Analysis of the Jun Ishiwara's" the Universal Meaning of the Quantum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophical Magazine Vol
Philosophical Magazine Vol. 92, Nos. 1–3, 1–21 January 2012, 353–361 Exploring models of associative memory via cavity quantum electrodynamics Sarang Gopalakrishnana, Benjamin L. Levb and Paul M. Goldbartc* aDepartment of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street Urbana, Illinois 61801, USA; bDepartments of Applied Physics and Physics and E. L. Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA; cSchool of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, USA (Received 2 August 2011; final version received 24 October 2011) Photons in multimode optical cavities can be used to mediate tailored interactions between atoms confined in the cavities. For atoms possessing multiple internal (i.e., ‘‘spin’’) states, the spin–spin interactions mediated by the cavity are analogous in structure to the Ruderman–Kittel–Kasuya– Yosida (RKKY) interaction between localized spins in metals. Thus, in particular, it is possible to use atoms in cavities to realize models of frustrated and/or disordered spin systems, including models that can be mapped on to the Hopfield network model and related models of associative memory. We explain how this realization of models of associative memory comes about and discuss ways in which the properties of these models can be probed in a cavity-based setting. Keywords: disordered systems; magnetism; statistical physics; ultracold atoms; neural networks; spin glasses 1. Introductory remarks Since the development of laser cooling and trapping, a -
Shs-17-2018-14.Pdf
Science beyond borders Nobukata Nagasawa ORCID 0000-0002-9658-7680 Emeritus Professor of University of Tokyo [email protected] On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics Abstract Possible reasons are studied why Ladislas (Władysław) Natanson’s paper on the statistical theory of radiation, published in 1911 both in English and in the German translation, was not cited properly in the early history of quantum statistics by outstanding scientists, such as Arnold Sommerfeld, Paul Ehrenfest, Satyendra Nath Bose and Albert Einstein. The social and psychological aspects are discussed as back- ground to many so far discussions on the academic evaluation of his theory. In order to avoid in the future such Natansonian cases of very limited reception of valuable scientific works, it is pro- posed to introduce a digital tag in which all the information of PUBLICATION e-ISSN 2543-702X INFO ISSN 2451-3202 DIAMOND OPEN ACCESS CITATION Nagasawa, Nobukata 2018: On social and psychological aspects of a negligible reception of Natanson’s article of 1911 in the early history of quantum statistics. Studia Historiae Scientiarum 17, pp. 391–419. Available online: https://doi.org/10.4467/2543702XSHS.18.014.9334. ARCHIVE RECEIVED: 13.06.2017 LICENSE POLICY ACCEPTED: 12.09.2018 Green SHERPA / PUBLISHED ONLINE: 12.12.2018 RoMEO Colour WWW http://www.ejournals.eu/sj/index.php/SHS/; http://pau.krakow.pl/Studia-Historiae-Scientiarum/ Nobukata Nagasawa On social and psychological aspects of a negligible reception... relevant papers published so far should be automatically accu- mulated and updated. -
Research Group of the Committee for the Publication of Hantaro Nagaoka's Biography
Research Group of the Committee for the Publication of Hantaro Nagaoka's Biography Eri Yagi* The Research Group, whose members are Dr. Kiyonobu Itakura of the Na tional Institute for Education Research, Mr. Tosaku Kimura of the National Science Museum, and myself, has completed a biography of Hantaro Nagaoka, which will be published soon (in Japanese) by the Asahi Newspaper Publisher in Tokyo. The Research Group was organized by the Committee in 1963. It was just after the special exhibition of Nagaoka's science activities, held at the National Science Museum in Tokyo by the support of the History of Science Society of Japan. The Committee has been directed by Professor Yoshio Fujioka, who had learned physics under Nagaoka. Unpublished materials, e.g., Nagaoka's notebooks, diaries, corespondences, photos were generosly donated to the National Science Museum by the family of Nagaoka. In addition, those who had been in contact with Nagaoka kindly con tributed informations to the Research Group. The above materials and informations have been arranged, cataloged, and examined by the Research Group. Hantaro Nagaoka was bom at Nagasaki prefecture in the southern part of Japan in 1865 and died in Tokyo in 1950. He was primarily responsible for pro moting the advancement of physics in Japan, between 1900 and 1925, as a professor at the Department of Physics, the University of Tokyo. In the earlier period before Nagaoka started his researches, such local studies as the properties of Japanese magic mirrors, earthquakes, and geomagnetism had dominated by the influence of foreign teachers in Japan. In addition to the study of atomic structure, Nagaoka covered varied fields in physics as magnetostriction, geophysics, mathematical physics, spectroscopy, and radio waves. -
On Max Born's Vorlesungen ¨Uber Atommechanik, Erster Band
On Max Born’s Vorlesungen uber¨ Atommechanik, Erster Band Domenico Giulini Institute for Theoretical Physics, University of Hannover Appelstrasse 2, D-30167 Hannover, Germany and Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany. [email protected] Abstract A little more than half a year before Matrix Mechanics was born, Max Born finished his book Vorlesungen uber¨ Atommechanik, Erster Band, which is a state-of-the-art presentation of Bohr-Sommerfeld quantisation. This book, which today seems almost forgotten, is remarkable for its epistemological as well as technical aspects. Here I wish to highlight one aspect in each of these two categories, the first being concerned with the roleˆ of axiomatisation in the heuristics of physics, the second with the problem of quantisation proper be- fore Heisenberg and Schrodinger.¨ This paper is a contribution to the project History and Foundations of Quantum Physics of the Max Planck Institute for the History of Sciences in Berlin and will appear in the book Research and Pedagogy. The History of Quantum Physics through its Textbooks, edited by M. Badino and J. Navarro. Contents 1 Outline 2 2 Structure of the Book 3 3 Born’s pedagogy and the heuristic roleˆ of the deductive/axiomatic method 7 3.1 Sommerfeld versus Born . 7 3.2 A remarkable introduction . 10 4 On technical issues: What is quantisation? 13 5 Einstein’s view 20 6 Final comments 23 1 1 Outline Max Born’s monograph Vorlesungen uber¨ Atommechanik, Erster Band, was pub- lished in 1925 by Springer Verlag (Berlin) as volume II in the Series Struktur der Materie [3]. -
China and Albert Einstein
China and Albert Einstein China and Albert Einstein the reception of the physicist and his theory in china 1917–1979 Danian Hu harvard university press Cambridge, Massachusetts London, England 2005 Copyright © 2005 by the President and Fellows of Harvard College All rights reserved Printed in the United States of America Library of Congress Cataloging-in-Publication Data Hu, Danian, 1962– China and Albert Einstein : the reception of the physicist and his theory in China 1917–1979 / Danian Hu. p. cm. Includes bibliographical references and index. ISBN 0-674-01538-X (alk. paper) 1. Einstein, Albert, 1879–1955—Influence. 2. Einstein, Albert, 1879–1955—Travel—China. 3. Relativity (Physics) 4. China—History— May Fourth Movement, 1919. I. Title. QC16.E5H79 2005 530.11'0951—dc22 2004059690 To my mother and father and my wife Contents Acknowledgments ix Abbreviations xiii Prologue 1 1 Western Physics Comes to China 5 2 China Embraces the Theory of Relativity 47 3 Six Pioneers of Relativity 86 4 From Eminent Physicist to the “Poor Philosopher” 130 5 Einstein: A Hero Reborn from the Criticism 152 Epilogue 182 Notes 191 Index 247 Acknowledgments My interest in Albert Einstein began in 1979 when I was a student at Qinghua High School in Beijing. With the centennial anniversary of Einstein’s birth in that year, many commemorative publications ap- peared in China. One book, A Collection of Translated Papers in Com- memoration of Einstein, in particular deeply impressed me and kindled in me a passion to understand Einstein’s life and works. One of the two editors of the book was Professor Xu Liangying, with whom I had the good fortune of studying while a graduate student. -
Models of the Atom
David Sang Models of the atom Today we are very familiar with the picture of the atom as a particle with a tiny nucleus at its centre and a cloud of electrons orbiting around the nucleus. But where did this model come from? What were scientists trying to explain using their models of the atom? To find out, we have to go back to the early years of the twentieth century. A model of the atom. But does the nucleus glow like this? No. And are electrons blue? No. Discovering radioactivity and the electron By the 1890s, most physicists were convinced that matter was made up of atoms. The idea of vast In this photo, an electron beam is bent along a circular path by a magnetic field. numbers of tiny, moving particles could explain The beam is produced at the bottom in an ‘electron gun’ and follows a clockwise many things, including the behaviour of gases and path inside the evacuated tube. A small amount of gas has been left in the tube; the differences between the chemical elements. this glows to show up the path of the beam. Then, in 1896, Henri Becquerel discovered radioactivity. He was investigating uranium salts, The importance of these two discoveries was that many of which glow in the dark. To his surprise, he they suggested that atoms were not indestructible. Key words Atoms are tiny but they are made of still smaller found that all the uranium-containing substances model that he tested produced invisible radiation that particles. could blacken photographic paper. -
The Discovery of Thermodynamics
Philosophical Magazine ISSN: 1478-6435 (Print) 1478-6443 (Online) Journal homepage: https://www.tandfonline.com/loi/tphm20 The discovery of thermodynamics Peter Weinberger To cite this article: Peter Weinberger (2013) The discovery of thermodynamics, Philosophical Magazine, 93:20, 2576-2612, DOI: 10.1080/14786435.2013.784402 To link to this article: https://doi.org/10.1080/14786435.2013.784402 Published online: 09 Apr 2013. Submit your article to this journal Article views: 658 Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tphm20 Philosophical Magazine, 2013 Vol. 93, No. 20, 2576–2612, http://dx.doi.org/10.1080/14786435.2013.784402 COMMENTARY The discovery of thermodynamics Peter Weinberger∗ Center for Computational Nanoscience, Seilerstätte 10/21, A1010 Vienna, Austria (Received 21 December 2012; final version received 6 March 2013) Based on the idea that a scientific journal is also an “agora” (Greek: market place) for the exchange of ideas and scientific concepts, the history of thermodynamics between 1800 and 1910 as documented in the Philosophical Magazine Archives is uncovered. Famous scientists such as Joule, Thomson (Lord Kelvin), Clau- sius, Maxwell or Boltzmann shared this forum. Not always in the most friendly manner. It is interesting to find out, how difficult it was to describe in a scientific (mathematical) language a phenomenon like “heat”, to see, how long it took to arrive at one of the fundamental principles in physics: entropy. Scientific progress started from the simple rule of Boyle and Mariotte dating from the late eighteenth century and arrived in the twentieth century with the concept of probabilities. -
Philosophical Magazine Atomic-Resolution Spectroscopic
This article was downloaded by: [Cornell University Library] On: 30 April 2015, At: 08:23 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Philosophical Magazine Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tphm20 Atomic-resolution spectroscopic imaging of oxide interfaces L. Fitting Kourkoutis a , H.L. Xin b , T. Higuchi c , Y. Hotta c d , J.H. Lee e f , Y. Hikita c , D.G. Schlom e , H.Y. Hwang c g & D.A. Muller a h a School of Applied and Engineering Physics , Cornell University , Ithaca, USA b Department of Physics , Cornell University , Ithaca, USA c Department of Advanced Materials Science , University of Tokyo , Kashiwa, Japan d Correlated Electron Research Group , RIKEN , Saitama, Japan e Department of Materials Science and Engineering , Cornell University , Ithaca, USA f Department of Materials Science and Engineering , Pennsylvania State University , University Park, USA g Japan Science and Technology Agency , Kawaguchi, Japan h Kavli Institute at Cornell for Nanoscale Science , Ithaca, USA Published online: 20 Oct 2010. To cite this article: L. Fitting Kourkoutis , H.L. Xin , T. Higuchi , Y. Hotta , J.H. Lee , Y. Hikita , D.G. Schlom , H.Y. Hwang & D.A. Muller (2010) Atomic-resolution spectroscopic imaging of oxide interfaces, Philosophical Magazine, 90:35-36, 4731-4749, DOI: 10.1080/14786435.2010.518983 To link to this article: http://dx.doi.org/10.1080/14786435.2010.518983 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. -
Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science
University of Windsor Scholarship at UWindsor OSSA Conference Archive OSSA 4 May 17th, 9:00 AM - May 19th, 5:00 PM Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science Joseph Little Follow this and additional works at: https://scholar.uwindsor.ca/ossaarchive Part of the Philosophy Commons Little, Joseph, "Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science" (2001). OSSA Conference Archive. 75. https://scholar.uwindsor.ca/ossaarchive/OSSA4/papersandcommentaries/75 This Paper is brought to you for free and open access by the Conferences and Conference Proceedings at Scholarship at UWindsor. It has been accepted for inclusion in OSSA Conference Archive by an authorized conference organizer of Scholarship at UWindsor. For more information, please contact [email protected]. Title: Culturally Inherited Cognitive Activity: Implications for the Rhetoric of Science1 Author: Joseph Little Response to this paper by: Mark Weinstein © 2001 Joseph Little Introduction Few constructs rest more securely upon the foundation of rhetorical theory than the syllogism. Introduced by Aristotle in the fourth century BC, the syllogism provided Athenian orators with structural guidance for constructing valid, deductive arguments in the polis (Aristotle, 1991, 40; Aristotle, 1984a; Aristotle, 1984b). Yet this guidance is not without qualification: Often neglected in modern times is the fact that valid conclusions, for Aristotle, were only expected to follow necessarily from the premises when the audience was comprised of men acting in accordance with orthos logos, or "right reason" (1984c, 1935-36; 1984d, 1766, 1797, 1798, 1808, 1812, 1819). Also neglected in modern times is the fact that Aristotle thought of "right reason" as a developed ability that "comes to us if growth is allowed to proceed regularly" rather than as an innate aspect of human cognition (1984c, 1939-40). -
Erwin Schrödinger: a Compreensão Do Mundo Infinitesimal Através De Uma Realidade Ondulatória
Douglas Guilherme Schmidt Erwin Schrödinger: a compreensão do mundo infinitesimal através de uma realidade ondulatória Mestrado em História da Ciência Pontifícia Universidade Católica de São Paulo São Paulo 2008 Douglas Guilherme Schmidt Erwin Schrödinger: a compreensão do mundo infinitesimal através de uma realidade ondulatória MESTRADO EM HISTÓRIA DA CIÊNCIA Dissertação apresentada à Banca Examinadora como exigência parcial para obtenção do título de Mestre em História da Ciência pela Pontifícia Universidade Católica de São Paulo, sob a orientação da Profa. Doutora Lilian Al-Chueyr Pereira Martins. Pontifícia Universidade Católica de São Paulo São Paulo 2008 SCHMIDT, Douglas Guilherme. “Erwin Schrödinger: a compreensão do mundo infinitesimal através de uma realidade ondulatória” São Paulo, 2008. Dissertação (Mestrado) – PUC-SP Programa: História da Ciência Orientadora: Profa. Dra. Lilian Al-Chueyr Pereira Martins Folha de aprovação Banca Examinadora _________________________________ _________________________________ _________________________________ Autorizo, exclusivamente para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação por processos fotocopiadores ou eletrônicos. Ass.: _____________________________________________________ Local e data: _______________________________________________ [email protected] A minha mãe Eliana, a minha esposa Maria Ângela e à memória de meu pai Guilherme. Agradecimentos À Professora e orientadora Lilian Al-Chueyr Pereira Martins por seu apoio e objetividade, elevando minha auto-estima e segurança na realização deste trabalho. Pela orientação do Professor Roberto de Andrade Martins que sabiamente me auxiliou durante a elaboração deste trabalho e que me autorizou a utilizar sua análise inédita dos trabalhos de Schrödinger de 1926. Aos Professores José Luiz Goldfarb e Roberto de Andrade Martins, que fizeram parte da minha banca de qualificação, dando sugestões importantes para melhoria desta dissertação. -
Spin-Or, Actually: Spin and Quantum Statistics
S´eminaire Poincar´eXI (2007) 1 – 50 S´eminaire Poincar´e SPIN OR, ACTUALLY: SPIN AND QUANTUM STATISTICS∗ J¨urg Fr¨ohlich Theoretical Physics ETH Z¨urich and IHES´ † Abstract. The history of the discovery of electron spin and the Pauli principle and the mathematics of spin and quantum statistics are reviewed. Pauli’s theory of the spinning electron and some of its many applications in mathematics and physics are considered in more detail. The role of the fact that the tree-level gyromagnetic factor of the electron has the value ge = 2 in an analysis of stability (and instability) of matter in arbitrary external magnetic fields is highlighted. Radiative corrections and precision measurements of ge are reviewed. The general connection between spin and statistics, the CPT theorem and the theory of braid statistics, relevant in the theory of the quantum Hall effect, are described. “He who is deficient in the art of selection may, by showing nothing but the truth, produce all the effects of the grossest falsehoods. It perpetually happens that one writer tells less truth than another, merely because he tells more ‘truth’.” (T. Macauley, ‘History’, in Essays, Vol. 1, p 387, Sheldon, NY 1860) Dedicated to the memory of M. Fierz, R. Jost, L. Michel and V. Telegdi, teachers, colleagues, friends. arXiv:0801.2724v3 [math-ph] 29 Feb 2008 ∗Notes prepared with efficient help by K. Schnelli and E. Szabo †Louis-Michel visiting professor at IHES´ / email: [email protected] 2 J. Fr¨ohlich S´eminaire Poincar´e Contents 1 Introduction to ‘Spin’ 3 2 The Discovery of Spin and of Pauli’s Exclusion Principle, Historically Speaking 6 2.1 Zeeman, Thomson and others, and the discovery of the electron....... -
1 Humphry Davy to John Davy, 15 October [1811] Davy, Collected Letters, Vol
1 Humphry Davy: Analogy, Priority, and the “true philosopher” Sharon Ruston Lancaster University, England https://orcid.org/0000-0002-3864-7382 This essay explores how Davy fashioned himself as, what he called in his poetry, a “true philosopher.” He defined the “true philosopher” as someone who eschewed monetary gain for his scientific work, preferring instead to give knowledge freely for the public good, and as someone working at a higher level than the mere experimentalist. Specifically, Davy presented himself as using the method of analogy to reach his discoveries and emphasised that he understood the “principle” behind his findings. He portrayed himself as one who perceived analogies because he had a wider perspective on the world than many others in his society. The poem in which he describes the “true philosopher” offers us Davy’s private view of this character; the essay then demonstrates how Davy attempted to depict his own character in this way during critical moments in his career. Introduction During the safety lamp controversy of 1815–1817, Humphry Davy deliberately presented himself as a natural philosopher. For Davy this meant someone with a wider purview than others, who is alive to the metaphorical, literary, and philosophical ramifications of his scientific discoveries. He represented himself as working at a highly theoretical level in the laboratory, rather than practically in the mine, making a clear distinction between himself and George Stephenson in this regard. Davy suggested that he was working for loftier ideals and was opposed to monetary gain or profit by patent. He declared that his discoveries were the product of analogical thinking and a consequence of his understanding of scientific principle.