Double Homeobox 4 Activates Germline Genes, Endogenous Retroelements and Immune Modulators: Implications for Facioscapulohumeral Muscular Dystrophy

Total Page:16

File Type:pdf, Size:1020Kb

Double Homeobox 4 Activates Germline Genes, Endogenous Retroelements and Immune Modulators: Implications for Facioscapulohumeral Muscular Dystrophy Double homeobox 4 activates germline genes, endogenous retroelements and immune modulators: Implications for facioscapulohumeral muscular dystrophy Linda N. Geng A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2011 Stephen J. Tapscott, Chair Edith H. Wang Muneesh Tewari Program Authorized to Offer Degree: Molecular and Cellular Biology University of Washington Abstract Double homeobox 4 activates germline genes, endogenous retroelements and immune modulators: Implications for facioscapulohumeral muscular dystrophy Linda N. Geng Chair of Supervisory Committee: Professor Stephen J. Tapscott Department of Neurology Double homeobox 4 (DUX4) is a candidate disease gene for causing facioscapulohumeral dystrophy (FSHD), a condition characterized by progressive degeneration of specific skeletal muscle groups. While the genetic lesion associated with the disease has been known for decades, the molecular mechanism(s) leading to muscular dystrophy remained unclear. DUX4 was detected in FSHD muscle, but the abundance was extremely low and the downstream consequence of DUX4 in human muscle cells was not known. This work demonstrates that the low level of DUX4 expression in a population of FSHD muscle cells represents a relatively high expression of DUX4 mRNA and protein in a subset of cells at any given point in time. While the full length DUX4 induces toxicity in muscle cells, the shorter isoform without the C-terminal end, DUX4-s, exhibited no obvious detrimental effects on muscle cells. Genome-wide binding studies revealed that DUX4 protein binds to a DNA target sequence that contains two closely-spaced canonical homeodomain binding sequences TAAT in tandem. These binding sites are present in both unique regions of the genome as well as within LTRs of a family of endogenous retrotransposons called MaLR. DUX4-s can bind to the same sequences, but, interestingly, DUX4-s was unable to activate transcription in luciferase reporter assays and, in fact, could act as a dominant negative to inhibit full length DUX4’s activity. Microarray expression analysis showed that DUX4 can upregulate over a thousand genes involved in multiple processes, such as germ cell development, RNA splicing and immune modulation. These targets are indeed upregulated in cultured FSHD muscle cells as well as biopsies, providing further support for the causal role of DUX4 in FSHD. One of the DUX4 targets, DEFB103, not only suppresses the innate immune response to viral infection but also inhibits myogenic differentiation. Therefore, FSHD represents a disease where incomplete developmental silencing of a retrogene DUX4 results in inappropriate expression of its targets in skeletal muscle cells. These findings suggest specific mechanisms of FSHD pathology and identify candidate biomarkers for disease diagnosis and progression. Table of Contents LIST OF FIGURES .................................................................................................................................. ii LIST OF TABLES ................................................................................................................................... iii Chapter 1: Introduction ....................................................................................................................... 1 Chapter 2: Immunodetection of double homeobox 4 ....................................................................... 7 Summary ........................................................................................................................................... 8 Introduction ...................................................................................................................................... 8 Results ............................................................................................................................................... 9 Discussion ........................................................................................................................................ 12 Materials and Methods ................................................................................................................... 13 Chapter 3: FSHD: incomplete suppression of a retrotransposed gene .......................................... 22 Summary ......................................................................................................................................... 23 Introduction .................................................................................................................................... 23 Results ............................................................................................................................................. 26 Discussion ........................................................................................................................................ 32 Materials and Methods ................................................................................................................... 35 Chapter 4: DUX4 induces germline genes in skeletal muscle of individuals with FSHD ............... 56 Summary ......................................................................................................................................... 57 Introduction .................................................................................................................................... 57 Results ............................................................................................................................................. 59 Discussion ........................................................................................................................................ 66 Materials and Methods ................................................................................................................... 69 Chapter 5: Discussion ...................................................................................................................... 163 LIST OF REFERENCES ...................................................................................................................... 172 i LIST OF FIGURES Figure # Page 2.1 Production of recombinant DUX4 antigen 17 2.2 Reactivity of monoclonal antibodies on western blot 18 2.3 Reactivity of monoclonal antibodies on 19 immunofluorescence 2.4 Effects of DUX4 in muscle cells 20 3.1 Expression of DUX4-fl and DUX4-s and D4Z4 in control 46 and FSHD cells 3.2 A small number of FSHD muscle cells express a relatively 47 large amount of DUX4 3.3 Expression of DUX4-fl in human tissues 48 3.4 Expression of DUX4 in the testis 49 3.5 Alternative exon and polyadenylation site usage in germ- 50 line and somatic tissues 3.6 Expression of DUX4-fl and DUX4-s in pluripotent stem 51 cells and differentiated tissues 4.1 DUX4-fl activates the expression of germline genes and 149 binds a double-homeobox motif 4.2 DUX4-fl activates transcription in vivo and DUX4-s can 150 interfere with its activity 4.3 DUX4 targets are normally expressed in human testis but 151 not in healthy skeletal muscle 4.4 DUX4 regulated genes normally expressed in the testis 152 are aberrantly expressed in FSHD muscle 4.5 DEFB103 inhibits innate immune response to viral 153 infection and inhibits muscle differentiation S4.1 RT-PCR validation of DUX4-fl target genes from 154 expression microarray S4.2 Antibody characterization 155 S4.3 DUX4 binding in repeat and non-repeat regions and 156 EMSA validation of DUX4 binding to ChIP-seq determined motifs S4.4 Global DUX4-fl binding is moderately associated with the 157 expression of its targets, but DUX4-fl can act as an enhancer at certain loci S4.5 DUX4-fl expression status in muscle samples and 158 inhibition with dominant negative DUX4-s ii LIST OF TABLES Table # Page 2.1 Properties of anti-DUX4 monoclonal antibodies 16 3.1 DUX4 mRNA expression in FSHD and control biopsies 42 3.2 DUX4 mRNA expression in FSHD and control cell lines 43 3.3 Haplotype identification of DUX4 mRNA in human testis 44 3.4 Diagnostic polymorphisms in exon 2 45 4.1 Representative genes induced by DUX4-fl 75 4.2 DUX4 highly activates gene families involved in germ cell 77 and early development S4.1 Expression array analysis of DUX4-fl and DUX4-s in 78 cultured human skeletal muscle S4.2 Gene Ontology analysis of genes up-regulated by DUX4-fl 127 S4.3 Gene Ontology analysis of genes down-regulated by 129 DUX4-fl S4.4 Gene Ontology analysis of genes up-regulated by DUX4-fl 131 eight-fold or more S4.5 Repeat families bound by DUX4 132 S4.6 Non-repeat element DUX4-fl binding sites associated 133 with expressed genes S4.7 DUX4-fl expression in FSHD and control muscle 136 S4.8 Genes induced by lenti-GFP and lenti-DUX4-s but poorly 137 induced by lenti-DUX4-fl S4.9 Genes differentially expressed in DEFB103-treated 147 versus control cultured muscle cells during differentiation iii ACKNOWLEDGMENTS I offer my sincerest gratitude to my supervisor Dr. Stephen Tapscott for his invaluable support, guidance and wisdom. I also wish to thank everyone in the Tapscott lab for being not only my scientific colleagues but also my friends and mentors. I would like to further extend my appreciation to collaborators at the Fred Hutchinson and elsewhere who have greatly aided in the progression of this work and to my doctoral thesis committee who have helped shape me as a scientist. I stand on the shoulder of giants. iv DEDICATION To my parents and O.S.P. v 1 Chapter 1: Introduction This chapter
Recommended publications
  • Analysis and Characterisation of the Mouse Hic2 Gene
    Aus dem Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit, GmbH Direktor: Prof. Dr. Wolfgang Wurst Anfertigung unter der Leitung von Prof. Dr. Jochen Graw Vorgelegt über den Lehrstuhl für Molekulare Tierzucht und Biotechnologie Der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. Eckhard Wolf Untersuchung und Charakterisierung des Hic2-Gens der Maus Inaugural-Dissertation Zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München von Aleksandra Terzic aus Sarajevo/Bosnia und Herzegowina München 2004 II Aus dem Institut für Entwicklungsgenetik des GSF-Forschungszentrums für Umwelt und Gesundheit, GmbH Direktor: Prof. Dr. Wolfgang Wurst Anfertigung unter der Leitung von Prof. Dr. Jochen Graw Vorgelegt über den Lehrstuhl für Molekulare Tierzucht und Biotechnologie Der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Vorstand: Prof. Dr. Eckhard Wolf Analysis and characterisation of the mouse Hic2 gene Inaugural-Dissertation Zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München von Aleksandra Terzic aus Sarajevo/Bosnia und Herzegowina München 2004 III Gedruckt mit Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. A.Stolle Referent: Univ.-Prof. Dr. E. Wolf Korreferent: Univ.-Prof. Dr. K. Heinritzi Tag der Promotion: 13. Februar 2004 IV List of contents 1 INTRODUCTION.............................................................................................................1
    [Show full text]
  • Integrated Analysis of Differentially Expressed Genes in Breast Cancer Pathogenesis
    2560 ONCOLOGY LETTERS 9: 2560-2566, 2015 Integrated analysis of differentially expressed genes in breast cancer pathogenesis DAOBAO CHEN and HONGJIAN YANG Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China Received October 20, 2014; Accepted March 10, 2015 DOI: 10.3892/ol.2015.3147 Abstract. The present study aimed to detect the differences ducts or from the lobules that supply the ducts (1). Breast between breast cancer cells and normal breast cells, and inves- cancer affects ~1.2 million women worldwide and accounts tigate the potential pathogenetic mechanisms of breast cancer. for ~50,000 mortalities every year (2). Despite major advances The sample GSE9574 series was downloaded, and the micro- in surgical and nonsurgical management of the disease, breast array data was analyzed to identify differentially expressed cancer metastasis remains a significant clinical challenge genes (DEGs). Gene Ontology (GO) cluster analysis using affecting numerous of patients (3). The prognosis and survival the GO Enrichment Analysis Software Toolkit platform and rates for breast cancer are highly variable, and depend on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway the cancer type, treatment strategy, stage of the disease and analysis for DEGs was conducted using the Gene Set Analysis geographical location of the patient (4). Toolkit V2. In addition, a protein-protein interaction (PPI) Microarray technology, which may be used to simultane- network was constructed, and target sites of potential transcrip- ously interrogate 10,000-40,000 genes, has provided new tion factors and potential microRNA (miRNA) molecules were insight into the molecular classification of different cancer screened.
    [Show full text]
  • Proteomic and Metabolomic Analyses of Mitochondrial Complex I-Deficient
    THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 24, pp. 20652–20663, June 8, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Proteomic and Metabolomic Analyses of Mitochondrial Complex I-deficient Mouse Model Generated by Spontaneous B2 Short Interspersed Nuclear Element (SINE) Insertion into NADH Dehydrogenase (Ubiquinone) Fe-S Protein 4 (Ndufs4) Gene*□S Received for publication, November 25, 2011, and in revised form, April 5, 2012 Published, JBC Papers in Press, April 25, 2012, DOI 10.1074/jbc.M111.327601 Dillon W. Leong,a1 Jasper C. Komen,b1 Chelsee A. Hewitt,a Estelle Arnaud,c Matthew McKenzie,d Belinda Phipson,e Melanie Bahlo,e,f Adrienne Laskowski,b Sarah A. Kinkel,a,g,h Gayle M. Davey,g William R. Heath,g Anne K. Voss,a,h René P. Zahedi,i James J. Pitt,j Roman Chrast,c Albert Sickmann,i,k Michael T. Ryan,l Gordon K. Smyth,e,f,h b2 a,h,m,n3 David R. Thorburn, and Hamish S. Scott Downloaded from From the aMolecular Medicine Division, gImmunology Division, and eBioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia, the bMurdoch Childrens Research Institute, Royal Children’s Hospital and Department of Paediatrics, University of Melbourne, Parkville, Victoria 3052, Australia, the cDépartement de Génétique Médicale, Université de Lausanne, 1005 Lausanne, Switzerland, the dCentre for Reproduction and Development, Monash Institute of Medical Research, Clayton, Victoria 3168, Australia, the hDepartment of Medical Biology
    [Show full text]
  • Consequences of Disease-Causing Small Heat Shock Protein Mutations on ARE-Mediated
    Consequences of disease-causing small heat shock protein mutations on ARE-mediated mRNA decay Senior Honors Thesis By Nicole Naiman Undergraduate Biomedical Science Major School of Allied Medical Professions The Ohio State University 2011 Choose an item. Committee: Dr. Stephen Kolb, M.D., Ph.D, Advisor Dr. Daniel Battle, Ph.D. Dr. Margaret Teaford, Ph.D. Copyright by Nicole Naiman 2011 ii Abstract Motor neuron diseases (MNDs) are neurodegenerative diseases that involve loss of motor neurons in the brain and spinal cord. MNDs are debilitating and often fatal. Distal hereditary motor neuropathies (dHMNs) are a category of MND characterized by progressive, distal weakness without loss of sensation. The primary focus of our laboratory is to understand the functional consequences of mutations in small heat shock proteins (sHSPs) that result in dHMN. sHSPs comprise a family of 10 homologous proteins that are characterized by a central alpha-crystallin domain, are expressed ubiquitously, serve neuroprotective functions, and are upregulated by cell stress. To date, mutations in three sHSPs: HSPB1, HSPB3 and HSPB8, have been associated with dHMN. These mutations include HSPB1(R136W) and HSPB3(R7S). We propose that mutations reported in these proteins affect the same cellular pathway because they all lead to the same clinical phenotype and loss of motor neurons. HSPB1 is the best characterized sHSP and is required for AU-rich element (ARE)-dependent mRNA decay. AREs are adenosine and uridine rich regions that are present in the 3’ untranslated region of a subset of mRNAs that signal for their rapid decay. We hypothesize that dHMN-associated mutations result in dysregulation of this critical mRNA decay pathway, and that mutations in HSPB1 and in HSPB3 result in an increased half-life of ARE-containing mRNAs.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival In
    International Journal of Molecular Sciences Article Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort Stefania Scarlino 1, Teuta Domi 1, Laura Pozzi 1 , Alessandro Romano 1, Giovanni Battista Pipitone 2, Yuri Matteo Falzone 1,3, Lorena Mosca 4, Silvana Penco 4, Christian Lunetta 5, Valeria Sansone 5,6, Lucio Tremolizzo 7, Raffaella Fazio 3, Federica Agosta 8, 3,8,9,10 2 1,3, , 1, Massimo Filippi , Paola Carrera , Nilo Riva * y and Angelo Quattrini y 1 Experimental Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (S.S.); [email protected] (T.D.); [email protected] (L.P.); [email protected] (A.R.); [email protected] (Y.M.F.); [email protected] (A.Q.) 2 Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (G.B.P.); [email protected] (P.C.) 3 Neurology Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; fazio.raff[email protected] (R.F.); fi[email protected] (M.F.) 4 Medical Genetic Unit, Department of Laboratory Medicine, Niguarda Hospital, 20132 Milan, Italy; [email protected] (L.M.); [email protected] (S.P.) 5 NEuroMuscular Omnicentre (NEMO), Fondazione Serena Onlus, Milan 20132, Italy; [email protected]
    [Show full text]
  • High Resolution Physical and Comparative Maps of Horse
    HIGH RESOLUTION PHYSICAL AND COMPARATIVE MAPS OF HORSE CHROMOSOMES 14 (ECA14) AND 21 (ECA21) A Thesis by GLENDA GOH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2005 Major Subject: Genetics HIGH RESOLUTION PHYSICAL AND COMPARATIVE MAPS OF HORSE CHROMOSOMES 14 (ECA14) AND 21 (ECA21) A Thesis by GLENDA GOH Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: _________________________ _________________________ Bhanu P. Chowdhary Loren C. Skow (Chair of Committee) (Member) _________________________ _________________________ James N. Derr James E. Womack (Member) (Member) _________________________ _________________________ Geoffrey Kapler Evelyn Tiffany-Castiglioni (Chair of Genetics Faculty) (Head of Department) May 2005 Major Subject: Genetics iii ABSTRACT High Resolution Physical and Comparative Maps of Horse Chromosomes 14 (ECA14) and 21 (ECA21). (May 2005) Glenda Goh, B.S. (Hons.), Flinders University of South Australia Chair of Advisory Committee: Dr. Bhanu P. Chowdhary In order to identify genes or markers responsible for economically important traits in the horse, the development of high resolution gene maps of individual equine chromosomes is essential. We herein report the construction of high resolution physically ordered radiation hybrid (RH) and comparative maps for horse chromosomes 14 and 21 (ECA14 and ECA21). These chromosomes predominantly share correspondence with human chromosome 5 (HSA5), though a small region on the proximal part of ECA21 corresponds to a ~5Mb region from the short arm of HSA19. The map for ECA14 consists of 128 markers (83 Type I and 45 Type II) and spans a total of 1828cR.Compared to this, the map of ECA21 is made up of 90 markers (64 Type I and 26 Type II), that segregate into two linkage groups spanning 278 and 760cR each.
    [Show full text]
  • GATA2 Regulates Mast Cell Identity and Responsiveness to Antigenic Stimulation by Promoting Chromatin Remodeling at Super- Enhancers
    ARTICLE https://doi.org/10.1038/s41467-020-20766-0 OPEN GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super- enhancers Yapeng Li1, Junfeng Gao 1, Mohammad Kamran1, Laura Harmacek2, Thomas Danhorn 2, Sonia M. Leach1,2, ✉ Brian P. O’Connor2, James R. Hagman 1,3 & Hua Huang 1,3 1234567890():,; Mast cells are critical effectors of allergic inflammation and protection against parasitic infections. We previously demonstrated that transcription factors GATA2 and MITF are the mast cell lineage-determining factors. However, it is unclear whether these lineage- determining factors regulate chromatin accessibility at mast cell enhancer regions. In this study, we demonstrate that GATA2 promotes chromatin accessibility at the super-enhancers of mast cell identity genes and primes both typical and super-enhancers at genes that respond to antigenic stimulation. We find that the number and densities of GATA2- but not MITF-bound sites at the super-enhancers are several folds higher than that at the typical enhancers. Our studies reveal that GATA2 promotes robust gene transcription to maintain mast cell identity and respond to antigenic stimulation by binding to super-enhancer regions with dense GATA2 binding sites available at key mast cell genes. 1 Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA. 2 Center for Genes, Environment and Health, National Jewish Health, Denver, CO 80206, USA. 3 Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, ✉ CO 80045, USA. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:494 | https://doi.org/10.1038/s41467-020-20766-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20766-0 ast cells (MCs) are critical effectors in immunity that at key MC genes.
    [Show full text]
  • Autosomal Dominant Late-Onset Spinal Motor Neuronopathy Is Linked to a New Locus on Chromosome 22Q11.2-Q13.2
    European Journal of Human Genetics (2012) 20, 1193–1196 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg SHORT REPORT Autosomal dominant late-onset spinal motor neuronopathy is linked to a new locus on chromosome 22q11.2-q13.2 Sini Penttila¨*,1, Manu Jokela2, Peter Hackman3, Anna Maija Saukkonen4, Jari Toivanen4 and Bjarne Udd1,3,5 Spinal muscular atrophies (SMAs) are hereditary disorders characterized by degeneration of lower motor neurons. Different SMA types are clinically and genetically heterogeneous and many of them show significant phenotypic overlap. We recently described the clinical phenotype of a new disease in two Finnish families with a unique autosomal dominant late-onset lower motor neuronopathy. The studied families did not show linkage to any known locus of hereditary motor neuron disease and thus seemed to represent a new disease entity. For this study, we recruited two more family members and performed a more thorough genome-wide scan. We obtained significant linkage on chromosome 22q, maximum LOD score being 3.43 at marker D22S315. The linked area is defined by flanking markers D22S686 and D22S276, comprising 18.9 Mb. The region harbours 402 genes, none of which is previously known to be associated with SMAs. This study confirms that the disease in these two families is a genetically distinct entity and also provides evidence for a founder mutation segregating in both pedigrees. European Journal of Human Genetics (2012) 20, 1193–1196; doi:10.1038/ejhg.2012.76; published online 25 April 2012 Keywords: motor neuron disease; spinal muscular atrophy; linkage analysis INTRODUCTION LMNA16 and TRPV417 or to be linked to 3q13.118 or 14q32.19 Spinal muscular atrophies (SMAs) are hereditary disorders character- Mutations in many of these genes cause several allelic disorders.
    [Show full text]
  • Target Gene Gene Description Validation Diana Miranda
    Supplemental Table S1. Mmu-miR-183-5p in silico predicted targets. TARGET GENE GENE DESCRIPTION VALIDATION DIANA MIRANDA MIRBRIDGE PICTAR PITA RNA22 TARGETSCAN TOTAL_HIT AP3M1 adaptor-related protein complex 3, mu 1 subunit V V V V V V V 7 BTG1 B-cell translocation gene 1, anti-proliferative V V V V V V V 7 CLCN3 chloride channel, voltage-sensitive 3 V V V V V V V 7 CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like V V V V V V V 7 DUSP10 dual specificity phosphatase 10 V V V V V V V 7 MAP3K4 mitogen-activated protein kinase kinase kinase 4 V V V V V V V 7 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) V V V V V V V 7 PPP2R5C protein phosphatase 2, regulatory subunit B', gamma V V V V V V V 7 PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) V V V V V V V 7 EZR ezrin V V V V V V 6 FOXO1 forkhead box O1 V V V V V V 6 ANKRD13C ankyrin repeat domain 13C V V V V V V 6 ARHGAP6 Rho GTPase activating protein 6 V V V V V V 6 BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 V V V V V V 6 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like V V V V V V 6 BRMS1L breast cancer metastasis-suppressor 1-like V V V V V V 6 CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) V V V V V V 6 CTDSP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1 V V V V V V 6 DCX doublecortin V V V V V V 6 ENAH enabled homolog (Drosophila) V V V V V V 6 EPHA4 EPH receptor A4 V V V V V V 6 FOXP1 forkhead box P1 V
    [Show full text]
  • Figure S1. Basic Information of RNA-Seq Results. (A) Bar Plot of Reads Component for Each Sample
    Figure S1. Basic information of RNA-seq results. (A) Bar plot of reads component for each sample. (B) Dot plot shows the principal component analysis (PCA) of each sample. (C) Venn diagram of DEGs for three time points, the overlap part of the circles represents common differentially expressed genes between combinations. Figure S2. Scatter plot of DEGs for each time point. The X and Y axes represent the logarithmic value of gene expression. Red represents up-regulated DEG, blue represents down-regulated DEG, and gray represents non-DEG. Table S1. Primers used for quantitative real-time PCR analysis of DEGs. Gene Primer Sequence Forward 5’-CTACGAGTGGATGGTCAAGAGC-3’ FOXO1 Reverse 5’-CCAGTTCCTTCATTCTGCACACG-3’ Forward 5’-GACGTCCGGCATCAGAGAAA-3’ IRS2 Reverse 5’-TCCACGGCTAATCGTCACAG-3’ Forward 5’-CACAACCAGGACCTCACACC-3’ IRS1 Reverse 5’-CTTGGCACGATAGAGAGCGT-3’ Forward 5’-AGGATACCACTCCCAACAGACCT-3’ IL6 Reverse 5’-CAAGTGCATCATCGTTGTTCATAC-3’ Forward 5’-TCACGTTGTACGCAGCTACC-3’ CCL5 Reverse 5’-CAGTCCTCTTACAGCCTTTGG-3’ Forward 5’-CTGTGCAGCCGCAGTGCCTACC-3’ BMP7 Reverse 5’-ATCCCTCCCCACCCCACCATCT-3’ Forward 5’-CTCTCCCCCTCGACTTCTGA-3’ BCL2 Reverse 5’-AGTCACGCGGAACACTTGAT-3’ Forward 5’-CTGTCGAACACAGTGGTACCTG-3’ FGF7 Reverse 5’-CCAACTGCCACTGTCCTGATTTC-3’ Forward 5’-GGGAGCCAAAAGGGTCATCA-3’ GAPDH Reverse 5’-CGTGGACTGTGGTCATGAGT-3’ Supplementary material: Differentially expressed genes log2(SADS-CoV_12h/ Qvalue (SADS-CoV _12h/ Gene Symbol Control_12h) Control_12h) PTGER4 -1.03693 6.79E-04 TMEM72 -3.08132 3.66E-04 IFIT2 -1.02918 2.11E-07 FRAT2 -1.09282 4.66E-05
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]