Chernozem-Soil of the Year 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin
Geologia Croatica 56/1 83–100 23 Figs. 6 Tabs. ZAGREB 2003 Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin Goran DURN Key words: Terra rossa, Parent materials, Composi- relict soil formed during the Tertiary and/or hot and humid periods of the Quaternary. However, some recent investigation in the Atlantic tion, Origin, Mediterranean region. coastal region of Morocco (BRONGER & SEDOV, 2002) show that at least some terra rossa previously referred to as polygenetic relict soils should be regarded as Vetusols. In some isolated karst terrain, terra Abstract rossa may have formed exclusively from the insoluble residue of lime- In the past, the term “terra rossa” became quite a common indication stone and dolomite but much more often it comprises a span of parent for all limestone derived red soils in the Mediterranean region. Today, materials including, for example, aaeolian dust, volcanic material or in some classification systems based on the Mediterranean climate as sedimentary clastic rocks which were derived on carbonate terrain via the major soil differentiating criterion, the term terra rossa is used as a different transport mechanisms. BOERO & SCHWERTMANN (1989) name for the soil subclass “Modal Fersiallitic Red soil” when situated concluded that it is of little relevance for the process of rubification on limestones (DUCHAUFOUR, 1982). However, several national whether the primary Fe sources are autochthonous or allochthonous as soil classifications (e.g. Croatian, Italian, Israeli) retained the term long as the general pedoenvironment remains essentially suitable for “terra rossa” for the hard limestone derived red soils. The nature and the formation of terra rossa. -
Age and Pedogenic Reconstruction of a Paleo–Relict Chernozem Soil from Central Transylvanian Basin
AGE AND PEDOGENIC RECONSTRUCTION OF A PALEO–RELICT CHERNOZEM SOIL FROM CENTRAL TRANSYLVANIAN BASIN F. PENDEA1, Z. SZÁNTÓ2, A. S. BADARAU1 and S. DEZSI1 1Babes–Bolyai University, Faculty of Geography, Cluj–Napoca Clinicilor street no 5–7, 3400 Cluj–Napoca, Romania 2Institute of Nuclear Research, Laboratory of Environmental Studies, H 4001 Debrecen P.O Box 51, Hungary Abstract: The “chernozem” area of Transylvanian Lowland has been of much debate in the last two centuries. The paper presents pedological and geochronological evidence that the chernozem soils of the Central Transylvania have relict Late Glacial–Early Holocene features and at least partially must be clasiffied as paleo–relict in the sense of Reuter (2000). Key words: radiocarbon dating, pedogenic carbonates, paleo–relict features, Central Transylvania During the last century a much debated issue for Romanian pedological and botanical scientific communities was the age and origin of the Central Transylvanian Mollisol cover in conjunction with the associated forest–steppe vegetation. In this study we have found at least partial evidence that the chernozem soil cover in Central Transylvanian was a stable feature long before the ascent of human activities and that, in the Late Holocene, they have suffered a degradation process to the present state of Haplic and Luvic chernozem. The process is somewhat similar with that inferred for Central and Southern Germany, where chernozems formed in the dry steppe or forest–steppe conditions were degraded to brown earths, the resulting polygenetic cover being named Braunerde (Parabraunerde)–Tschernozem (Catt 1989). Because the nature and properties of different soil horizons can hold information with respect to the time pedogenic factor an investigation was undertaken to determine if the typical chernozem features were indeed Late Holocene (Post–Neolithic) as it has been accepted before. -
Chernozems Kastanozems Phaeozems
Chernozems Kastanozems Phaeozems Peter Schad Soil Science Department of Ecology Technische Universität München Steppes dry, open grasslands in the mid-latitudes seasons: - humid spring and early summer - dry late summer - cold winter occurrence: - Eurasia - North America: prairies - South America: pampas Steppe soils Chernozems: mostly in steppes Kastanozems: steppes and other types of dry vegetation Phaeozems: steppes and other types of medium-dry vegetation (till 1998: Greyzems, now merged to the Phaeozems) all steppe soils: mollic horizon Definition of the mollic horizon (1) The requirements for a mollic horizon must be met after the first 20 cm are mixed, as in ploughing 1. a soil structure sufficiently strong that the horizon is not both massive and hard or very hard when dry. Very coarse prisms (prisms larger than 30 cm in diameter) are included in the meaning of massive if there is no secondary structure within the prisms; and Definition of the mollic horizon (2) 2. both broken and crushed samples have a Munsell chroma of less than 3.5 when moist, a value darker than 3.5 when moist and 5.5 when dry (shortened); and 3. an organic carbon content of 0.6% (1% organic matter) or more throughout the thickness of the mixed horizon (shortened); and Definition of the mollic horizon (3) 4. a base saturation (by 1 M NH4OAc) of 50% or more on a weighted average throughout the depth of the horizon; and Definition of the mollic horizon (4) 5. the following thickness: a. 10 cm or more if resting directly on hard rock, a petrocalcic, petroduric or petrogypsic horizon, or overlying a cryic horizon; b. -
Soils of County Clare
Copyright of Teagasc, The Agriculture and Food Development Authority Soil Survey Bulletin No. 23 Soils of County Clare by T. F. Finch (Report compiled by T. F, Finch, E. Culleton and S. Diamond) National Soil Survey of Ireland An Foras Taluntais (THE AGRICULTURAL INSTITUTE) Published by An Foras Taluntais, 33 Merrion Road, Dublin 4 Price: £1.50 June, 1971 PREFACE This publication, Soil Survey Bulletin No. 23, presents the findings of the Soil Survey of County Clare. It is one of a series of county soil surveys being carried out by the National Soil Survey of An Foras Taluntais (The Agricultural Institute) for the purpose of providing basic information which can be used in optimum land-use planning. The field mapping was carried out at a scale of 1:10,560 (6 in. = 1 mile; 15 cm = 1.6 km) but the detail mapped on the field sheets is not shown on the published soil map at the scale of 1:126,720 (} in. 1 mile: 1.25 cm = 1.6 km) due to scale limitation. Copies of the field maps are available for consultation in the Soil Survey Office at Johnstown Castle, Wexford. Mr. T. F. Finch was responsible for the operation of this survey; he commenced work in the county in 1965 and completed the field investigations in 1968. Technical assistance was provided from time to time by Mr. P. Feeney, Mr. T. O'Shea and Mr. T. Martin. Mr. S. Diamond gave assistance and advice in soil correlation, classification and land-use interpretation, and Mr. R. F. -
Culman-2009-AGEE-Inpress.Pdf
G Model AGEE-3535; No of Pages 12 Agriculture, Ecosystems and Environment xxx (2009) xxx–xxx Contents lists available at ScienceDirect Agriculture, Ecosystems and Environment journal homepage: www.elsevier.com/locate/agee Long-term impacts of high-input annual cropping and unfertilized perennial grass production on soil properties and belowground food webs in Kansas, USA S.W. Culman a,*, S.T. DuPont b,1, J.D. Glover c, D.H. Buckley a, G.W. Fick a, H. Ferris b, T.E. Crews d a Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853, United States b Department of Nematology, University of California, Davis, CA 95616, United States c The Land Institute, 2440 E. Water Well Road, Salina, KS 67401, United States d Environmental Studies, Prescott College, Prescott, AZ 86301, United States ARTICLE INFO ABSTRACT Article history: Soil ecosystem properties and processes which simultaneously maintain native fertility and sustain Received 10 May 2009 plant yields are of principal interest in sustainable agriculture. Native prairies in Kansas are relevant in Received in revised form 2 November 2009 this context, as some have been annually harvested for hay for over 75 years with no fertilization or Accepted 5 November 2009 detectable decline in yield or soil fertility. In contrast, annual crop production has resulted in significant Available online xxx reductions in soil fertility and now requires intensive inputs to maintain yields. Soil food webs were compared between hayed native grasslands and adjacent annual croplands in order to determine the Keywords: long-term effects of these two production systems on soil ecosystem properties. -
Bacterial Diversity in Soils of Different Hungarian Karst Areas
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library Acta Microbiologica et Immunologica Hungarica 65 (4), pp. 439–458 (2018) DOI: 10.1556/030.65.2018.002 First published online February 23, 2018 BACTERIAL DIVERSITY IN SOILS OF DIFFERENT HUNGARIAN KARST AREAS 1,2 2 1 3 MONIKA´ KNÁB ,TIBOR SZILI-KOVÁCS ,KÁROLY MÁRIALIGETI ,JÁNOS MOGA´ and ANDREA K. BORSODI1* 1Department of Microbiology, ELTE Eötvös Loránd University, Budapest, Hungary 2Centre for Agricultural Research, Institute for Soil Sciences and Agricultural Chemistry, Hungarian Academy of Sciences, Budapest, Hungary 3Department of Physical Geography, ELTE Eötvös Loránd University, Budapest, Hungary (Received: 5 June 2017; accepted: 21 November 2017) Karst areas have great environmental importance as sources of subsurface water and often maintain very sensitive ecosystems. In recent years, increasing number of microbiological studies focused on the bacterial communities of karst soils. In this study, diversity examinations on two distinct Hungarian karst areas, Aggtelek and Tapolca, were performed using parallel cultivation and molecular cloning methods. The phylogenetic affiliation of bacterial strains and molecular clones was determined based on their 16S rRNA gene sequences. Bacterial isolates were identified as members of the phyla Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. Besides the taxa identified by cultivation, members of the phyla Chloroflexi, Cyanobacteria, Acidobacteria, Verrucomicrobia, and Gemmatimona- detes were detected by the cloning. The difference in the composition of soil bacterial communities was related to geographic locations and soil types. Both the highest and the lowest bacterial diversities were detected in samples from Aggtelek National Park, characterized by Leptic Luvisol and Rendzic Leptosol soil types. -
Guidebook for Field Excursions Xllth International Symposium and Field Seminar on Paleopedology
'1 ■ I VJ 1 ■ ’ »■ " ' . ... !■ 1|Щ 11 ■ Institute of Geography, Russian Academy of Sciences Moscow State University, Soil Science Institute V.V. Dokuchaev Soil Science Institute Institute of History and Material Culture, Russian Academy of Sciences Kursk State University Upetsk State University W. Alekhin Centrul-Chemozemic State Biospheric Reserve Natural Architectural-Archaeological Museum-Resort "Dhmogorid' Guidebook for Field Excursions Xllth International Symposium and Field Seminar on Paleopedology ‘Paleosols, pedosediments and landscape morphology as archives of environmental evolution” 10 -15 August, 2013, Kursk, Russia Moscow 2013 ■ ....... ... - Guidebook for Field Excursions Xllth International Symposium and Field Seminar on Paleopedology CONTENTS Introduction (S.A. Sycheva) 5 1. General characterization of the environment and soils of the Central Russian Upland (S.A. Sycheva, I. V. Kovda, A. V.Kashkin) 9 1.1. Geology and relief 9 1.2. Climate 10 1.3. Hydrology 11 1.4. Vegetation 11 1.5. Soils 12 1.6. Human history and agricultural development of landscapes 12 KURSK SITE 14 2. Aleksandrov Quarry (S.A. Sycheva, E. D. Sheremetskaya, T.M. Grigorieva, M.A. Bronnikova, S.N. Sedov, V.S. Gunova, A.N. Siniakova, P.R.Pushkina) 14 2.1. General characteristics, geochronology and stratigraphy 14 2.2. Description of the composite generalized stratigraphic section 15 2.2.1. Morphology 15 2.2.2. Analytical data 20 2.3. Ryshkov (Mikulino) paleosols and paleocatena (MIS 5e) 23 2.3.1. Ryshkov paleosol on the paleoslope (section 15): interpretation of properties 23 2.3.2. Ryshkov pedolithocomplex in the bottom 27 2.4. Early Valdai Kukuev and Streletsk paleosols (MIS 5 & MIS 5a) 28 2.4.1. -
Structural State of Chernozem After Long-Term Post-Agrogenic Transformation Demydenko O
UDC 631.434 © 2019 Structural state of chernozem after long-term post-agrogenic transformation Demydenko O. Cherkasy State Agricultural Research Station of the National Institute of Agriculture of NAAS, 13 Dokuchaieva Str., Holodnianske village, Smilianskyi district, Cherkasy oblast, Ukraine, 20731; e-mail: [email protected] The purpose. To determine the main laws of transformation and regulatory parameters of the structural state change of chernozems of the forest-steppe zone in conditions of long-term post-agrogenic transformation according to the results of dry sieving of soil samples and statistical analysis of the data using the method of principal components, factor and non-parametric analysis. Methods. Laboratory analytical, experimental field, statistical. Results. The performed statistical processing of results of the analysis of dry sieving of the structure of chernozems in the long-term post-agrogenic state demonstrates the promise of using factor, cluster and non-parametric analysis methods. An important role in the restoration of the structure of chernozems is played by a combination of structural units 3.0—0.5 mm in size, with which the additional density in the humus horizon is inversely proportional, and with the humus content, it is directly proportional. The carried out clustering indicates that the content of the presented chernozems in the state of virgin soil and long-term deposits is the separated and not similar state of soil objects. But there is a general pattern of formation of a set of structural units of 3.0-0.5 mm similar to chernozems in the state of virgin soil, which content exceeds 40-50% of the content of parts in the agronomically valuable interval. -
Rendzina) on Littoral Plains and Hilly Areas, 2- Hydromorphic Black Soil
Genesis and Evolution of Black Soil in the Eastern Mediterranean Hussam HAG HUSEIN, Bernhard Lucke, Wahib Sahwan, and Rupert Bäumler EGU 2020 1 Soil fertility degradation in the Middle East…myth or reality? The environmental history of the Middle East is not an issue of a fertile land becoming desert. Most of it is desert and it always has been. The precious rain from the Mediterranean falls for 100 km or so from the coast, creating some fertile areas, as isolated islands that were not desert and they still are not. www.google.com However, whatever the definition is used, there is quite a lot of desert impact in the equation (evaporation, aeolian dust). The Eastern Mediterranean Located in the eastern corner of the Mediterranean Sea Submitted to Mediterranean climate condition with meld wet winter and hot dry summer The soil is red Mediterranean (terra rossa) with red color and poor of organic carbon and high of carbonates www.google.com 3 Black Soil in the Eastern Mediterranean The occurrence of such soil is occasionally in Mediterranean because of the climate condition with xeric moisture and thermic temperature soil regimes, which is not favorited for forming and developing such kind of soil However, it is still occurring at a less extending in different climatic zones from xeric to aridic and called SAWDA’A Their current occurrence rise many questions about the conditions of formation and type of paleoclimate that prevailed Theories on their formation in the Mediterranean region are not in general agreement The black soil was studied at five bio-climate areas according to Pluvio- thermic Equation of Emberger (1955): Upper humid Cold, lower sub-humid Fresh and temperate Upper semiarid www.google.com Martials and Methods These areas submitted to meditteranian climate, frish winter, hot dry summer with annual precipitation from 200 to more than 1000 mm The soil moisture regime is xeric and the temperature soil regime is thermic Climax vegetation is -Pinus brutia forest; -maquis mainly Quercus in wet areas. -
History of East European Chernozem Soil Degradation; Protection and Restoration by Tree Windbreaks in the Russian Steppe
Sustainability 2015, 7, 705-724; doi:10.3390/su7010705 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article History of East European Chernozem Soil Degradation; Protection and Restoration by Tree Windbreaks in the Russian Steppe Yury G. Chendev 1, Thomas J. Sauer 2,*, Guillermo Hernandez Ramirez 3 and Charles Lee Burras 4 1 Department of Natural Resources Management and Land Cadastre, Belgorod State University, Belgorod 308015, Russia; E-Mail: [email protected] 2 USDA-ARS, National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA 3 Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2R3, Canada; E-Mail: [email protected] 4 Department of Agronomy, Iowa State University, Ames, IA 50011, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-515-294-3416; Fax: +1-515-294-8125. Academic Editor: Marc A. Rosen Received: 30 October 2014 / Accepted: 29 December 2014 / Published: 8 January 2015 Abstract: The physiographic region of the Central Russian Upland, situated in the Central part of Eastern Europe, is characterized by very fertile grassland soils—Chernozems (Mollisols in the USDA taxonomy). However, over the last several centuries this region has experienced intense land-use conversion. The most widespread and significant land-use change is the extensive cultivation of these soils. As a result, Chernozems of the region that were some of the most naturally fertile soils in the world with thick A horizons had become, by the second half of the 19th century, weakly productive, with decreased stocks of organic matter. -
Chernozems (Ch)
CHERNOZEMS (CH) The Reference Soil Group of the Chernozems accommodates soils with a thick black surface layer that is rich in organic matter. Russian soil scientist Dokuchaev coined the name “Chernozems” in 1883 to denote the typical “zonal” soil of the tall grass steppes in continental Russia. Some international syno- nyms: ‘Calcareous Black Soils’, ‘Eluviated Black Soils’ (Canada), and (several suborders of) ‘Mol- lisols’ (USDA Soil Taxonomy). Definition of Chernozems Soils having 1 a mollic horizon with a moist chroma of 2 or less if the texture is finer than sandy loam, or less than 3.5 if the texture is sandy loam or coarser, both to a depth of at least 20 cm, or a mollic horizon which has these chromas directly below a plough layer; and 2 concentrations of secondary carbonates starting within 200 cm from the soil surface; and 3 no petrocalcic horizon between 25 and 100 cm from the soil surface; and 4 no secondary gypsum; and 5 no uncoated silt and sand grains on structural ped surfaces. Common soil units: Chernic, Vertic, Gleyic, Calcic, Luvic, Glossic, Siltic, Vermic, Haplic. Summary description of Chernozems Connotation: black soils rich in organic matter; from R. chern, black, and zemlja, earth or land. Parent material: mostly eolian and re-washed eolian sediments (loess). Environment: regions with a continental climate with cold winters and hot summers; in flat to undulat- ing plains with tall-grass vegetation (forest in the northern transitional zone). Profile development: AhBC-profiles with a dark brown to black mollic surface horizon over a cambic or argic subsurface horizon; commonly with redistribution of calcium carbonate to a calcic horizon or pockets of secondary carbonates in the subsurface soil. -
General Soil Map of Ireland, 1969 Survey of Some Midland Sub-Peat Mineral Soils (With Bord Na Móna), 1971 — M
SOIL SURVEY PUBLICATIONS 1962-1979 County Surveys Soils of Co. Wexford, 1964* — M. J. Gardiner and P. Ryan Soils of Co. Limerick, 1966 — T. F. Finch and P. Ryan Soils of Co. Carlow, 1967 — M. J. Conry and P. Ryan Soils of Co. Kildare, 1970 — M. J. Conry, R. F. Hammond and T. O’Shea Soils of Co. Clare, 1971 — T. F. Finch, E. Culleton and S. Diamond Soils of Co. Westmeath, 1977 — T. F. Finch and M. J. Gardiner Soils of West Cork, (part of Resource Survey) 1963 — M. J. Conry, P. Ryan and J. Lee Soils of West Donegal, (part of Resource Survey) 1969 — M. Walsh, M. Ryan and S van de Schaaf Soils of Co. Leitrim, (part of Resource Survey) 1973 — M. Walsh An Foras Talúntais Farms Grange, Co. Meath, 1962 — M. J. Gardiner Kinsealy, Co. Dublin, 1963 — M. J. Gardiner Creagh, Co. Mayo, 1963 — M. J. Gardiner Herbertstown, Co. Limerick, 1964 — T. F. Finch Drumboylan, Co. Roscommon, 1968 — G. Jaritz and J. Lee Ballintubber, Co. Roscommon, 1969 — M. Ryan and J. Lee Ballinamore, Co. Leitrim, 1969 — T. F. Finch and J. Lee Clonroche, Co. Wexford, 1970 — T. F. Finch and M. J. Gardiner Mullinahone, Co. Tipperary, 1970 — M. J. Conry Ballygagin, Co. Waterford, 1972 — T. F. Finch and M. J. Gardiner Department of Agriculture Farms Clonakilty, Co. Cork, 1964* — J. Lee and M. J. Conry Ballyhaise, Co. Cavan, 1965* — M. Ryan and J. Lee Athenry, Co. Galway, 1965* — S. Diamond, M. Ryan and M. J. Gardiner Other Farms Kells Ingram, Co. Louth, 1964* — M. J. Gardiner Multyfarnham Agricultural College, Co.