Estimating Body Mass of Fossil Rodents

Total Page:16

File Type:pdf, Size:1020Kb

Estimating Body Mass of Fossil Rodents Estimating body mass of fossil rodents Matthijs Freudenthal & Elvira Martín-Suárez Freudenthal, M. & Martín-Suárez, E. 2013. Estimating body mass of fossil rodents. Scripta Geologica, 145: 1-130, 8 appendices including one on-line, 4 tables, 5 figures. Leiden, November 2013. M. Freudenthal, Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuen- tenueva s/n, E-18071 Granada, Spain; Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands ([email protected]). E. Martín-Suárez, Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuen- tenueva s/n, E-18071 Granada, Spain. Keywords – Rodentia, body mass. Reconstructing the body mass of a fossil animal is an essential step toward understanding its palaeoecol- ogical role. Length × width (L×W) of the first lower molar (m1) is frequently used as a proxy for body mass in fossil mammals. However, among rodents, Muroidea have no premolar and an elongated m1, whereas other groups have a premolar and a m1 that is not elongated. This leads to an overestimation of body mass in muroids and/or an underestimation in other rodents. To solve this problem we assembled data of upper and lower tooth row length and body mass in extant rodents, and calculated regression equations for all rodents, rodents with premolars, rodents without premolars and for taxonomic groups at superfamily or family level. Data for complete tooth rows in fossil rodents are scarce, so we took the sum of the lengths of the (three or four) cheek teeth as an approximation of tooth row length. We estimate body mass of the fossil rodents, using the regression equations of the extant taxa. Contents Introduction ................................................................................................................................................................. 1 Material and methods ........................................................................................................................................... 3 Fossil data ..................................................................................................................................................................... 3 Recent data ................................................................................................................................................................... 4 Taxonomic groups ................................................................................................................................................... 5 Use of (natural) logarithms ................................................................................................................................ 5 Correction factors ..................................................................................................................................................... 6 Analysis of L/W of m1 per taxonomic group .......................................................................................... 6 Analysis of toothrow length vs body mass .............................................................................................. 8 Synopsis ...................................................................................................................................................................... 13 Discussion .................................................................................................................................................................. 13 Conclusions .............................................................................................................................................................. 14 Acknowledgements ............................................................................................................................................. 14 References .................................................................................................................................................................. 14 Note: Appendix 8 (a+b) is available digitally at the Scripta Geologica website; all other appendices are printed herein .................................................................................... 15 Introduction Reconstructing the body mass of a fossil animal is an essential step toward under- standing its palaeoecological role (Hopkins, 2008). Legendre (1989) used length × width (L×W) of m1 (first lower molar) as a surrogate for tooth area and based body mass esti- mates on log (L×W). Among rodents, Muroidea have no premolar and an elongated m1, 2 Freudenthal & Martín-Suárez. Estimating body mass of fossil rodents Scripta Geol., 145 (2013) Figure 1. Length/width diagram of m1 in >2300 fossil rodent populations (measurements of population means in 1 mm units). Regression lines diverge. Figure 2. Length/width diagram of m1 in >2300 fossil rodent populations (logarithms of population means in 0.1 mm units). Regression lines are parallel. Freudenthal & Martín-Suárez. Estimating body mass of fossil rodents Scripta Geol., 145 (2013) 3 whereas other groups have a premolar and a m1 that is not elongated. According to Hopkins (2008), this leads to an overestimation of body mass in murids (and/or an un- derestimation in other rodents). Figures 1 and 2 give linear and logarithmic mean length/mean width plots of m1 of a large number of fossil rodent populations, in which the muroid group and the non-muroid group are clearly distinguished. The all-rodents regression equation of Legendre is based on 61 species with premolar and 154 species without premolar. With a different sample composition, the regression equation may change considerably. Evidently, body mass estimates on the basis of m1 area for Muroidea and other rodents cannot be based on the same regression equation. Hopkins (2008) investigated tooth row length and area as proxies for body mass in rodents. One of her conclusions is that the results for both proxies are good for all rodents and that they are better for individual clades. “Within species, toothrow measurements are poor predictors of individual body mass, because the complete adult dentition is generally erupted early in life, whereas body mass continues to change as an animal reaches full adult mass” (Hopkins, 2008, p. 238). To this we might add that body mass may vary considerably throughout the year and with changing habitat conditions. Tooth row length in extant rodents is frequently reported, but data for individual tooth measurements are scarce. We assembled data for tooth row length and body mass of extant rodents, and calculated least squares linear regression lines for the entire data set and for a number of subgroups. On the other hand, tooth row length is only available for a limited number of fossil rodent species and, therefore, we looked for another parameter that would permit body mass estimates of fossil rodents. We calculated the sum of the lengths of the cheek teeth (LRsum and URsum) as a surrogate for (alveolar) tooth row length and used the regres- sion lines of extant rodents to estimate body mass of the fossil species. In order to test the validity of m1 area for body mass estimates, as did Legendre (1989), we will analyze the relationship L/W of fossil m1 in various taxonomic groups and signal the taxa that are most different from the mean. Then we discuss several correction factors that should be applied to the body mass results. Finally, we analyze the reliability of body mass estimates of fossil rodents, obtained from the regression equations of extant rodents for which tooth row length and body mass are known. Ide- ally, body mass estimates should be equal when using the upper or the lower tooth row, but this is frequently not the case and we investigate the causes of these differences. Material and methods Abbreviations used herein are listed in Table 1. Fossil data Tooth row lengths (LRsum and URsum) are calculated from our database of tooth measurements of fossil rodents which contains about 2650 populations from 948 locali- ties. Of these, 1600 populations contain data for all lower cheek teeth and complete up- per rows can be composed for 1485 populations. Some 1270 populations have data for all upper and lower cheek teeth, and permit comparison of LRsum and URsum. The values of LRsum and URsum are used to estimate body mass, using the regression lines obtained from the Recent material. 4 Freudenthal & Martín-Suárez. Estimating body mass of fossil rodents Scripta Geol., 145 (2013) Table 1. Abbreviations used. LTR lower tooth row length (recent) UTR upper tooth row length (recent) LRsum sum of lengths of lower teeth (fossil) URsum sum of lengths of upper teeth (fossil) L, W length, width LxW length x width ~ tooth area p4, m1, m2, m3 lower teeth P3, P4, M1, M2, M3 upper teeth WithP rodents with premolar WithoutP rodents without premolar InfMass mass estimate based on LRsum SupMass mass estimate based on URsum MeanMass (InfMass + SupMass)/2 SEE standard error of estimate &PE percentage error of estimate df degrees of freedom RGM Rijksmuseum van Geologie en Mineralogie, now Naturalis Biodiversity Center, Leiden Tooth row length for the fossil species (LRsum and URsum) is calculated as the sum of the mean lengths of the three molars per population, plus the mean length of the premolar in taxa that have a premolar. In Sciuridae, Gliridae, Eomyidae and Therido- morpha, the first and second molars are often not distinguished. In these cases length of m1,2, resp. M1,2 is counted twice, thus the mean length of m1,2 replaces
Recommended publications
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Pineda-Munozetal2010
    Cidaris Revista Ilicitana de Paleontología y Mineralogía Núm. 30 2010 VIII Encuentro de Jóvenes Investigadores en Paleontología VOLUMEN DE ACTAS GRUPO CULTURAL PALEONTOLÓGICO DE ELCHE EVOLUTION OF HYPSODONTY IN A CRICETID (RODENTIA) LINEAGE: PRELIMINARY RESULTS USING PATCH ANALYSIS EVOLUCIÓN DE LA HIPSODONCIA EN UN LINAJE DE CRICÉTIDOS (RODENTIA): RESULTADOS PRELIMINARES UTILIZANDO “PATCH ANALYSIS” Silvia Pineda-Muñoz1, Isaac Casanovas-Vilar1, Daniel De Miguel1, Aleksis Karme3, Alistair R. Evans2 and Mikael Fortelius2, 3 1Institut Català de Paleontologia (ICP). Mòdul ICP, Campus de la UAB, 08193 Cerdanyola del Vallès (Barcelona). [email protected], [email protected], [email protected]. 2Evolution and Development Unit, Institute of Biotechnology. PO Box 56, Viikinkaari 9, FIN-0014 University of Helsinki, Finland. 3Department of Geology, University of Helsinki. PO Box 64, Gustaf Hällströmin katu 2a, FIN-0014 University of Helsinki, Finland. ABSTRACT The development of hypsodonty in the Cricetulodon hartenbergeri – Cricetulodon sabadellensis- Rotundomys montisro- tundi – Rotundomys bressanus lineage is studied using patch analysis. The lower second molar of a sample of each species is scanned using a 3D laser scanner. Then, the scans are processed with GIS software which provides orientation maps of the slopes of the occlusal surface. Contiguous points with the same orientation are grouped into a ‘patch’ that represents a functional structure of the molar crown, so the number of patches relates to dental complexity. This parameter is found to decrease in the lineage coupled with increased crown height. This is interpreted as a result of the evolution of crown planation and loss of cusp interlocking in Rotundomys. Palabras clave: Morfología funcional, “patch analysis”, Rodentia, Cricetidae, Cricetulodon, Rotundomys, Mioceno, Cuenca del Vallès-Penedès.
    [Show full text]
  • A D D E N D a T 0 V 0 L S. I - Viii
    A D D E N D A T 0 V 0 L S. I - VIII NOTE . I t wi ll usuall y be necessary to refer to t he main index of this volume, or of earlier volumes, for details of new names given in cross references. Aaronia Verrill 1950, Minut. conch .Club Sth.Calif. No. 103:4.-Moll.(Gast.) Abdullaevia Suleimanov 1965, Dokl.Akad .Nauk uzbek.SSR 7: 47 .- + Prot.(Sarcod.) Abichites Shevyrev 1965, Trudy paleont. Inst. 108: 179 .- + Moll.(Ceph.) Abiliella Peracch1 1964, Anais Congr . l at.-am.Zool. 1962 (1): 11 9.- Ins.(Col.) Ablep.harocera Loew 1877 , Z.Ent .,Breslau (N .S. ) 6: 56 .-Ins. (Dipt.) Un-necessary new name for Blepharocera Agassiz 1846) Abonnencia Vercammen-Grandj ean 1960, Acarologia 2: 470 (tablel .-Arachn . (Acar. ) Abonn.encioides Vercammen-Grandjean 1960, Acarologia 2:470 (table) . -Arachn. (A car.) Abrancbaea Zhang 1964, Studia mar .sin. No.5: 179 .-Moll. (Gast. ) Abrina Habe 1952, Genera of Japanese shells. Pelecypoda No.3. [Tokyo] : 210 .­ Moll . (Bivalv. ) Abruptolopha Vialov 1936 , Ookl .Akad .Nauk SSSR IV (XIII) No.1 (105) : 20.­ + Mol l. (Bival v. ) Acallepitrix Bechyne 1959 , Beitr.neotrop. Fauna 1: 323 .-Ins.(Col. ) Acampomintho (err.pro Acompomintho Villeneuve 1927) Townsend 1935, Manual of Myiology 2: 253.-Ins. (Dipt.) Acanthametropus Chernova 1948, Dokl . Akad . Nauk SSSR (N.S.) 60:1 453.-Ins. (Ephem . ) Acanthocolpoides Travassos, Teixeira de Freitas & Buhrnheim 1965, Atas Soc. Biol.Rio de J . 9: 57.- Verm.( Trem . ) Acanthoepimeritus Hoshide 1959, Bull Fae. Educ.Yamaguchi Uni v. 8 (2) : 60.­ Prot . (Apic. ) Acantholabia Olsson & Harbison 1953, Pliocene Mollusca of southern Florida etc.
    [Show full text]
  • 21 May 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the Late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/151534 since 2015-12-06T13:48:07Z Published version: DOI:10.1080/14772019.2013.863231 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 29 September 2021 This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: À.H. LUJÁN; D.M. ALBA; J. FORTUNY; R. CARMONA; M. DELFINO, 2014. First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the Late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications JOURNAL OF SYSTEMATIC PALAEONTOLOGY 12(7): 833-864 DOI: 10.1080/14772019.2013.863231 The definitive version is available at: La versione definitiva è disponibile alla URL: http://www.tandfonline.com/doi/abs/10.1080/14772019.2013.863231 First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications Àngel H.
    [Show full text]
  • A New Hominoid-Bearing Locality from the Late Miocene of the Valles-Penedes Basin
    Journal of Human Evolution xxx (2018) 1e11 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Can Pallars i Llobateres: A new hominoid-bearing locality from the late Miocene of the Valles-Pened es Basin (NE Iberian Peninsula) * David M. Alba a, , Isaac Casanovas-Vilar a, Marc Furio a, b, Israel García-Paredes c, a, Chiara Angelone d, a, e, Sílvia Jovells-Vaque a, Angel H. Lujan f, a, g, Sergio Almecija h, a, 1, Salvador Moya-Sol a a, i, j a Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain b Departament de Geologia, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain c Departamento de Paleontología, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, c/ Jose Antonio Novais 2, 28040 Madrid, Spain d Dipartimento di Scienze, Universita Roma Tre, Largo San Leonardo Murialdo, 1, 00146, Roma, Italy e Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Xizhimen Wai Da Jie 142, Beijing 100044, China f Department of Geosciences, University of Fribourg, Chemin de Musee 6, 1700 Fribourg, Switzerland g Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic h Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA i Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain j Unitat d'Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain article info abstract Article history: In the Iberian Peninsula, Miocene apes (Hominoidea) are generally rare and mostly restricted to the Received 27 November 2017 Valles-Pened es Basin.
    [Show full text]
  • Ashraf M.T. Elewa Migration of Organisms Climate • Geography • Ecology Ashraf M
    Ashraf M.T. Elewa Migration of Organisms Climate • Geography • Ecology Ashraf M. T. Elewa (Editor) Migration of Organisms Climate • Geography • Ecology With 67 Figures 123 Dr. Ashraf M. T. Elewa Professor Minia University Faculty of Science Geology Department Egypt E-mail: [email protected] Library of Congress Control Number: 2005927792 ISBN-10 3-540-26603-8 Springer Berlin Heidelberg New York ISBN-13 978-3-540-26603-7 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Erich Kirchner Production: Luisa Tonarelli Typesetting: Camera-ready by the editor Printed on acid-free paper 30/2132/LT – 5 4 3 2 1 0 Dedication This book is dedicated to all people who Believe in One God Believe in Peace Believe in Migration in the Way of God To my father who died on Sunday, the 10th of April, 2005 Foreword P.
    [Show full text]
  • Krijgsman-Wout-141-1996-Copy.Pdf
    GEOLOGICA ULTRAIECTINA Mededelingen van de Faculteit Aardwetenschappen Universiteit Utrecht No. 141 MIOCENE MAGNETOSTRATIGRAPHY AND CYCLOSTRATIGRAPHY IN THE MEDITERRANEAN: EXTENSION OF THE ASTRONOMICAL POLARITY TIME SCALE CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Krijgsman, Wout Miocene magnetostratigraphy and cyclostratigraphy in the Mediterranean: extension of the astronomical polarity time scale / Wout Krijgsman, - Utrecht: Faculteit Aardwetenschappen, Universiteit Utrecht. - (Geologica Ultraiectina, ISSN 0072-1026; no. 141) Proefschrift Universiteit Utrecht. - Met lit. opg. - Met samenvatting in het Nederlands. ISBN 90-71577-95-3 Trefw.: paleomagnetisme / stratigrafie MIOCENE MAGNETOSTRATIGRAPHY AND CYCLOSTRATIGRAPHY IN THE MEDITERRANEAN: EXTENSION OF THE ASTRONOMICAL POLARITY TIME SCALE MIOCENE MAGNETOSTRATIGRAFIE EN CYCLOSTRATIGRAFIE IN HET MIDDELLANDSE ZEEGEBIED: UITBREIDING VAN DE ASTRONOMISCHE POLARITEITSTIJDSCHAAL (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT or GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. J.A. VAN GINKEL INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN or MAANDAG 13 MEl 1996 DES NAMIDDAGS TE 14.30 UUR DOOR WOUT KRIJGSMAN geboren op 25 december 1966, te Rotterdam 1996 PROMOTOR: PROF. DR. J.D.A. ZIJDERVELD CO-PROMOTORES: DR. e.G. LANGEREIS DR. F.J. HILGEN I know that we can never live those times again so I let my dreams take me back to where we've been Green on Red, 1991 Voor JooP en Nel /'l This study
    [Show full text]
  • Rodentia) from South-Western Europe Since the Latest Middle Miocene to the Mio-Pliocene Boundary (MN 7/8–MN13)
    Ecomorphological characterization of murines and non-arvicoline cricetids (Rodentia) from south-western Europe since the latest Middle Miocene to the Mio-Pliocene boundary (MN 7/8–MN13) Ana R. Gomez Cano1,2, Yuri Kimura3, Fernando Blanco4, Iris Menéndez4,5, María A. Álvarez-Sierra4,5 and Manuel Hernández Fernández4,5 1 Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain 2 Transmitting Science, Barcelona, Spain 3 Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Japan 4 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain 5 Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain ABSTRACT Rodents are the most speciose group of mammals and display a great ecological diversity. Despite the greater amount of ecomorphological information compiled for extant rodent species, studies usually lack of morphological data on dentition, which has led to difficulty in directly utilizing existing ecomorphological data of extant rodents for paleoecological reconstruction because teeth are the most common or often the only micromammal fossils. Here, we infer the environmental ranges of extinct rodent genera by extracting habitat information from extant relatives and linking it to extinct taxa based on the phenogram of the cluster analysis, in which variables are derived from the principal component analysis on outline shape of the upper first molars. This phenotypic ``bracketing'' approach is particularly useful in the study of the fossil record Submitted 22 February 2017 of small mammals, which is mostly represented by isolated teeth. As a case study, Accepted 13 July 2017 we utilize extinct genera of murines and non-arvicoline cricetids, ranging from the Published 25 September 2017 Iberoccitanian latest middle Miocene to the Mio-Pliocene boundary, and compare our Corresponding author results thoroughly with previous paleoecological reconstructions inferred by different Ana R.
    [Show full text]
  • Palaeontologia Electronica Microtoid Cricetids and the Early History Of
    Palaeontologia Electronica http://palaeo-electronica.org Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia) Oldrich Fejfar, Wolf-Dieter Heinrich, Laszlo Kordos, and Lutz Christian Maul ABSTRACT In response to environmental changes in the Northern hemisphere, several lines of brachyodont-bunodont cricetid rodents evolved during the Late Miocene as “micro- toid cricetids.” Major evolutionary trends include increase in the height of cheek tooth crowns and development of prismatic molars. Derived from a possible Megacricetodon or Democricetodon ancestry, highly specialised microtoid cricetids first appeared with Microtocricetus in the Early Vallesian (MN 9) of Eurasia. Because of the morphological diversity and degree of parallelism, phylogenetic relationships are difficult to detect. The Trilophomyinae, a more aberrant cricetid side branch, apparently became extinct without descendants. Two branches of microtoid cricetids can be recognized that evolved into “true” arvicolids: (1) Pannonicola (= Ischymomys) from the Late Vallesian (MN 10) to Middle Turolian (MN 12) of Eurasia most probably gave rise to the ondatrine lineage (Dolomys and Propliomys) and possibly to Dicrostonyx, whereas (2) Microt- odon known from the Late Turolian (MN 13) and Early Ruscinian (MN 14) of Eurasia and possibly parts of North America evolved through Promimomys and Mimomys eventually to Microtus, Arvicola and other genera. The Ruscinian genus Tobienia is presumably the root of Lemmini. Under this hypothesis, in contrast to earlier views, two evolutionary sources of arvicolids would be taken into consideration. The ancestors of Pannonicola and Microtodon remain unknown, but the forerunner of Microtodon must have had a brachyodont-lophodont tooth crown pattern similar to that of Rotundomys bressanus from the Late Vallesian (MN 10) of Western Europe.
    [Show full text]
  • VIII Encuentro De Jóvenes Investigadores En Paleontología 2010
    VIII Encuentro de Jóvenes Investigadores en Paleontología 2010 Libro de resúmenes 2 CONFERENCIAS LO QUE NOS CUENTAN LOS ROEDORES Y OTRAS DIMINUTAS CRIATURAS DEL PASADO WHAT THE RODENTS AND OTHER CREATURES FROM THE PAST TELL US Gloria Cuenca-Bescós Aragosaurus-iuca, EIA-Atapuerca, Paleontología, Universidad de Zaragoza. Pedro Cerbuna, 12. 50009 Zaragoza. [email protected] RESUMEN 3 En esta comunicación se repasan las técnicas de estudio de los pequeños vertebrados a partir de la experiencia personal adquirida en Autol (La Rioja) y el trabajo en los equipos que innovaron el estudio de estos fósiles en la década de los 1970, y finalmente hasta nuestros días como responsable de la microfauna del proyecto de los yacimientos del Cuaternario de Atapuerca, desde comienzos de 1990. Por otra parte se examinan los datos que aportan los pequeños vertebrados y su aplicación en otras ciencias. Los pequeños mamíferos son una de las herramientas más útiles para correlacionar y datar relativamente los yacimientos, como los del Cuaternario con fósiles humanos. Además, por su abundancia y dependencia del medio en el que viven, son también buenos para hacer reconstrucciones paleoambientales, como ejemplo se citan los cambios climáticos detectados en Cantabria al final del Cuaternario. Palabras clave: Pequeños vertebrados, técnicas de lavado-tamizado, bioestratigrafía, paleoclimatología. ABSTRACT In this communication the techniques of study of fossil small vertebrates are reviewed from the acquired personal experience in Autol (La Rioja), and the work in the team that innovate the study of these fossils in the decade of the 1970, to nowadays, as the person in charge of the microfauna of the Quaternary localities of Atapuerca, since 1990.
    [Show full text]
  • Miocene Carnivorans from the Vallès-Penedès Basin (NE Iberian Peninsula)
    Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia Unitat d’Antropologia Biològica Miocene carnivorans from the Vallès-Penedès Basin (NE Iberian Peninsula) Josep Maria Robles Giménez Tesi Doctoral 2014 A mi padre y familia. INDEX Index .......................................................................................................................... 7 Preface and Acknowledgments [in Spanish] ....................................................... 13 I.–Introduction and Methodology ........................................................................ 19 Chapter 1. General introduction and aims of this dissertation .......................... 21 1.1. Aims and structure of this work .............................................................. 21 Motivation of this dissertation ................................................................ 21 Type of dissertation and general overview ............................................. 22 1.2. An introduction to the Carnivora ............................................................ 24 What is a carnivoran? ............................................................................. 24 Biology .................................................................................................... 25 Systematics and phylogeny ...................................................................... 28 Evolutionary history ................................................................................ 42 1.3. Carnivoran anatomy ...............................................................................
    [Show full text]
  • Cidarisrevista Ilicitana De Paleontología Y Mineralogía
    CidarisRevista Ilicitana de Paleontología y Mineralogía DIRECCIÓN José Manuel Marín Ferrer REFERENCIA DE ESTE VOLUMEN Fortuny, J., Sellés, A.G., Valdiserri, D. y Bolet, A. EDITOR y DISEÑO (2010): New tetrapod footprints from the Per- Francisco Vives Boix mian of the Pyrenees (Catalonia, Spain). Preli- minar results. En: Moreno-Azanza, M., Díaz- SECRETARIO Matínez, I., Gasca, J.M., Melero-Rubio, M., Antonio Ródenas Maciá Rabal-Garcés, R. y Sauqué, V. (coords). Cidaris, número 30, VIII Encuentro de Jóvenes Investiga- COORDINACIÓN DE ESTE dores en Paleontología, volúmen de actas, 121-124 NÚMERO Miguel Moreno-Azanza, Ignacio Díaz-Martínez, José Manuel Gasca, María Melero-Rubio, Raquel Rabal Garcés, Victor Sauqué Latas. COMITÉ EDITORIAL Diego Castanera Andrés, Rubén Contreras Izquierdo, Ignacio Díaz-Martínez, José Manuel Gasca, Esperanza García-Ortiz de Landaluce, María Melero- Rubio, Silvia Mielgo Gállego, Miguel Moreno-Azanza, Raquel Rabal Garcés, Victor Sauqué Portada: Latas. Logotipo del VIII Encuentro de JóVenes InVestigado- res en Paleontología. Contorno de dos icnitas terópoda MAQUETACIÓN y ornitópoda de La Rioja. Superposición inspirada en Miguel Moreno-Azanza El Hombre de VitruVio de Leonardo da Vinci. Raquel Rabal Garcés Autor: José Manuel Gasca" Silvia Mielgo Gallego IMPRIME Imprenta Segarra Sánchez, s.l. Dep. Legal: A-738-1993 I. S. S. N.: 1134-5179 © Grupo Cultural Paleontológico de Elche CORRESPONDENCIA Cidaris Grupo Cultural Paleontológico de Elche Museo Paleontológico de Elche Apdo. 450 Elche (Alicante) España www.cidarismpe.org E-mail: [email protected] III Cidaris Revista Ilicitana de Paleontología y Mineralogía Preside Dr. Félix Pérez-Lorente UNIVERSIDAD DE LA RIOJA.ESPAÑA COMITÉ CIENTÍFICO Dr. José Antonio Arz UNIVERSIDAD DE ZARAGOZA.
    [Show full text]