action potential stops and the signal is carried by a chemical neurotransmitter released by the neuron. Neurotransmitters Are Made and Stored in the Pre-synaptic Terminal The end of the neuron enlarges into an axon terminal Neurotransmitters are produced in the cell body of a neuron and then transported to the ends of the axon terminals in small membrane-enclosed sacs called “synaptic vesicles”. At the axon terminus, neurotransmitters are stored in these tiny synaptic vesicles so that they can be released when an action potential reaches the axon terminus At a synapse, axon termini of the pre-synaptic neuron contact the dendrites of the post-synaptic neuron. Because the neurotransmitter is only located in the axon termini on one side of a synapse, the impulse can go in only one direction. Calcium is Required for Neurotransmitter Release Neurotransmitter release requires Ca2+ ions Normally, the concentration of Ca2+ in the pre-synaptic neuron l is kept very low (by the action of a Ca pump).