6 2. Phylogenie Und Systematik Der Cricetinae Trotz Einer Reihe Morphologischer (Argyropulo 1933; Vorontsov 1960; Hamar Und

Total Page:16

File Type:pdf, Size:1020Kb

6 2. Phylogenie Und Systematik Der Cricetinae Trotz Einer Reihe Morphologischer (Argyropulo 1933; Vorontsov 1960; Hamar Und 2. Phylogenie und Systematik der Cricetinae Trotz einer Reihe morphologischer (Argyropulo 1933; Vorontsov 1960; Hamar und Schutowa 1966), zytologischer (Matthey 1960; Radjabli 1975; Gamperl et al. 1978) und karyologischer Studien (Kartavtsev et al. 1984a, 1984b) ist die Systematik der Hamster und die phylogenetische Verwandtschaft rezenter Hamstergattungen stark umstritten. Weitverbreitete Systematiken wie Wilson und Reeder (1993) führen sie- ben Gattungen: Allocricetulus, Cansumys, Cricetulus, Cricetus, Mesocricetus, Pho- dopus und Tscherskia mit insgesamt 18 Arten auf. Dagegen beschreibt Corbet (1978) nur vier Gattungen mit 14 Arten (ohne Calomyscus). Die häufig als echte Cri- cetinae geführten Maushamster Calomyscus (Flint 1966; Corbet 1978; Pantelejev 1998) vertreten aufgrund morphologischer, zytologischer und genetischer Unter- schiede eine andere evolutionäre Linie (Matthey 1960; Michaux et al. 2001; Steppan et al. 2004). Es wird angenommen, dass sich die Unterfamilie Cricetinae von den Democriceto- dontini ableitet, einer Nagergruppe, die im frühen und mittleren Miozän in der nördli- chen Hemissphäre weit verbreitet war (Fahlbusch 1969; Chaline 1977; Chaline und Mein 1979). Die fossile Hamstergattung Cricetulodon könnte sich z.B. aus einem Democricetodon-Zweig entwickelt haben und eine evolutive Brücke zur Cricetinae- Gattung Rotundomys bilden (Freudenthal et al. 1998). Bisher wurde eine größere Anzahl fossiler Hamstergattungen beschrieben. Carleton und Musser (1984) nennt acht ausgestorbene Gattungen: Cricetulodon (seit dem mittleren Miozän), Kowalskia (seit dem späten Miozän), Rotundomys (seit dem späten Miozän), Collimus (frühes Pliozän), Microtocricetus (frühes Pliozän), Sinocricetus (frühes Pliozän), Nannocrice- tus (frühes Pliozän), Rhinocricetus (frühes und Mittel-Pleistozän). McKenna und Bell (1997) listen noch acht weitere Gattungen, wovon fünf bereits aus dem späten Mio- zän stammen. Viele fossile Hamstertaxa haben ihren Ursprung im Miozän. Die Ursa- che dafür liegt in einem globalen Faunenwandel, der sich in dieser Zeit vollzog (Webb und Opdyke 1995; Janis et al. 2000). Tektonische Veränderungen und ein zunehmend trockneres Klima führten zur Formation weiter, offener Landschaften, die Steppenelementen bessere Lebensbedingungen boten (Cerling et al. 1997; Agustí et al. 1999; Fortelius et al. 2002). Alle rezenten Hamstergattungen sind durch Fossilien belegt. Nachweise von Cricetus-Hamstern aus dem Miozän und weiten Teilen des Pliozäns sind aber wahrscheinlich einer ausgestorbenen Gattung Pseudocricetus (Topachevski und Skorik 1992) oder Apocricetus (Freudenthal et al. 1998) zuzuord- 6 nen und stimmen nicht mit der rezenten Gattung Cricetus überein. Äußerst schwierig dagegen gestaltet sich die phylogenetische Ableitung heutiger Hamstergattungen von fossilen Taxa (Abb. 1). Einige Autoren betrachten die Gattung Kowalskia als Vor- läufer von Tscherskia, Cricetus und Allocricetulus (De Bruin 1976; Gromov und Ba- ranova 1981; Topachevski und Skorik, 1992), wogegen nach Fahlbusch (1969) Cri- cetus und Cricetulus direkt von Democricetodon abstammen. Interessanterweise hat man bisher keine fossile Hamstergattung gefunden, die als Ausgangspunkt der re- zenten Gattung Mesocricetus infrage käme. Die Publikation „Molecular phylogeny of the Cricetinae subfamily based on the mitochondrial cytochrome b and 12 SrRNA genes and the nuclear vWF gene“ ist der erste umfangreichere Versuch bestehende systematische Unklarheiten mit Hilfe eines genetischen Ansatzes zu klären und eine Phylogenie der Unterfamilie Cricetinae unter Berücksichtigung von Fossilienfunden und paläoklimatischen Daten zu erstellen. Mit der Anwendung molekularer Uhren wurde ein Zeitrahmen für die Evolution wichtiger Hamsterlinien, sowie deren weitere Aufspaltung berechnet. Bei den anhand von genetischen Distanzen errechneten Zeiträumen wurde den zuneh- menden Befunden zur Heterogenität von Substitutionsraten innerhalb und zwischen verschiedenen DNA-Abschnitten Rechnung getragen (Howell et al. 2004; Ho et al. 2005). Die Zeitschätzungen erfolgten unter den Annahmen einer konstanten Uhr und einer “relaxed clock“. Die genetischen Stammbäume wurden auf der Basis von Se- quenzinformationen dreier partieller Gene erstellt. Es handelt sich dabei um zwei mi- tochondriale Gene (Cytochrom b, 12SrRNA) und einen nukleären Abschnitt (von Wil- lebrand-Faktor, Exon 28). Phylogenetische Stammbäume wurden mit Hilfe von Ma- ximum-Likelihood, Maximum Parsimony, Distanz- und Bayesischen Methoden kon- struiert. Ein wesentliches Ergebnis der Arbeit ist die Existenz von drei phylogeneti- schen Hauptlinien innerhalb der rezenten Vertreter der Cricetinae: Phodopus- Gruppe, Mesocricetus-Gruppe, Cricetus-Gruppe (Cricetus, Cricetulus, Allocricetulus, Tscherskia). Alle drei Linien entstanden im oberen bis späten Miozän, was gut mit der großen Anzahl heute ausgestorbener fossiler Gattungen aus dieser Zeit überein- stimmt. Das hohe evolutionäre Alter der Phodopus-Linie überrascht, da Fossilien der Gattung erst aus dem Pleistozän bekannt sind (Fahlbusch 1969; Shaohua 1984; Shaohua und Cai 1991). Die molekularen Daten zeigen dagegen, dass eine Aufspal- tung der Phodopus-Hamster bereits am Ende des Miozäns oder im Übergang vom Miozän zum Pliozän stattfand. 7 C. cf. migratorius C. longicaudatus Phodopus C. griseus C. obscurus Cricetinus variens † T. triton Spätes Frühes Pleistozän Mittleres Pleistozän Pleistozän Holozän Abb. 1 Phylogenie der bei Zhoukoudian / China nachgewiesenen fossilen Cricetinae basierend auf ihrem biochronologischen Auftreten in den verschiedenen Fundschichten und morphologischen Merkmalen (verändert nach Shaohua 1988). Abkürzungen: C = Cricetulus, T = Tscherskia. Schwierigkeiten bei der Identifizierung von fossilen Überresten, insbesondere kleiner Hamstergattungen (Phodopus und Cricetulus), könnten dafür eine Erklärung liefern (Schaub 1930; Shaohua und Cai 1991; Kowalski 2000). Genetische Stammbäume identifizieren die Gattung Mesocricetus als eine separate phylogenetische Linie. Dies widerspricht der Annahme einer engen Verwandtschaft mit Cricetus (Argyropulo 1933) und unterstützt Niethammer (1982), der auf morphologische Sondermerkmale der Mesocricetus, wie z.B. größere Zitzenzahl und anders gestaltete Anteorbitalplat- ten hinwies. Eine wichtige neue Erkenntnis ist die fehlende Monophylie der Gattung Cricetulus. Der graue Zwerghamster Cricetulus migratorius steht den Gattungen Tscherskia, Cricetus und Allocricetulus deutlich näher, als allen untersuchten Vertre- tern der Gattung Cricetulus. Ein Befund, der ebenfalls gängigen Literaturmeinungen widerspricht, ist die nahe genetische Verwandtschaft von Mesocricetus auratus und M. raddei. Nach Auswertung karyologischer und morphologischer Merkmale postu- lierten Hamar und Schutowa (1966) die Existenz einer transkaukasischen (M. au- raus, M. brandti, M. newtoni) und einer ciskaukasischen Linie (M. raddei) innerhalb der Gattung Mesocricetus. Dies konnte anhand der DNA-Vergleiche nicht bestätigt werden. Die enge Assoziation von M. auratus und M. raddei könnte auf einen Ur- sprung des Goldhamsters im südlichen Vorland des Kaukasus deuten. Eine Entste- hung der Art in Palästina erscheint eher unwahrscheinlich (Hosey 1982). Im Rahmen 8 der Publikation wird auch versucht, eine biogeografische Erklärung für die longitudi- nale Verbreitung einer Reihe von sehr nah verwandten Hamsterarten (Allocricetulus eversmanni - A. curtatus, Phodopus campbelli - P. sungorus, C. barabensis - Grup- pe) in Zentralasien zu finden. Diese Arten entstanden wahrscheinlich im Laufe des Pleistozäns durch Expansion aufgrund der sich nach Westen ausdehnenden Step- pen. Dabei scheinen die Gebirgsausläufer des Sajan und Altai als wichtige geografi- sche Barrieren zu fungieren. Leider existieren keine genetischen Untersuchungen zu anderen Steppensäugern dieser Region, um diese Hypothese weiter zu überprüfen. Mit der vorgelegten Phylogenie konnte erstmals eine Zuordnung rezenter Hamster- gattungen zu einzelnen evolutionären Entwicklungslinien erfolgen. Bisher waren die verwandtschaftlichen Beziehungen der meisten beschriebenen Gattungen unklar (Carleton und Musser 1984; Niethammer 1982). Die vorgelegte molekulare Phyloge- nie ermöglicht auch, die große Anzahl fossiler Hamstergattungen in eine exaktere zeitliche und verwandtschaftliche Beziehung mit rezenten Arten zu setzen. Die teil- weise Diskrepanz zwischen molekularen Zeitschätzungen und Fossilien-Datierungen machen eine Überprüfung von paläontologischen Funden erforderlich. Allerdings be- sitzen auch molekulare Schätzungen durch variierende Substitutionsraten und “li- neage sorting“ eine gewisse Unschärfe (Ingman et al. 2000; Lister 2004; Howell et al. 2004; Ho et al. 2005). Obwohl eine Reihe systematischer Unklarheiten innerhalb der Cricetinae, so z.B. die Validität der Gattungen Tscherskia und Allocricetulus, geklärt werden konnten, verbleibt ein hoher Forschungsbedarf. Wichtiges Augenmerk ist dabei auf die Gattung Cricetulus zu richten, die offensichtlich nur ein Sammelbecken morphologisch ähnlicher Hamster darstellt. Seit 2004 läuft ein Forschungsprojekt zur molekularen Systematik der Gattung Crice- tulus in Zusammenarbeit mit Dr. V. Lebedev (Zoologisches Museum der Staatlichen Universität Moskau) und Dr. A. Surov (Severtzov Institut für Tierökologie und Evoluti- on, RAS, Moskau). In diesem Projekt wird versucht, ein Diagnosesystem mit Hilfe genetischer und morphologischer Charakeristika für die Identifizierung von Cricetu- lus-Arten/Unterarten zu erstellen. 9 2.1.1. Molecular phylogeny of the Cricetinae
Recommended publications
  • Small Rodents
    All Creatures Animal Hospital Volume 1, Issue 1 Newsletter Date Basic Care of Small Rodents HAMSTERS Hamsters (Mesocricetus aura- sters were first introduced to less common than the Syrian Inside this issue: tus) are short tailed rodents the United States in 1938. hamster. The smaller, dark with large cheek pouches. The Since their domestication, sev- brown Chinese hamster (dwarf Housing 2 Syrian hamster’s (golden ham- eral color and hair coat varie- hamster), the Armenian (grey) ster) wild habitat extends ties of the Syrian hamster have hamster, and the European Nutrition 2 through the Middle East and arisen through selective breed- hamster are more often used in Southeastern Europe. In 1930, ing. The three basic groups research and seldom kept as Handling 3 a litter of eight baby hamsters that now exist include the com- pets. Hamsters live 1.5-2.5 was taken to Israel and raised mon “golden” hamster, colored years. Hamsters have pig- Veterinary Care 3 as research animals. Virtually short-haired “fancy” hamster, mented, hairless glands over all domesticated hamsters sold and long-haired “teddy bear” the hips. These should not be Teeth and Tears 3 in the pet trade and research are hamster. On occasion, one mistaken for tumors. descendents of three of the may encounter other species of Breeding 4 survivors of that litter. Ham- hamsters, but these are much GERBILS The Mongolian gerbil (Meriones abdomen, and darker back coat. or fight, are easy to keep clean unguiculatus) is a small rodent Other color varieties that exist and care for, and are relatively native to the desert regions of include black, white, and cinna- easy to handle.
    [Show full text]
  • Behavioral Patterns of Djungarian Hamsters: an Adaptive Profile
    Animal Learning & Behavior /984, /2 (3), 297-306 Behavioral patterns of Djungarian hamsters: An adaptive profile D. KIM SAWREY, DENIS J. BAUMGARDNER, MICHAEL J. CAMPA, BRUCE FERGUSON, ALAN W. HODGES, and DONALD A. DEWSBURY University of Florida, Gainesville, Florida Djungarian hamsters (Phodopus sungorusi were observed in a series oflaboratory tests, including home cage activity, wheel running, open-field behavior, sexual dimorphism for body mass, copulatory behavior, tonic and dorsal immobility, climbing, digging, nest building, and parental behavior. Fourteen resulting measures were compared with previous results from this laboratory from a variety ofmuroid species. A cluster ofbehavioral adaptations emerged with several marked similarities to the behaviors of a group of North American Microtus species, whereas other be­ haviors appeared to more closely reflect the classification of the hamsters as cricetines. It is sug­ gested that Phodopus and Microtus species may have evolved many similar adaptive characteristics in response to shared environmental variables. The description and understanding of the behavioral behavior (e.g., Dewsbury, 1975), tonic and dorsal immo­ adaptations of organisms are tasks of major importance bility responses (Webster, Lanthom, Dewsbury, & Meyer, confronting students of animal behavior. With comparisons 1981), climbing (Dewsbury, Lanier, & Miglietta, 1980), of a number of behavior patterns in a variety of species, digging (Webster, Williams, Owens, Geiger, & Dewsbury, clusters of behavioral adaptations emerge. These associa­ 1981), nest building (Hartung & Dewsbury, 1979a), and tions of behavioral adaptations, coupled with information parental behavior (Hartung & Dewsbury, 1979b), among regarding the ecological, morphological, and physiological others. This body ofdata allows comparison of a number attributes of members of related species, will lead to of species on a number of behavioral tasks, all conducted testable hypotheses concerning the relations among these in the same laboratory.
    [Show full text]
  • Checklist of Rodents and Insectivores of the Mordovia, Russia
    ZooKeys 1004: 129–139 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.1004.57359 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Checklist of rodents and insectivores of the Mordovia, Russia Alexey V. Andreychev1, Vyacheslav A. Kuznetsov1 1 Department of Zoology, National Research Mordovia State University, Bolshevistskaya Street, 68. 430005, Saransk, Russia Corresponding author: Alexey V. Andreychev ([email protected]) Academic editor: R. López-Antoñanzas | Received 7 August 2020 | Accepted 18 November 2020 | Published 16 December 2020 http://zoobank.org/C127F895-B27D-482E-AD2E-D8E4BDB9F332 Citation: Andreychev AV, Kuznetsov VA (2020) Checklist of rodents and insectivores of the Mordovia, Russia. ZooKeys 1004: 129–139. https://doi.org/10.3897/zookeys.1004.57359 Abstract A list of 40 species is presented of the rodents and insectivores collected during a 15-year period from the Republic of Mordovia. The dataset contains more than 24,000 records of rodent and insectivore species from 23 districts, including Saransk. A major part of the data set was obtained during expedition research and at the biological station. The work is based on the materials of our surveys of rodents and insectivo- rous mammals conducted in Mordovia using both trap lines and pitfall arrays using traditional methods. Keywords Insectivores, Mordovia, rodents, spatial distribution Introduction There is a need to review the species composition of rodents and insectivores in all regions of Russia, and the work by Tovpinets et al. (2020) on the Crimean Peninsula serves as an example of such research. Studies of rodent and insectivore diversity and distribution have a long history, but there are no lists for many regions of Russia of Copyright A.V.
    [Show full text]
  • G-, C-, and NOR-Stained Karyotype of the Eversmann's Hamster Allocricetulus Eversmanni and Comparison with the Karyotype of Cr
    Mammal Study 30: 89–91 (2005) © the Mammalogical Society of Japan Short communication G-, C-, and NOR-stained karyotype of the Eversmann’s hamster Allocricetulus eversmanni and comparison with the karyotype of Cricetulus species (Rodentia: Cricetinae) Irina V. Kartavtseva1,* and Aleksey V. Surov2 1 Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia, 690022 2 A. N. Severtsov Institute of Ecology and Evolution, Moscow, Russia, 119071 Differential chromosomal stainings for various species chromosomes was shown using Sumner’s (1972) modi- belonging to genera in the tribe Cricetini of the Eurasian fied C-banding technique. The locations of nucleolar Cricetinae including Cricetus, Cricetulus, Tscherskia, organizer regions (NORs) of metaphase chromosomes Phodopus, and Mesocricetus are available (Gamperl et were determined after 50% aqueous AgNO3 treatment al. 1978; Kartavtseva et al. 1979; Popescu and DiPaolo for 12 hours at 50–60°C (Bloom and Goodpasture 1976). 1980; Kral et al. 1984). Hitherto, however, no differen- The karyotype consisted of 24 autosomes (2n = 26, tial chromosomes stainings for species in the genus NF = 40): four pairs of metacentrics (M) and submeta- Allocricetulus have been described and the phylogenetic centrics (SM): one pair large, one pair medium and two position of this genus in the Cricetini, based on chro- pairs small, two pairs of large subtelocentrics (ST) and mosomal data, has not been determined. six pairs of acrocentrics (A), ranging from medium-sized The Eversmann’s hamster Allocricetus eversmanni to small. The X chromosome was a medium sized sub- Brandt, 1859 occurs in dry steppes and semi-deserts metacentric (Fig.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Interspecific Attack on Mice and Frogs by Golden Hamsters (Mesocricetus Auratus)
    Bulletin of the Psychonomic Society 1977, Vol. 9 (3),186-188 Interspecific attack on mice and frogs by golden hamsters (Mesocricetus auratus) PAUL E. VAN HEMEL Franklin and MarshaU College, Lancaster, Pennsylvania 17604 When tested for their reactions to mice, most male and female hamsters attacked with a pattern typical of hamster attacks on conspecifics_ Females attacked with shorter latency than did males, and the very few hamsters that consistently killed mice were all females. Latencies of attack decreased with repeated testing, even though most attacks were not followed by killing. When tested with frogs, hamsters typically avoided the frogs, although a few showed long-latency attacks and kills. A detailed description of the topography of interspecific attack by hamsters and other closely related groups would be useful as a beginning step in analysis of the function of interspecific attack. Psychologists investigating mouse-killing behavior in If hamsters attack mice and frogs, as rats do (Bandler rats have been primarily concerned with the causation & Moyer, 1970), then a comparison of behavioral and ontogeny of the behavior (polsky, 1975a). Studies phenotypes would be useful as a beginning step for that concentrate on such proximate determinants of functional analysis. Hamsters are known to attack behavior focus on issues quite different from those locusts (polsky, 1974, 1976) and may catch and raised by studies concerned with ultimate questions consume insects (Jacobs, 1945). There has even been about the function, or ecological significance, and the a report of spontaneous attacks by hamsters on mice evolution of behavior (Alcock, 1975). Some authors (Wnek & Leaf, 1973).
    [Show full text]
  • The Hibernation of the Common Hamster (A) Looks Different Compare to Hibernation of M
    N.Yu.Feoktistova1, G.A.Klevezal2, E.A.Zaytseva1,D.V.Shchepotkin2, M.M. Chunkov3,A.V. Surov1 WINTER WONDERS OF THE COMMON HAMSTER. TOUTH RECORDS AND THERMOLOGGING 1Kol’tsov Institute of Developmental Biology, RAS 2 Severtsov Institute of Ecology and Evolution, RAS 3Precaspian Institute of Biological Resources, Dagestan Scientific Center, RAS M. newtoni M. brandti M. n M. raddei Who is my closest relative, that’s the question? Cricetus cricetus Allocricetulus eversmanni A. curtatus Divergence time of Mesocricetus and Cricetus group (Cricetulus, Tscherskia, Cricetus, and Allocricetulus) is about 7.6–8.1 MY (Neumann et al., 2006). At the same time divergence between Cricetus and Allocricetulus genera is about 2 MY. Genetically and by a number of other biological features, the common hamster is the closest relative with Eversmann hamsters A. curtatus It is the first wonder of the common hamster – in taxonomy Subfamily Cricetinae demonstrates the whole spectrum of diversity - from the species with torpors to obligate and facultative hibernation. Torpid species Facultative hibernators Obligate hibernators Genera Phodopus, Genera Allocricetulus, Genus Mesocricetus Cricetulus Cricetus The hibernation of some Mesocricetus species looks like obligate hibernation of marmots and ground squirrels (1). It’s may last from 3 to 9 months, but it is periodically interrupted by short -for 6–10 h - awakenings. The maximum duration of uninterrupted hypothermia in M. raddei last 12 days and in some marmots up to 22 days, Body temperature record for ____________ Marmot male April October December February M. raddei male The hibernation of the common hamster (A) looks different compare to hibernation of M.
    [Show full text]
  • Pineda-Munozetal2010
    Cidaris Revista Ilicitana de Paleontología y Mineralogía Núm. 30 2010 VIII Encuentro de Jóvenes Investigadores en Paleontología VOLUMEN DE ACTAS GRUPO CULTURAL PALEONTOLÓGICO DE ELCHE EVOLUTION OF HYPSODONTY IN A CRICETID (RODENTIA) LINEAGE: PRELIMINARY RESULTS USING PATCH ANALYSIS EVOLUCIÓN DE LA HIPSODONCIA EN UN LINAJE DE CRICÉTIDOS (RODENTIA): RESULTADOS PRELIMINARES UTILIZANDO “PATCH ANALYSIS” Silvia Pineda-Muñoz1, Isaac Casanovas-Vilar1, Daniel De Miguel1, Aleksis Karme3, Alistair R. Evans2 and Mikael Fortelius2, 3 1Institut Català de Paleontologia (ICP). Mòdul ICP, Campus de la UAB, 08193 Cerdanyola del Vallès (Barcelona). [email protected], [email protected], [email protected]. 2Evolution and Development Unit, Institute of Biotechnology. PO Box 56, Viikinkaari 9, FIN-0014 University of Helsinki, Finland. 3Department of Geology, University of Helsinki. PO Box 64, Gustaf Hällströmin katu 2a, FIN-0014 University of Helsinki, Finland. ABSTRACT The development of hypsodonty in the Cricetulodon hartenbergeri – Cricetulodon sabadellensis- Rotundomys montisro- tundi – Rotundomys bressanus lineage is studied using patch analysis. The lower second molar of a sample of each species is scanned using a 3D laser scanner. Then, the scans are processed with GIS software which provides orientation maps of the slopes of the occlusal surface. Contiguous points with the same orientation are grouped into a ‘patch’ that represents a functional structure of the molar crown, so the number of patches relates to dental complexity. This parameter is found to decrease in the lineage coupled with increased crown height. This is interpreted as a result of the evolution of crown planation and loss of cusp interlocking in Rotundomys. Palabras clave: Morfología funcional, “patch analysis”, Rodentia, Cricetidae, Cricetulodon, Rotundomys, Mioceno, Cuenca del Vallès-Penedès.
    [Show full text]
  • A D D E N D a T 0 V 0 L S. I - Viii
    A D D E N D A T 0 V 0 L S. I - VIII NOTE . I t wi ll usuall y be necessary to refer to t he main index of this volume, or of earlier volumes, for details of new names given in cross references. Aaronia Verrill 1950, Minut. conch .Club Sth.Calif. No. 103:4.-Moll.(Gast.) Abdullaevia Suleimanov 1965, Dokl.Akad .Nauk uzbek.SSR 7: 47 .- + Prot.(Sarcod.) Abichites Shevyrev 1965, Trudy paleont. Inst. 108: 179 .- + Moll.(Ceph.) Abiliella Peracch1 1964, Anais Congr . l at.-am.Zool. 1962 (1): 11 9.- Ins.(Col.) Ablep.harocera Loew 1877 , Z.Ent .,Breslau (N .S. ) 6: 56 .-Ins. (Dipt.) Un-necessary new name for Blepharocera Agassiz 1846) Abonnencia Vercammen-Grandj ean 1960, Acarologia 2: 470 (tablel .-Arachn . (Acar. ) Abonn.encioides Vercammen-Grandjean 1960, Acarologia 2:470 (table) . -Arachn. (A car.) Abrancbaea Zhang 1964, Studia mar .sin. No.5: 179 .-Moll. (Gast. ) Abrina Habe 1952, Genera of Japanese shells. Pelecypoda No.3. [Tokyo] : 210 .­ Moll . (Bivalv. ) Abruptolopha Vialov 1936 , Ookl .Akad .Nauk SSSR IV (XIII) No.1 (105) : 20.­ + Mol l. (Bival v. ) Acallepitrix Bechyne 1959 , Beitr.neotrop. Fauna 1: 323 .-Ins.(Col. ) Acampomintho (err.pro Acompomintho Villeneuve 1927) Townsend 1935, Manual of Myiology 2: 253.-Ins. (Dipt.) Acanthametropus Chernova 1948, Dokl . Akad . Nauk SSSR (N.S.) 60:1 453.-Ins. (Ephem . ) Acanthocolpoides Travassos, Teixeira de Freitas & Buhrnheim 1965, Atas Soc. Biol.Rio de J . 9: 57.- Verm.( Trem . ) Acanthoepimeritus Hoshide 1959, Bull Fae. Educ.Yamaguchi Uni v. 8 (2) : 60.­ Prot . (Apic. ) Acantholabia Olsson & Harbison 1953, Pliocene Mollusca of southern Florida etc.
    [Show full text]
  • 21 May 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the Late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/151534 since 2015-12-06T13:48:07Z Published version: DOI:10.1080/14772019.2013.863231 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 29 September 2021 This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: À.H. LUJÁN; D.M. ALBA; J. FORTUNY; R. CARMONA; M. DELFINO, 2014. First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the Late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications JOURNAL OF SYSTEMATIC PALAEONTOLOGY 12(7): 833-864 DOI: 10.1080/14772019.2013.863231 The definitive version is available at: La versione definitiva è disponibile alla URL: http://www.tandfonline.com/doi/abs/10.1080/14772019.2013.863231 First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications Àngel H.
    [Show full text]
  • Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster
    C 1997 The Japan Mendel Society Cytologia 62: 315-321, 1997 Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster Kazunori Fujimoto1, Sen-ichi Oda1,*, Kazuhiro Koyasu2, Masashi Harada3 and Shin-ichi Sonta4 1 Laboratory of Animal Management, School of Agricultural Sciences, Nagoya University, Nagoya 464-01, Japan 2Department of Anatomy , School of Dentistry, Aichi-Gakuin University, Nagoya 464, Japan 3 Laboratory Animal Center , Osaka City University, Osaka 545, Japan 4 Department of Genetics , Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-03, Japan Accepted July 17, 1997 The subfamily Cricetinae (Rodentia) comprise 5 genera, including the genus Cricetulus of which comprise 11 species (Nowak and Paradiso 1983). The greater long-tailed hamster (Cricetulus trion or Tscherskia triton, abbreviated hereafter as a triton hamster) inhabits north-eastern Asia such as eastern Siberia, north-eastern China and Korea (Ellerman and Morrison-Scott 1951), and its diploid chromosome number is 28 (Tsuchiya and Won 1976). The Chinese hamster (Cricetulus griseus, 2n=22) has been successfully used as a laboratory animal, and its karyotype has been characterized by banding techniques (Ray and Mohandas 1976). In contrast, no cytogenetic analy- ses are available for a triton hamster. There are remarkable morphological differences between the two hamster species. The triton hamster is 5-6 times as weighty as Chinese hamster (Sonta and Semba 1980, Oda et al. 1995), and we are not able to obtain interspecific hybrid in cage. The coat color of the two hamster species also differs. That of the Chinese hamster is brown at back with black line in the center and white at belly, while that of a triton hamster is agouti at back.
    [Show full text]
  • Lessons from the Hamster
    LESSONS FROM THE HAMSTER: CHARACTERIZATION OF CHINESE HAMSTER OVARY (CHO) CELL LINES AND CRICETULUS GRISEUS TISSUES VIA PROTEOMICS AND GLYCOPROTEOMICS by Kelley Marie Heffner A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland August, 2017 © 2017 Kelley Marie Heffner All Rights Reserved Abstract Chinese hamster ovary (CHO) cells were isolated in the late 1950’s and have been the workhorse of biotherapeutics production for decades. While previous efforts compared CHO cell lines by proteomics, research into the original Chinese hamster (Cricetulus griseus) host has not been conducted. Thus, we sought to understand proteomic differences across CHO-S and CHO DG44 cell lines in relation to brain, heart, kidney, liver, lung, ovary, and spleen tissues. As glycosylation is critical for recombinant protein quality, we additionally performed a glycoproteomics and sialoproteomics analysis of wild-type and mutant CHO cell lines that differ in glycosylation capacity. First, wild-type CHO was compared with tunicamycin-treated CHO and Lec9.4a cells, a mutant CHO cell line which shows 50% of wild-type glycosylation levels. A total of 381 glycoproteins were identified, including heavily-glycosylated membrane proteins and transporters. Proteins related to glycosylation downregulated in Lec9.4a include alpha-(1,3)-fucosyltransferase and dolichyl- diphosphooligosaccharide-protein glycosyltransferase subunit 1. Next, wild-type Pro-5 CHO was compared with Lec2 cells, which have a mutation in CMP-sialic acid transporter that reduces sialylation. A total of 272 sialylated proteins were identified. Downregulated sialoproteins, including dolichyl- diphosphooligosaccharide-protein glycosyltransferase subunit STT3A and beta-1,4- galactosyltransferase 3, detect glycosylation defects.
    [Show full text]