<<

184 CEZARY KABA£A SCIENCE ANNUAL Vol. 70 No. 3/2019: 184– 192 DOI: 10.2478/ssa-2019-0016

CEZARY KABA£A *

Wroc³aw University of Environmental and Life Sciences, Institute of and Environmental Protection ul. Grunwaldzka 53, 50-375 Wroc³aw,

Chernozem (czarnoziem) – soil of the year 2019 in Poland. Origin, classification and use of in Poland

Abstract: The Soil Science Society of Poland has elected to be the Soil of the Year 2019. Although chernozems cover less than 2% of Poland, they have high importance for agriculture due to their productivity and play a specific scientific role for understanding of soil development and functioning in an environment. Chernozems are also crucial for the reconstruction of Neolithic agriculture development and human impacts on soil and landscape. This introductory paper presents (a) a specific definition of chernozem in Poland, connected with a separate distinction of black earths and colluvial chernozemic ; (b) a review of the present and former classification schemes for chernozems in Poland and their correlation with international systems (WRB and Soil Taxonomy); (c) the spatial distribution of chernozems in Poland, their agricultural evaluation and threats for chernozems' quality and future existence related to intense land use. Keywords: Chernozems, , , soil origin, soil classification,

INTRODCTION blin, the capital of the region known for its fertile cher- nozems (Borowiec 1965, 1976). Chernozem has been considered in many countries a synonym for the most fertile and productive arable CONCEPTS OF CHERNOZEM soil, suitable for cultivation of demanding crops, such FORMATION as sugar beet, barley, wheat and corn. Thus, cherno- zems1 have been the subject of significant public Numerous early attempts were undertaken to concern and interest of pedologists and agronomists. explain the origin of soils featured by thick, black, In this context, it has become clear that Chernozems/ -rich topsoil horizon, including their marine or Mollisols are local icons – 'state soils' – such as in alluvial formation (£abaz et al. 2018; Vyslouñilov< Nebraska (USA), Ukraine and the Belgorod region et al. 2016). The most widely accepted until now is a (Russia), and have been appointed a 'soil of the year' theory of Dokuchaev (1883), who defined chernozem by national pedological societies, as in Germany and as an autogenic natural body, developed under inter- Estonia (Altermann et al. 2005; Ktlli and Tamm 2015; connected influences of various environmental factors, Pozniak and Havrysh 2019). Although was including calcareous but permeable parent rock, elected (by the Commission of Soil Genesis, Classifi- climate, vegetation, fauna and relief. Dokuchaev cation and Cartography of the Soil Science Society confirmed, what seems today absolutely obvious, that of Poland (SSSP)) the first 'soil of the year' the organic matter of chernozems originates in terre- toinaugurate the programme in Poland in strial plants, those species' composition being closely 2018, due to its specific historical importance for the related to climate. The organic matter, primarily the Polish soil science (Kaba³a 2018), chernozem had underground remains of roots, does not decompose already been appointed the second 'soil of the year' to rapidly because of seasonal dryness and stabilization celebrate it in 2019. This decision was also connec- by calcium in a carbonate-rich soil substratum, ted with the organisation of the SSSP congress in Lu- mostly the . Moreover, the organic matter and bulk soil is vertically and horizontally translocated by burrowing animals (both earthworms and rodents), 1The common names of soil units (e.g., chernozems, black so- ils/earths and rendzina) are written in lowercase unless they which are particularly common in a virgin continen- refer to Reference Soil Groups of WRB or soil Taxonomy, in tal . Zooturbation results in a thickening of the which case they are written in capital letters. humus-rich topsoil layer and an improvement of the

* [email protected] http://ssa.ptg.sggw.pl/issues/2019/703 Chernozem (czarnoziem) – soil of the year 2019 in Poland 185 soil mass aggregation (Ponomarenko and Ponomarenko clearance by Neolithic people has allowed reconstruction 2019). Because the climate-related continental steppe of steppe or a domination of steppe-forest/meadow- vegetation is zonal, the chernozem is also considered forest vegetation that created conditions supporting zonal soil. Dokuchaev and his followers have distin- the formation or reconstruction of chernozems in guished the common (typical) chernozems of the Central Europe (Chmielewski et al. 2014; Ehwald et central, tall-grass steppe belt, the southern chernozems al. 1999; Jacomet et al. 2016; Pokorný et al. 2015; of the short-grass dry steppe and also the 'degraded' Suchodoletz et al. 2017). In contrast, other researchers chernozems of the moister forest-steppe zone located assume that the large-scale forest burning by north of the central (continental) steppe zone (Strzem- Neolithic people was a single factor that enabled ski 1971). The steppe origin of the common (typical) chernozem formation by the production of large and southern chernozems generally has not been amounts of fine particles of black carbon (charcoal), questioned because the conditions favourable for which has strongly coloured the topsoil after mixing chernozem formation still exist in many sites of the (Eckmeier et al. 2007). Recently, a polygenetic world, and active chernozem development can be formation of 'extrazonal' chernozems in Central presently observed (Alexandrovskiy 2007; Khitrov et Europe has been postulated, bringing together many al. 2019; Liu et al. 2012). In contrast, the nature of of the previous separate concepts (i.e. it assumes 'degraded' chernozems has been continuously initial chernozem formation in the late Pleistocene/ear- discussed until now (Eckmeier et al. 2007; Vyslouñi- ly Holocene under cold-steppe vegetation and their lov< et al. 2016). 'rejuvenation' or second phase of development in/ The first concept, probably the most common, since the Neolithic period under human-induced assumes that the chernozems in the northern and forest-steppe (-meadow) vegetation developed after western peripheries and isolated "islands" outside the large-scale forest clearance (Kaba³a et al. 2019b; central steppe belt have developed under a cold or £abaz et al. 2018). However, it is highly probable there temperate steppe vegetation and then have been trans- is no one scenario of chernozem development and formed (degraded) by forest vegetation that succeeded transformation in all Central Europe, but rather onto former steppe areas (e.g. in Central Europe) after various scenarios may be true in particular sites, which climate warming and moistening (Czerny and Sachsse differ in parent materials, relief, moisture regime, 1965; Miklaszewski 1930). Following this concept, vegetation history, length and intensity of human chernozems in northern Central Europe and northern impacts etc. Russia are relics, developed in the late Pleistocene or An important issue influencing the discussion on early Holocene, before the Atlantic climate optimum chernozem origin is the moist water regime in many (Borowiec 1962; Hajdukiewicz 2010; Ko³odyñska- chernozemic soils connected with the development of Gawrysiak et al. 2017). Alternatively, the formation abundant redoximorphic features, typical for soils of chernozems under an open-canopy forest-steppe or developed under humid rather than continental climates. meadow-forest vegetation was considered without This issue led some, even modern scientists, to the specification of the time of development (Borowiec conclusions on the hydrogenic origin of chernozems 1967; Strzemski 1961; Vyslouñilov

The latter materials may significantly influence the (c) brown chernozems (PL: czarnoziemy zbrut- development of soil profile and soil properties, due to nia³e) that have a kambik horizon, (d) stagnogleyic either enhanced water drainage or water retention. If chernozems (PL: czarnoziemy opadowo-glejowe) the underlying material influences the soil properties that have stagnic properties in a layer >25 cm thick, too strongly, the soil may no longer fulfil the criteria starting <80 cm from the soil surface and (e) typical for chernozem; this is particularly the case for under- chernozems (PL: czarnoziemy typowe) that have all lying sands that support deep carbonate leaching (and required features of the type (coming from its position soil shifting to decalcified grey soils) and imperme- in a key to soil types) and do not have features required able /clays that contribute to the development for the subtypes listed above. Thus, the 'typical of redoximorphic features and soil shifting to exces- chernozem' has a mollik horizon and accumulation sively moist black earths (Kaba³a et al. 2015; Dudek of secondary carbonates starting <100 cm from the et al. 2019). Further, too shallow presence of lime- surface, does not have kambik or argik horizons and stone may mask the accumulations of secondary does not have clearly developed stagnic (or gleyic) carbonates (if present at all) and leads to soil classifi- properties. Comparing to the previous Polish Soil cation as chernozemic rendzina, which, in fact, may Classifications (Systematyka gleb Polski 1974; 1989), have a similar origin to typical chernozems (Mikla- the subtype 'typical' may be correlated with 'non- szewski 1930); however, having primary instead of degraded', the 'stagnic' subtype with 'stagnogleyed', secondary carbonates. The presence of carbonates in whereas the 'leached', 'brown' and 'illuvial' subtypes loess not only stabilizes the humus, thus supporting were merged previously into one subtype of 'degraded' the formation of thick humus horizon, but also limits chernozems. It should be noted that not all Polish the of minerals and transformation of chernozems, even the 'typical' ones, fulfil the criteria chernozem (Drewnik et al. 2014). of Chernozems in the WRB classification (IUSS Chernozems in Poland, even if steppe vegetation Working Group WRB 2015), which requires the was confirmed to support their development in the presence of secondary carbonates at a depth no larger Neolithic period (Chmielewski et al. 2014; Mueller- than 50 cm below the mollic horizon. In particular, Bieniek and Nalepka 2010), differ of course from the the subtype of leached chernozems may refer to the 'typical' or even of the 'normal' chernozems of the group (Kaba³a et al. 2019a). On the other central continental steppe zone in a humus content, hand, it must be stressed that many Polish 'black which in Poland commonly varies in a range of 2 to earths' fulfil the criteria of (Gleyic/Stagnic) Chernozems 3% (Borowiec 1962; 1965; 1968; G¹sior and Party- in the WRB (£abaz et al. 2018). According to Soil ka 1999; £abaz 2010; Olszewski et al. 1965; Turski Taxonomy ( Staff 2014), all Polish 1985; 1986). The structure of soil mass in topsoil lay- chernozems meet the criteria of Mollisols and typi- ers of the Polish chernozems rarely is granular, more cally belong to Calciudolls or Hapludolls (Kaba³a et often it is blocky subangular or even angular due to al. 2019a). ploughing (Chudecki and B³aszczyk 1980; Dom¿a³ et As stated above, the distinction between cherno- al. 1991; £abaz et al. 2018). Such a structure visibly zems and black earths in SGP6 refers indirectly to differs from the granular or granular/coprolite soil genesis and directly to and structure of native, non-arable chernozems in the physicochemical properties. Both chernozems and steppe zone (Khitrov and Loiko 2010). However, the black earths are featured by the presence of thick arable 'normal' chernozems in the Woronezh and mollik horizon. Chernzoems must have a layer with se- Belgorod regions also have a blocky angular or even condary carbonate accumulation within the profile, cloddy structure in the topsoil layers after ploughing while black earths – may have it. Whereas, cherno- (Kaba³a 2016, personal observation; Khitrov et al. zems do not have strong stagnic or gleyic properties, 2013), thus the structure cannot be a measure of which, in turn, are required in black earths. Thus, the differences between the zonal and extrazonal present definition of black earths includes soils of va- chernozems. rious origin, including polygenetic soils, featured by The recent, 6th edition of the Polish Soil Classifi- at least seasonal, excessive moisture of soil profile cation (Systematyka gleb Polski 2019) has distingu- (either from high level of ground water or stagnating ished five subtypes of chernozems: (a) leached rain/melting waters), evidenced by stagnic or gleyic chernozems (PL: czarnoziemy wy³ugowane) that do properties. This means, also the soils originated as not contain carbonates down to a depth of 100 cm, steppe chernozems may be classified as black earths, (b) illuvial chernozems (PL: czarnoziemy iluwialne) if presently are situated in depressions, footslopes and that have clay translocation and argik horizons other positions supporting water stagnation and starting no deeper than 100 cm from the soil surface, development of reducing conditions in soil profile. Chernozem (czarnoziem) – soil of the year 2019 in Poland 189

This distinctions refers to different ecological func- 2010). However, the composition of humus may tions of "dry" chernozems and "moist" black earths" significantly differentiate in chernozems existing at and also different agricultural and forestry manage- various locations, under various vegetation and ment required for these soil types (Strzemski et al. cultivation practices (KuŸnicki and Sk³odowski 1968; 1973; Turski 1985; B³oñska and Lasota 2019). Turski and Chmielewska 1986). The quality of humus has been found to negatively change under Distribution, land use and degradation long-term cultivation of cereals in monoculture (Tur- of chernozems in Poland ski and Flis-Bujak 1980). Wilk and Nowak (1977) reported that organic fertilization of chernozems and Soils traditionally identified in Poland as chernozems other soils may not enhance and crop yields occur in isolated larger locations on the loess plate- directly but is crucial for stabilizing the content and aus of southern Poland, near the towns Tomaszów composition of humus, and thus, influences the soil Lubelski-Hrubieszów, Sandomierz, Przemyœl-Jaro- productivity indirectly. Also, erosion may substantially s³aw, Miechów-Proszowice, and G³ubczyce (Borowiec contribute to the quality of humus in chernozems, both 1965, 1968; Olszewski et al. 1965; Licznar 1976; by selective removal/accumulation of humus comple- Turski 1985; Czarnecki and Lewartowska-Urbañska xed with fine earth particles and transformation of 1987; G¹sior and Partyka 1999). Moreover, cherno- humic compounds after burial with colluvial material zems have been documented in mosaics with black (Licznar and Drozd 1985; Licznar et al. 1993). earths, for example near Wroc³aw, K³odzko, Inowro- Chernozems in Poland generally have a high c³aw and Pyrzyce (Borowiec 1962; Cieœla et al. 1988; content of nutrients (Borowiec 1965; 1971; Olszew- Drozd et al. 2007; £abaz et al. 2018). ski et al.1965; Licznar 1976; Bieganowski et al. 2013; Due to properties beneficial to plant growth, nearly £abaz et al. 2018) and low concentrations of chemical all chernozems in Poland are arable. Typical cherno- contaminants, including heavy metals (Sk³odowski and zems, developed from calcareous loess and having Sapek 1977; Czarnowska 1989; G¹sior and Partyka a thick humus horizon, have the highest agricultural 1999; Jeleñska et al. 2008; Domañska 2009). However, evaluation belonging to class I or II of the national the content of cadmium and lead in topsoil layers is system. Leached, illuvial and brown chernozems have 3 to 5 times higher compared to buried (Neolithic) a beneficial texture; however, typically these chernozems (£abaz et al. 2019). This observation may chernozems are leached of carbonates to a larger indicate a general (large-scale) contamination of the depth and often have a thinner humus horizon. environment with these metals since the beginning of Thus, they typically belong to the II or IIIa evaluation the industrial epoch (lead) or modern agriculture class. Potentially, some limitations to plant growth (cadmium). Local contamination of chernozems due may occur in stagnogleyic chernozems, and therefore to industrial emissions, for example with salts, is they typically belong to IIIa and IIIb evaluation rarely reported (Brogowski et al. 1975). classes. Chernozems of various subtypes (excluding The common source of threats for chernozems' the stagnogleyed ones) may have a lower evaluation quality and even their existence is generated by intense class (IIIa or IIIb, respectively to their properties) if agricultural land use (Witkowska-Walczak et al. they are located on slopes suffering from erosion. 1999). Dom¿a³ and al. (1991) and S³owiñska-Jurkie- Nevertheless, nearly all chernozems belong to the 1st wicz et al. (2013) reported that the transformation of and 2nd agricultural land suitability category (com- in the topsoil layer is affected by tractor plex) (i.e. lands dedicated to growing the most deman- wheels or long-term fertilization. Intense cultivation, ding crops, such as wheat, sugar beet, corn and rape) including the regular ploughing and mineral fertili- (Strzemski et al. 1973). zation, leads to a decrease of humus content in topsoil Quality of chernozems and their degradation have layer and transformation to 'grey soils' (Borkowski been the subject of numerous studies. In particular, 1964; Licznar 1976; Kowaliñski et al. 1987). The most research regarding the composition and functions of serious problem for chernozems related to agricultu- humus are frequently found in the literature. The re is the sheet erosion that may accelerate chemical characterization of the amounts and ratios of parti- denudation and nutrient loss (Jadczyszyn et al. 2014) cular humic compounds demonstrated the similarity and subsequent thinning of the humus layer by physi- of Polish chernozems to Ukrainian and Russian ones cal losses of surface, humus-rich material (Licznar and but also the similarity (sometimes interpreted as Drozd 1985; Licznar et al. 1993; Górka-Kostrubiec similar soil origin) of chernozems and other soil et al. 2016; G¹sior et al. 2017). Erosion of chernozems types, such as black earths or smonitza (Wilk and in Central Europe began with early agricultural Nowak 1977; Turski 1986; Drozd et al. 2007; £abaz practices, which destroyed the natural vegetation 190 CEZARY KABA£A cover and opened soil surface to water action but has Brogowski Z., Czerwiñski Z., Tuszyñski M., 1975. Wp³yw emi- critically accelerated with the introduction of plo- sji NaCl na gleby i roœlinnoœæ okolicy ¿upy solnej w Wielicz- ughing (Ko³odyñska-Gawrysiak et al. 2017; Zadoro- ce. Roczniki Gleboznawcze – Soil Science Annual, 26(3): 259–275. va et al. 2013). Long-term erosion may lead to the Chmielewski T.J., Furmanek M., Patay R., Sady A., 2014. disappearance of chernozem by its transformation to Needle grass (Stipa sp.) in the Neolitic and Eneolithic pararêdzina/ (Dobrzañski and Zbys³aw 1956). periods in Central Europe. Contribution to the discussion on Therefore, conservation practices that will protect the phenomenon. Arheovest, JatePress Kiado, Szeged, chernozems both against erosion and humus loss are Hungary: 109–133. Chudecki Z., B³aszczyk H., 1980. Strukturotwórcza funkcja urgently required (Borowiec 2002) because the true próchnicy w pyrzyckich uprawnych czarnoziemach i czarnych area of chernozems has clearly decreased compared ziemiach. Roczniki Gleboznawcze – Soil Science Annual to their surface, evidenced in soil-agricultural maps 31(3–4): 85–92. prepared in the1960s (Kaba³a and £abaz 2019, data Cieœla W., D¹bkowska-Naskrêt H., 1983. Sk³ad chemiczny frak- unpublished). cji ilastej gleb wytwarzanych z glin zwa³owych moren den- nych niziny wielkopolskiej. Roczniki Gleboznawcze – Soil Science Annual 34(3): 37–54. ACKNOWLEDGEMENT Cieœla W., D¹bkowska-Naskêt H., Dymiñska M., Jaworska H., 1988. Uziarnienie frakcji i³u koloidalnego w wybranych I would like to thank all the members of the Soil glebach Wysoczyzny Kujawskiej. Roczniki Gleboznawcze – Science Society of Poland, in particular the members Soil Science Annual 39(3): 213–216. of the Commission for the Soil Genesis, Classification Czarnowska K., 1989. Zawartoœæ niektórych metali ciê¿kich w glebach wytworzonych z ró¿nych utworów py³owych. Rocz- and Cartography, who got involved in the implemen- niki Gleboznawcze – Soil Science Annual 37(1): 153–163. tation of the program "Soil of the Year", including the Czarnecki R., Lewartowska-Urbañska M., 1987. Wymoki oko- preparation of a special issue of Soil Science Annual lic Sandomierza. Przegl¹d Geograficzny 59(3): 385–399. focused on Chernozems and related soils. Czerny P., Sachsse H.F., 1965. Bodenkundliche Untersuchun- gen an einer fossilen und einer rezenten Schwarzerde. Archives of Agronomy and Soil Science 9(10): 867–881. REFERENCES Dobrzañski B., Zbys³aw B., 1956. Wp³yw erozji na ewolucjê czarnoziemów. Roczniki Nauk Rolniczych 7: 122 pp. Altermann M., Rinklebe J., Merbach I., Körschens M., Langer Dokuchaev V.V., 1883. Russkij Chernozem. Sankt Petersburg: U., Hofmann B., 2005. Chernozem soil of the year 2005. 376 pp. Journal of Plant Nutrition and Soil Science 168(6): 725–740. Domañska J., 2009. Soluble forms of zinc in profiles of selected Bieganowski A., Witkowska-Walczak B., Gliñski J., Soko³ow- types of arable soils. Journal of Elementology 14: 55–62. ska Z., S³awiñski C., Brzeziñska M., W³odarczyk T., 2013. Dom¿a³ H., Gliñski J., Lipiec J., 1991. Soil compaction rese- Database of Polish arable mineral soils: a review. Internatio- arch in Poland. Soil and Tillage Research 19(2–3): 99–109. nal Agrophysics 27(3): 335–350. Drewnik M., Skiba M., Szymañski W., ¯y³a M., 2014. Mineral Borkowski J., 1964. Czarne i szare ziemie wytworzone z utwo- composition vs. soil forming processes in loess soils – a case rów py³owych i pylastych na obszarze Œl¹ska. Roczniki Gle- study from Kraków (Southern Poland). Catena 119: 166–173. boznawcze – Soil Science Annual 14(1): 61–78. Drozd J., Pi¹tek J., £abaz B., 2007. W³aœciwoœci gleb czarno- Borowiec S., 1962. O wystêpowaniu reliktowych czarnoziemów ziemnych wystêpuj¹cych w rejonie K³odzka. Zeszyty Proble- na terenie województwa szczeciñskiego. Przegl¹d Geogra- mowe Postêpów Nauk Rolniczych 520, 2: 24–36. ficzny 34(4): 739–747. Dudek M., Waroszewski J., Kaba³a C., £abaz B., 2019. Verti- Borowiec J., 1965. Czarnoziemy Wy¿yny Lubelskiej. Cz. I. Wa- sols and black earths developed from Neogene clays and runki wystêpowania i ogólna charakterystyka gleb. Annales accompanying materials in the Niemcza-Strzelin Hills (SW UMCS, seria B, 19: 1–19. Poland) – morphology, properties and classification. Soil Borowiec J., 1966. Wp³yw wylesienia i u¿ytkowania rolniczego Science Annual 70(2): 158–169. na morfologiê i w³aœciwoœci czarnoziemu w terenie urzeŸ- Eckmeier E., Gerlach R., Gehrt E., Schmidt M.W.I., 2007. bionym. Annales UMCS, sec. E, 21: 144 pp. of Chernozems in central Europe – A review. Borowiec J., 1967. Czarnoziemy Wy¿yny Lubelskiej. Cz. II. Pro- Geoderma 139: 288–299. blemy genezy, ewolucji i typologii gleb. Annales UMCS, Ehwald E., Jäger K.D., Lange E., 1999. Das Problem Wald – seria B, 22: 39–58. Offenland im zirkumherzynen Trockengebiet von der neoli- Borowiec J., 1968. The problem of typology and development thischen Besiedlung sowie die Entstehung der zirkumherzy- trends of chernozems occurring in Poland. Roczniki Glebo- nen Schwarzerden. Hamburger Werkstattreihe zur Archäolo- znawcze – Soil Science Annual 19: 253–260. gie 4: 12–34. Borowiec J., 1971. Formy fosforu, ich udzia³ i przemiany w gle- G¹sior J., Partyka A., 1999. Czarnoziemy po³udniowo-wschod- bie na przyk³adzie polskich czarnoziemów. Annals UMCS, niej Polski i ich degradacja. Zeszyty Problemowe Postêpów sec. E, 26(15): 321–354. Nauk Rolniczych 467: 234–232. Borowiec J., 1976. Czarnoziemy polskie w œwietle badan Profe- G¹sior J., W³aœniewski S., Hamor A., Bartman M., 2017. Pro- sora S³awomira Miklaszewskiego. Roczniki Gleboznawcze cesy glebowe na pó³nocnym stoku Cergowej jako wskaŸniki – Soil Science Annual 27(2): 159–165. geomorfologicznych procesów stokowych w Beskidzie Ni- Borowiec J., 2002. Znaczenie lasu w ochronie gleby przed erozj¹ skim. Acta Carpathica 13. na przyk³adzie ewolucji polskich czarnoziemów. Zeszyty Pro- blemowe Postêpów Nauk Rolniczych 487: 233–242. Chernozem (czarnoziem) – soil of the year 2019 in Poland 191

Genetyczna klasyfikacja gleb Polski, 1959. Roczniki Gleboznaw- Kowaliñski S., 1952. Czarne ziemie Wroc³awskie. Roczniki cze – Soil Science Annual 7(2): 1–103. Gleboznawcze – Soil Science Annual 2: 59–91. Górka-Kostrubiec B., Teisseyre-Jeleñska M., Dyt³ow S.K., 2016. Kowaliñski S., Licznar M., Drozd J., Licznar S.E., 1987. Magnetic properties as indicators of Chernozem soil deve- Mikromorfologiczna interpretacja procesów fizyko chemicz- lopment. Catena 138: 91–102. nych w glebach czarnoziemnych ró¿nych rejonów Polski. Rocz- Hajdukiewicz H., 2010. PóŸnovistuliañski i holoceñski rozwój niki Gleboznawcze – Soil Science Annual 38(2): 77–100. dolin dorzecza Ma³oszówki. Prace Geograficzne/Instytut KuŸnicki F., Sk³odowski P., 1968. Przemiany substancji orga- Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiel- nicznej w niektórych typach gleb Polski. Roczniki Glebo- loñskiego 123: 63–81. znawcze – Soil Science Annual 19(1): 3–25. Harasimiuk A., Wicik B. 2010. Substancje humusowe gleb w Lasota J., B³oñska E., £yszczarz S., Sadowy A., 2019. Forest œwietle wyników ekstrakcji gor¹c¹ wod¹ (gleba p³owa, szara habitats and forest types on chernozems in south-eastern gleba leœna, czarnoziem). Roczniki Gleboznawcze – Soil Poland, Soil Science Annual 70(33): 234–243. Science Annual 61(1): 38–44. Licznar M., 1976. W³aœciwoœci i geneza niektórych gleb czar- IUSS Working Group WRB, 2015. World References Base for noziemnych P³askowy¿u G³ubczyckiego. Roczniki Glebo- Soil Resources 2014, Update 2015, World Soil Resources znawcze – Soil Science Annual 27(4): 107–148. Reports, 106, FAO, Rome: 192 pp. Licznar M., Drozd J., 1985. Wp³yw erozji na w³aœciwoœci zwi¹z- Jacomet S., Ebersbach R., Akeret Ö., Antolin F., Baum T., ków próchnicznych w niektórych jednostkach systematycz- Bogaard A., Gross E., 2016. On-site data cast doubts on the nych gleb. Roczniki Gleboznawcze – Soil Science Annual, hypothesis of shifting cultivation in the late Neolithic (c. 36(3): 189–199. 4300–2400 cal. BC): Landscape management as an alterna- Licznar M., Drozd J., Licznar S.E., 1993. Sk³ad iloœciowy i ja- tive paradigm. The Holocene 26(11): 1858–1874. koœciowy zwi¹zków próchnicznych gleb deluwialnych P³a- Jadczyszyn J., Mroczkowski W., Gosek S., 2014. Erozyjne stra- skowy¿u G³ubczyckiego. Zeszyty Problemowe Postêpów ty fosforu w doœwiadczeniu modelowym. In¿ynieria i Ochro- Nauk Rolniczych 411: 139–148. na Œrodowiska 17(1): 89–103. Liu X., Lee Burras C., Kravchenko Y. S., Duran A., Huffman T., Jeleñska M., Hasso-Agopsowicz A., K¹dzia³ko-Hofmokl M., Morras H., Yuan X., 2012. Overview of Mollisols in the world: Sukhorada A., Bondar K., Matviishina Z., 2008. Magnetic distribution, land use and management. Canadian Journal of iron oxides occurring in chernozem soil from and Soil Science 92(3): 383–402. Poland as indicators of pedogenic processes. Studia Geophy- £abaz B., 2010. W³aœciwoœci kwasów huminowych gleb czar- sica et Geodaetica 52(2): 255–270. noziemnych wystêpuj¹cych w rejonie K³odzka. Woda-Œro- Kaba³a C., 2018. Rendzina (rêdzina) – Soil of the Year 2018 in dowisko-Obszary Wiejskie 10: 153–164. Poland. Introduction to origin, classification and land use of £abaz B., Kaba³a C., 2014. Geneza, w³aœciwoœci i klasyfikacja rendzinas. Soil Science Annual 69(2): 63–74. czarnych ziem w Polsce. Soil Science Annual 65(2): 80–90. Kaba³a C., Charzyñski P., Chodorowski J., Drewnik M., Glina £abaz B., Musztyfaga E., Waroszewski J., Bogacz A., Jezierski B., Greinert A., Hulisz P., Jankowski M., Jonczak J., £abaz P., Kabala C., 2018. Landscape-related transformation and B., £achacz A., Marzec M., Mendyk £., Musia³ P., Musielok differentiation of Chernozems – Catenary approach in the £., Smreczak B., Sowiñski P., Œwitoniak M., Uzarowicz £., Silesian Lowland, SW Poland. Catena 161: 63–76. Waroszewski J., 2019a. Polish Soil Classification, 6th edi- £abaz B., Kabala C., Waroszewski J., 2019. Ambient geoche- tion – principles, classification scheme and correlations. Soil mical baselines for trace elements in Chernozems – approxi- Science Annual 70(2): 71–97. mation of geochemical soil transformation in an agricultural Kaba³a C., P³onka T., Przekora A., 2015. Vertic properties and area. Environmental Monitoring and Assessment 191: 19. gilgai-related subsurface features in soils of south-western Maruszczak H., 1998. Wp³yw gospodarki neolitycznej na roz- Poland. Catena 128: 95–107. wój tzw. czarnoziemów hrubieszowsko-tomaszowskich. Prze- Kaba³a C., Przyby³ A., Krupski M., £abaz B., Waroszewski J., gl¹d Geograficzny 70(3–4): 333–342. 2019b. Origin, age and transformation of Chernozems in Miechówka A., Drewnik M., 2018. Rendzina soils in the Tatra northern Central Europe – New data from Neolithic earthen Mountains, central Europe: a review. Soil Science Annual barrows in SW Poland. Catena 180: 83–102. 69(2): 88–100. Khitrov N.B., Gerasimova M.I., Bronnikova M., Zazovskaya E. Mieczyñski T., 1938. Gleboznawstwo terenowe. Pañstwowy P., 2013. Chernozem of Kursk Biosphere Station of IG RAS. Instytut Naukowy Gospodarstwa Wiejskiego, Pu³awy: 337 pp. [In:] Guide for Field Excursions XIIth International Sympo- Miedema R., Koulechova I. N., Gerasimova M. I., 1999. Soil sium and Field Seminar on Paleopdology. Moscow: 42–50. formation in Greyzems in Moscow district: micromorpholo- Khitrov N., Smirnova M., Lozbenev N., Levchenko E., Gribov gy, chemistry, clay mineralogy and particle size distribution. V., Kozlov D., Rukhovich D., Kalinina N., Koroleva P., 2019. Catena 34: 315–347. Soil cover patterns in the forest stepppe and steppe zones of Miklaszewski S., 1906. Gleby ziem polskich ze szczególnym the East European Plain. Soil Science Annual 70(2): 198– uwzglêdnieniem Królestwa Polskiego. Przegl¹d Rolniczy, 210. kwarta³ III i IV. Ktlli R., Tamm I., 2015. Soil on limestone – year 2015 soil of Miklaszewski S., 1930. Gleby Polski. Komisja Wydawnicza Estonia. Agraarteadus 26(2): 51–61. TBPS Politechniki Warszawskiej, Warszawa: 640 pp. Ko³odyñska-Gawrysiak R., Chodorowski J., Mroczek P., Plak Ministerstwo Rolnictwa, 1963. Komentarz do tabeli klas grun- A., Zg³obicki W., Kieba³a A., Standzikowski K., 2017. The tów. Warszawa: 464 pp. impact of natural and anthropogenic processes on the Mueller-Bieniek A., Nalepka D., 2010. Do findings of feather evolution of closed depressions in loess areas. A multi-proxy grass (Stipa sp.) from the Neolithic of Southern Kujawy area case study from Na³êczów Plateau, Eastern Poland. Catena indicate the existence of xerothermic grasslands during the 149: 1–18. climatic optimum? [In:] Ciep³olubne murawy w Polsce – stan zachowania i perspektywy ochrony (Ratyñska H., Waldon B., 192 CEZARY KABA£A

Editors). Wydawnictwo Uniwersytetu Kazimierza Wielkie- Phaeozems in Central Germany during the Neolithic period. go, Bydgoszcz: 235–248. Quaternary International 511: 166–184. Olszewski Z., Barañski E., Sk³odowski P., 1965. Czarnoziemy Systematyka gleb Polski, 1974. Roczniki Gleboznawcze – Soil proszowskie. Roczniki Nauk Rolniczych 90: 61–111. Science Annual 25(1): 1–148. Ostaszewska K., Heinrich J., Schmidt R., Krüger A., 2011. U¿yt- Systematyka gleb Polski, 1989. Roczniki Gleboznawcze – Soil kowanie ziemi jako czynnik krajobrazotwórczy na obszarach Science Annual 40(3/4): 1–150. lessowych. Prace i Studia Geograficzne 46: 63–76. Systematyka gleb Polski, 2011. Roczniki Gleboznawcze – Soil Pokorný P., Chytrý M., Juøièková L., Sádlo J., Novák J., Loñek Science Annual 62(3): 1–193. V., 2015. Mid-Holocene bottleneck for central European dry Systematyka gleb Polski, 2019. Wydawnictwo Uniwersytetu Przyrod- grasslands: Did steppe survive the forest optimum in niczego we Wroc³awiu, Polskie Towarzystwo Gleboznawcze, Wro- northern Bohemia, Czech Republic? The Holocene 25(4): c³aw-Warszawa: 292 pp. 716–726. Turski R., 1985. Geneza i w³aœciwoœci czarnoziemów Wy¿yny Ponomarenko D., Ponomarenko E., 2019. Describing krotovi- Zachodniowo³yñskiej i Lubelskiej. Roczniki Nauk Rolni- nas: A contribution to methodology and interpretation. czych, seria D, 202: 156 pp. Quaternary International 502: 238–245. Turski R., 1986. Zwi¹zki próchniczne gleb polskich. Roczniki Pozniak S.P., Havrysh N.S., 2019. Soils in the memory of world Gleboznawcze – Soil Science Annual 37(2–3): 75–89. nations. Polish Journal of Soil Science 52(1): 1–13. Turski R., Chmielewska B., 1986. Kwasy huminowe gleb czarno- Przyrodniczo-genetyczna klasyfikacja gleb Polski, 1956. Rocz- ziemnych. Roczniki Gleboznawcze – Soil Science Annual niki Nauk Rolniczych 74, D: 1–96. 37(2–3): 75–89. Sk³odowski P., Sapek A., 1977. Rozmieszczenie Fe, Zn, Mn, Turski R., Flis-Bujak M., 1980. Przemiany zwi¹zków próchni- Cu, Co, Ni, Pb i Cd w profilach czarnoziemów leœno-stepo- czych w podobnie u¿ytkowanych glebach ró¿nego pochodze- wych. Roczniki Gleboznawcze – Soil Science Annual 28(1): nia. Roczniki Gleboznawcze – Soil Science Annual 31(3–4): 71–84. 299–307. S³owiñska-Jurkiewicz A., Bryk M., Medvedev V. V., 2013. Long- Vyslouñilová B., Ertlen D., Schwartz D., Šefrna L., 2016. term organic fertilization effect on Chernozem structure. Chernozem. From concept to classification: a review. AUC International Agrophysics 27(1): 81–87. Geographica 51: 85–95. Smreczak B., Jadczyszyn J., Kaba³a C., 2018. Agricultural Vyslouñilov< B., Ertlen D., Šefrna L., Novák T., Virágh K., Rué suitability of rendzinas in Poland. Soil Science Annual 69(2): M., Campaner A., Dreslerová D., Schwartz D., 2014. 142–151. Investigation of vegetation history of buried chernozem Soil Survey Staff, 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natu- soil using near-infrared spetroscopy (NIRS). Quaternary ral Resources Conservation Service, Washington, DC: 633 pp. International 365: 203–211. Strzemski M., 1961. Przemiany œrodowiska geograficznego Polski, Wilk K., Nowak W., 1977. Sk³ad frakcyjny zwi¹zków próch- jako t³a przyrodniczego rozwoju rolnictwa na ziemiach polskich: nicznych niektórych typów gleb uprawnych. Roczniki Gle- od po³owy trzeciego tysi¹clecia p.n.e. do naszych czasów. Kwar- boznawcze – Soil Science Annual 23(2): 33–47. talnik Historii Kultury Materialnej 9(3): 331–357. Witkowska-Walczak B., Walczak R., S³awiñski C., 1999. Cha- Strzemski M., 1971. Myœli przewodnie systematyki gleb. Pañ- rakterystyki potencja³u wody glebowej – wilgotnoœæ czarno- stwowe Wydawnictwo Rolnicze i Leœne, Warszawa: 425 pp. ziemów Polski. Acta Agrophysica 22: 265–273. Strzemski M., 1980. Historia gleboznawstwa polskiego. Pañ- Zádorová T., Peníñek V., Šefrna L., Drábek O., Mihaljeviè M., stwowe Wydawnictwo Rolnicze i Leœne, Warszawa: 224 pp. Volf Š., Chuman T., 2013. Identification of Neolithic to Strzemski M., Siuta J., Witek T., 1973. Przydatnoœæ rolnicza Modern erosion-sedimentation phases using geochemical gleb Polski, Pañstwowe Wydawnictwo Rolnicze i Leœne, approach in a loess covered sub-catchment of South Moravia, Warszawa: 325 pp. Czech Republic. Geoderma 195: 56–69. Suchodoletz H., Tinapp C., Lauer T., Glaser B., Stäuble H., Kühn P., Zielhofer C., 2017. Distribution of Chernozems and Received: July 21, 2019 Accepted: August 14, 2019 Associated editor: A. £achacz

Czarnoziem – gleba roku 2019 w Polsce. Geneza, klasyfikacja i u¿ytkowanie czarnoziemów w Polsce

Streszczenie: Decyzj¹ Polskiego Towarzystwa Gleboznawczego, czarnoziem zosta³ og³oszony gleb¹ roku 2019. Choæ czarno- ziemy pokrywaj¹ mniej ni¿ 2% powierzchni Polski, maj¹ du¿e znaczenie dla rolnictwa dziêki ich wysokiej produktywnoœci. Od- grywaj¹ te¿ specjaln¹ rolê w badaniach nad zrozumieniem genezy gleb oraz funkcjonowania gleb w œrodowisku przyrodniczym. Czarnoziemy s¹ szczególnie u¿yteczne w rekonstrukcjach paleoœrodowiskowych, na przyk³ad w odtwarzaniu historii rolnictwa neolitycznego i rosn¹cego wp³ywu cz³owieka na gleby i krajobraz. W niniejszym artykule wstêpnym (a) zaprezentowano specy- ficzn¹ wspó³czesn¹ definicjê czarnoziemów w Polsce, uwzglêdniaj¹c¹ osobn¹ klasyfikacjê czarnych ziem i gleb deluwialnych czarnoziemnych, które w innych klasyfikacj¹ch moge równie¿ byæ zaliczane do czarnoziemów, (b) dokonano przegl¹du historii klasyfikacji czarnoziemów w Polsce oraz ich wspó³czesnej pozycji taksonomicznej na tle miêdzynarodowych systemów (WRB i Soil Taxonomy), (c) omówiono wystêpowanie i wartoœæ bonitacyjn¹ czarnoziemów w Polsce, a tak¿e zagro¿enia dla jakoœci i istnienia czarnoziemów wynikaj¹ce z intensywnego u¿ytkowania rolniczego. S³owa kluczowe: czarnoziemy, czarne ziemie, gleby szare, geneza gleb, systematyka gleb, funkcje gleb