Rodent Palaeoecology of the Continental Upper Miocene of Crevillente (Alicante, SE Spain)

Total Page:16

File Type:pdf, Size:1020Kb

Rodent Palaeoecology of the Continental Upper Miocene of Crevillente (Alicante, SE Spain) Palaeogeography, Palaeoclimatology, Palaeoecology 165 (2001) 349–356 www.elsevier.nl/locate/palaeo Rodent palaeoecology of the Continental Upper Miocene of Crevillente (Alicante, SE Spain) Elvira Martı´n-Sua´rez a,*, Matthijs Freudenthal a,b, Jorge Civis c a Departamento de Estratigrafı´a y Paleontologia, Universidad de Granada, 18071 Granada, Spain b Nationaal Natuurhistorisch Museum, Postbus 9517, 2300 RA Leiden, The Netherlands c Departamento de Geologia, Universidad de Salamanca, Salamanca, Spain Received 15 November 1999; accepted for publication 19 July 2000 Abstract The Upper Miocene succession of Crevillente presents an alternation of continental and marine beds. The marine fossils have been studied in order to obtain a reliable correlation with other marine sections. On the basis of these data, the entire section can be dated as Upper Tortonian/Messinian. The alternation of continental and marine beds fits the known eustatic sea-level and climatic curves. These correlations are used to assign ecological preferences to the components of the micromammal faunas at species level; it becomes clear that working at the genus level does not provide valid results. With the assignments, it is possible to demonstrate consistent climatic diVerences between the coastal plain of Crevillente and the area of Teruel on the Meseta of Central Spain. © 2001 Elsevier Science B.V. All rights reserved. Keywords: Messinian; Miocene; palaeoecology; Rodentia; Spain 1. Introduction of the succession in order to achieve a dating, and we have tied it in with the eustatic sea-level curve. The area studied is located north of the village This gives us a correlation between the intercalated of Crevillente (province of Alicante), as indicated micromammal localities and the eustatic curve, in Fig. 1. The sedimentary succession under study which permits a climatological interpretation of lies unconformably on the Mesozoic substratum the mammalian faunas. and consists of alternating continental and marine beds (Freudenthal et al., 1991;Martı´n-Sua´rez and Freudenthal, 1998). Towards the north, the depos- its are slightly inclined, and towards the south, 2. Age of the continental deposits they are folded with inclinations of up to 60° SSE. The marine and brackish deposits contain fora- The relative dating of the continental deposits minifera and ostracods, and the continental depos- has been carried out by various authors, most its have yielded a number of fossil mammal recently by Martı´n-Sua´rez and Freudenthal, (1998). localities. We have studied the marine fossil content The mammal-bearing localities are mainly located in the sections A–A∞ and B–B∞ of Fig. 1. The * Corresponding author. Fax: +34-58-243203. locality Crevillente 2 (CR2), the oldest mammal E-mail address: [email protected] (E. Martı´n-Sua´rez) locality of the succession, is the reference locality 0031-0182/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0031-0182(00)00170-X 350 E. Martı´n-Sua´rez et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 165 (2001) 349–356 3. Age of the marine deposits The study of the marine deposits presents some problems, since most of the samples contain reworked foraminifera, mainly from the Cretaceous and the Paleogene. Two samples have given useful results. In the lowermost part of the succession, 60 m below CR2, the sample CRF-13, has turned out to be poor in planktonic foraminifera, among which have been distinguished Globigerina bul- loides, Globigerinoides obliquus, Globorotalia pseu- dobesa, Globorotalia gr. menardii (sinistral ), Neogloboquadrina acostaensis (sinistral ), Orbulina Fig. 1. Map of the Crevillente area. universa, Globoquadrina dehiscens. The presence of N. acostaensis (sinistral ) and G. menardii (sinis- of the Neogene mammal unit MN 11 (Mein, tral ), though scarce, permits a dating as Late 1990). The locality CR15 may be correlated Tortonian. G. menardii has not yet been replaced biostratigraphically with Los Mansuetos, strato- by the dextral form, which means that the deposits type of the Turolian, and reference locality of unit do not belong to the latest Tortonian. MN12. The locality CR6, the youngest of the In the highest part of the succession, between the succession may be correlated with El Arquillo 3, two reef episodes (Fig. 2), the sample CR14-F3 has which is the reference locality of unit MN 13 yielded benthonic foraminifera, which indicate a very (Mein, 1990). Thus, the continental deposits in shallow environment (Ammonia becardii, Elphidium the area cover most of the Turolian. For a biostrat- macellum, Asterigerinata planorbis, Lobatula lobatula, igraphical zonation, see Martı´n-Sua´rez and Nonion boueanum, Cribononion sp.; other, poorly Freudenthal (1998). represented, forms are Elphidium aculeatum, Fig. 2. Correlation of the mammal localities of Crevillente with those of Teruel, and with the eustatic sea-level curve of Haq (1991) and Brachert et al. (1996). The vertical scale of the eustatic curve is distorted, because it is adapted to an even distribution of the mammal localities. For locality codes, see the caption of Fig. 3. : regression; ÷: transgression; yy: reefs; nn: gypsum. E. Martı´n-Sua´rez et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 165 (2001) 349–356 351 Uvigerina sp. and Reussella spinulosa). Planktonic 1989) and with the Granada Basin (Braga et al., foraminifera are scarce: Globoquadrina cf. dehiscens, 1990). They correspond to the eustatic maximum Globigerinoides obliquus, Globigerina bulloides, Globi- of cycle TB 3.2 of Haq (1991). gerina sp., Globorotalia cf. mayeri and Globorotalia The next set of strata, containing the mammal gr. miotumida.TheGloborotalia miotumida group is localities CR2 to CR18, represents the transition understood as defined by Sierro et al. (1993), and to dominantly continental sedimentation, after the the forms present correspond to morphotype G. eustatic maximum of TB 3.2. conomiozea. From these data, its level can be attrib- The next span of the succession contains uted to the Messinian, to the replacement of fundamentally continental deposits, with several Globorotalia menardii by the group Globorotalia mio- mammal localities (CR8, CR7, CR17). The micro- tumida (G. menardii has not been found). fossils of these levels comprise some fragments of stems and gyrogonites of Charophyta. The associa- Thus, the marine beds correlate to the final % Tortonian and the Messinian. Fig. 2 gives the tion of ostracods tends to be monospecific: 90 belongs to Cyprideis torosa with practically smooth relative datings of the succession, both for conti- shells, suggesting a high calcium content in the nental and marine levels, as well as the correlations Mg/Ca ionic equilibrium. This indicates cold con- between these datings. ditions that appear to correspond to the regressive episode of cycle TB 3.3, which, in other basins, is represented by the deposition of bryomol calcirud- 4. Correlations with the eustatic curve ites (Brachert et al., 1996). The eustatic maximum of this cycle is repre- In the Upper Neogene of the SE part of the sented by two reefs that correspond to the Early Iberian Peninsula, six episodes of reef growth have Messinian reef episode in other Neogene basins of been identified, alternating with deposition of calci- SE Spain, like Sorbas, Cabo de Gata and Nı´jar. rudites (Brachert et al., 1996). The reef deposits, Their build-up took place during a transgression, indicating relatively high temperature, can be corre- which was correlated by Brachert et al. (1996) lated to sea-level highstands in the eustatic sea-level with the eustatic maximum of cycle TB 3.3 of the curve of Haq (1991), and the bryomol carbonates, global sea-level chart of Haq et al. (1988, 1991). that indicate lower temperature, correspond to sea- Cycle TB 3.4 begins with a regression that level lowstands. These sea-level variations in the coincides with the deposition of the gypsum in the Late Neogene are linked to glacial phenomena, Sorbas Basin (Martı´n and Braga, 1994) and the low-stands and high-stands correlating with cold calcarenites of Cabo de Gata (van de Poel et al., and warm phases, respectively, depending on the 1984). In Crevillente, it results in an unconformity amount of water stored in glaciers. on top of the reefs. The next transgression leads Three of the reef phases are dated as earliest to the development of more reefs in the Sorbas Late Tortonian, Early Messinian, and latest Basin (Martı´n and Braga, 1994) and Cabo de Messinian, respectively, and correspond to the Gata (Martı´n et al., 1993; Brachert et al., 1996). highstands TB 3.2, TB 3.3, and TB 3.4 of Haq In Crevillente, the sedimentation during this trans- (Brachert et al., 1996). gression is first continental (CR6) and later The deposits of Crevillente were formed in more becomes marine. The succession is unconformably shallow conditions than the sections studied by overlain by a thick succession of supposedly Brachert et al. (1996), and therefore, the cyclicity Pliocene conglomerates. is expressed as an alternation of marine and conti- nental deposits. In the oldest, marine, deposits of Crevillente, 5. Paleoecology we have found Neogloboquadrina acostaensis and 5.1. Ecological preferences per taxon Globorotalia menardii (sinistral ), which permit a correlation with the Sorbas Basin (Martı´n and The basis for the assignment of preferences to Braga, 1994), with Almanzora (Martı´n et al., the mammal species found is the correlation of 352 E. Martı´n-Sua´rez et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 165 (2001) 349–356 our Crevillente succession with the eustatic sea- is probably a vicariant descendant of A. barbarae; level curve and the corresponding temperature their co-existence in CR8 means that the speciation curve (Fig. 2). Species found in localities corre- must have taken place in another area and that A. lated with eustatic maxima are assigned a meini in CR8 is an immigrant. Thus, A. meini and warm/humid preference, and species from localities its ancestor A. barbarae may have had diVerent in eustatic minima are assigned a cold/dry ecological preferences (Vrba, 1980).
Recommended publications
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Pineda-Munozetal2010
    Cidaris Revista Ilicitana de Paleontología y Mineralogía Núm. 30 2010 VIII Encuentro de Jóvenes Investigadores en Paleontología VOLUMEN DE ACTAS GRUPO CULTURAL PALEONTOLÓGICO DE ELCHE EVOLUTION OF HYPSODONTY IN A CRICETID (RODENTIA) LINEAGE: PRELIMINARY RESULTS USING PATCH ANALYSIS EVOLUCIÓN DE LA HIPSODONCIA EN UN LINAJE DE CRICÉTIDOS (RODENTIA): RESULTADOS PRELIMINARES UTILIZANDO “PATCH ANALYSIS” Silvia Pineda-Muñoz1, Isaac Casanovas-Vilar1, Daniel De Miguel1, Aleksis Karme3, Alistair R. Evans2 and Mikael Fortelius2, 3 1Institut Català de Paleontologia (ICP). Mòdul ICP, Campus de la UAB, 08193 Cerdanyola del Vallès (Barcelona). [email protected], [email protected], [email protected]. 2Evolution and Development Unit, Institute of Biotechnology. PO Box 56, Viikinkaari 9, FIN-0014 University of Helsinki, Finland. 3Department of Geology, University of Helsinki. PO Box 64, Gustaf Hällströmin katu 2a, FIN-0014 University of Helsinki, Finland. ABSTRACT The development of hypsodonty in the Cricetulodon hartenbergeri – Cricetulodon sabadellensis- Rotundomys montisro- tundi – Rotundomys bressanus lineage is studied using patch analysis. The lower second molar of a sample of each species is scanned using a 3D laser scanner. Then, the scans are processed with GIS software which provides orientation maps of the slopes of the occlusal surface. Contiguous points with the same orientation are grouped into a ‘patch’ that represents a functional structure of the molar crown, so the number of patches relates to dental complexity. This parameter is found to decrease in the lineage coupled with increased crown height. This is interpreted as a result of the evolution of crown planation and loss of cusp interlocking in Rotundomys. Palabras clave: Morfología funcional, “patch analysis”, Rodentia, Cricetidae, Cricetulodon, Rotundomys, Mioceno, Cuenca del Vallès-Penedès.
    [Show full text]
  • A D D E N D a T 0 V 0 L S. I - Viii
    A D D E N D A T 0 V 0 L S. I - VIII NOTE . I t wi ll usuall y be necessary to refer to t he main index of this volume, or of earlier volumes, for details of new names given in cross references. Aaronia Verrill 1950, Minut. conch .Club Sth.Calif. No. 103:4.-Moll.(Gast.) Abdullaevia Suleimanov 1965, Dokl.Akad .Nauk uzbek.SSR 7: 47 .- + Prot.(Sarcod.) Abichites Shevyrev 1965, Trudy paleont. Inst. 108: 179 .- + Moll.(Ceph.) Abiliella Peracch1 1964, Anais Congr . l at.-am.Zool. 1962 (1): 11 9.- Ins.(Col.) Ablep.harocera Loew 1877 , Z.Ent .,Breslau (N .S. ) 6: 56 .-Ins. (Dipt.) Un-necessary new name for Blepharocera Agassiz 1846) Abonnencia Vercammen-Grandj ean 1960, Acarologia 2: 470 (tablel .-Arachn . (Acar. ) Abonn.encioides Vercammen-Grandjean 1960, Acarologia 2:470 (table) . -Arachn. (A car.) Abrancbaea Zhang 1964, Studia mar .sin. No.5: 179 .-Moll. (Gast. ) Abrina Habe 1952, Genera of Japanese shells. Pelecypoda No.3. [Tokyo] : 210 .­ Moll . (Bivalv. ) Abruptolopha Vialov 1936 , Ookl .Akad .Nauk SSSR IV (XIII) No.1 (105) : 20.­ + Mol l. (Bival v. ) Acallepitrix Bechyne 1959 , Beitr.neotrop. Fauna 1: 323 .-Ins.(Col. ) Acampomintho (err.pro Acompomintho Villeneuve 1927) Townsend 1935, Manual of Myiology 2: 253.-Ins. (Dipt.) Acanthametropus Chernova 1948, Dokl . Akad . Nauk SSSR (N.S.) 60:1 453.-Ins. (Ephem . ) Acanthocolpoides Travassos, Teixeira de Freitas & Buhrnheim 1965, Atas Soc. Biol.Rio de J . 9: 57.- Verm.( Trem . ) Acanthoepimeritus Hoshide 1959, Bull Fae. Educ.Yamaguchi Uni v. 8 (2) : 60.­ Prot . (Apic. ) Acantholabia Olsson & Harbison 1953, Pliocene Mollusca of southern Florida etc.
    [Show full text]
  • 21 May 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the Late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/151534 since 2015-12-06T13:48:07Z Published version: DOI:10.1080/14772019.2013.863231 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 29 September 2021 This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: À.H. LUJÁN; D.M. ALBA; J. FORTUNY; R. CARMONA; M. DELFINO, 2014. First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the Late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications JOURNAL OF SYSTEMATIC PALAEONTOLOGY 12(7): 833-864 DOI: 10.1080/14772019.2013.863231 The definitive version is available at: La versione definitiva è disponibile alla URL: http://www.tandfonline.com/doi/abs/10.1080/14772019.2013.863231 First cranial remains of Cheirogaster richardi (Testudines: Testudinidae) from the late Miocene of Ecoparc de Can Mata (Vallès-Penedès Basin, NE Iberian Peninsula): taxonomic and phylogenetic implications Àngel H.
    [Show full text]
  • A New Hominoid-Bearing Locality from the Late Miocene of the Valles-Penedes Basin
    Journal of Human Evolution xxx (2018) 1e11 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Can Pallars i Llobateres: A new hominoid-bearing locality from the late Miocene of the Valles-Pened es Basin (NE Iberian Peninsula) * David M. Alba a, , Isaac Casanovas-Vilar a, Marc Furio a, b, Israel García-Paredes c, a, Chiara Angelone d, a, e, Sílvia Jovells-Vaque a, Angel H. Lujan f, a, g, Sergio Almecija h, a, 1, Salvador Moya-Sol a a, i, j a Institut Catala de Paleontologia Miquel Crusafont, Universitat Autonoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Valles, Barcelona, Spain b Departament de Geologia, Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain c Departamento de Paleontología, Facultad de Ciencias Geologicas, Universidad Complutense de Madrid, c/ Jose Antonio Novais 2, 28040 Madrid, Spain d Dipartimento di Scienze, Universita Roma Tre, Largo San Leonardo Murialdo, 1, 00146, Roma, Italy e Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Xizhimen Wai Da Jie 142, Beijing 100044, China f Department of Geosciences, University of Fribourg, Chemin de Musee 6, 1700 Fribourg, Switzerland g Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 611 37, Czech Republic h Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA i Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain j Unitat d'Antropologia Biologica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autonoma de Barcelona, 08193 Cerdanyola del Valles, Barcelona, Spain article info abstract Article history: In the Iberian Peninsula, Miocene apes (Hominoidea) are generally rare and mostly restricted to the Received 27 November 2017 Valles-Pened es Basin.
    [Show full text]
  • Ashraf M.T. Elewa Migration of Organisms Climate • Geography • Ecology Ashraf M
    Ashraf M.T. Elewa Migration of Organisms Climate • Geography • Ecology Ashraf M. T. Elewa (Editor) Migration of Organisms Climate • Geography • Ecology With 67 Figures 123 Dr. Ashraf M. T. Elewa Professor Minia University Faculty of Science Geology Department Egypt E-mail: [email protected] Library of Congress Control Number: 2005927792 ISBN-10 3-540-26603-8 Springer Berlin Heidelberg New York ISBN-13 978-3-540-26603-7 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitations, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springeronline.com © Springer-Verlag Berlin Heidelberg 2005 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: Erich Kirchner Production: Luisa Tonarelli Typesetting: Camera-ready by the editor Printed on acid-free paper 30/2132/LT – 5 4 3 2 1 0 Dedication This book is dedicated to all people who Believe in One God Believe in Peace Believe in Migration in the Way of God To my father who died on Sunday, the 10th of April, 2005 Foreword P.
    [Show full text]
  • Krijgsman-Wout-141-1996-Copy.Pdf
    GEOLOGICA ULTRAIECTINA Mededelingen van de Faculteit Aardwetenschappen Universiteit Utrecht No. 141 MIOCENE MAGNETOSTRATIGRAPHY AND CYCLOSTRATIGRAPHY IN THE MEDITERRANEAN: EXTENSION OF THE ASTRONOMICAL POLARITY TIME SCALE CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG Krijgsman, Wout Miocene magnetostratigraphy and cyclostratigraphy in the Mediterranean: extension of the astronomical polarity time scale / Wout Krijgsman, - Utrecht: Faculteit Aardwetenschappen, Universiteit Utrecht. - (Geologica Ultraiectina, ISSN 0072-1026; no. 141) Proefschrift Universiteit Utrecht. - Met lit. opg. - Met samenvatting in het Nederlands. ISBN 90-71577-95-3 Trefw.: paleomagnetisme / stratigrafie MIOCENE MAGNETOSTRATIGRAPHY AND CYCLOSTRATIGRAPHY IN THE MEDITERRANEAN: EXTENSION OF THE ASTRONOMICAL POLARITY TIME SCALE MIOCENE MAGNETOSTRATIGRAFIE EN CYCLOSTRATIGRAFIE IN HET MIDDELLANDSE ZEEGEBIED: UITBREIDING VAN DE ASTRONOMISCHE POLARITEITSTIJDSCHAAL (met een samenvatting in het Nederlands) PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT UTRECHT or GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. J.A. VAN GINKEL INGEVOLGE HET BESLUIT VAN HET COLLEGE VAN DEKANEN IN HET OPENBAAR TE VERDEDIGEN or MAANDAG 13 MEl 1996 DES NAMIDDAGS TE 14.30 UUR DOOR WOUT KRIJGSMAN geboren op 25 december 1966, te Rotterdam 1996 PROMOTOR: PROF. DR. J.D.A. ZIJDERVELD CO-PROMOTORES: DR. e.G. LANGEREIS DR. F.J. HILGEN I know that we can never live those times again so I let my dreams take me back to where we've been Green on Red, 1991 Voor JooP en Nel /'l This study
    [Show full text]
  • Estimating Body Mass of Fossil Rodents
    Estimating body mass of fossil rodents Matthijs Freudenthal & Elvira Martín-Suárez Freudenthal, M. & Martín-Suárez, E. 2013. Estimating body mass of fossil rodents. Scripta Geologica, 145: 1-130, 8 appendices including one on-line, 4 tables, 5 figures. Leiden, November 2013. M. Freudenthal, Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuen- tenueva s/n, E-18071 Granada, Spain; Naturalis Biodiversity Center, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands ([email protected]). E. Martín-Suárez, Departamento de Estratigrafía y Paleontología, Universidad de Granada, Avda. Fuen- tenueva s/n, E-18071 Granada, Spain. Keywords – Rodentia, body mass. Reconstructing the body mass of a fossil animal is an essential step toward understanding its palaeoecol- ogical role. Length × width (L×W) of the first lower molar (m1) is frequently used as a proxy for body mass in fossil mammals. However, among rodents, Muroidea have no premolar and an elongated m1, whereas other groups have a premolar and a m1 that is not elongated. This leads to an overestimation of body mass in muroids and/or an underestimation in other rodents. To solve this problem we assembled data of upper and lower tooth row length and body mass in extant rodents, and calculated regression equations for all rodents, rodents with premolars, rodents without premolars and for taxonomic groups at superfamily or family level. Data for complete tooth rows in fossil rodents are scarce, so we took the sum of the lengths of the (three or four) cheek teeth as an approximation of tooth row length. We estimate body mass of the fossil rodents, using the regression equations of the extant taxa.
    [Show full text]
  • Rodentia) from South-Western Europe Since the Latest Middle Miocene to the Mio-Pliocene Boundary (MN 7/8–MN13)
    Ecomorphological characterization of murines and non-arvicoline cricetids (Rodentia) from south-western Europe since the latest Middle Miocene to the Mio-Pliocene boundary (MN 7/8–MN13) Ana R. Gomez Cano1,2, Yuri Kimura3, Fernando Blanco4, Iris Menéndez4,5, María A. Álvarez-Sierra4,5 and Manuel Hernández Fernández4,5 1 Institut Català de Paleontologia Miquel Crusafont, Universitat Autónoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain 2 Transmitting Science, Barcelona, Spain 3 Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo, Japan 4 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain 5 Departamento de Cambio Medioambiental, Instituto de Geociencias (UCM, CSIC), Madrid, Spain ABSTRACT Rodents are the most speciose group of mammals and display a great ecological diversity. Despite the greater amount of ecomorphological information compiled for extant rodent species, studies usually lack of morphological data on dentition, which has led to difficulty in directly utilizing existing ecomorphological data of extant rodents for paleoecological reconstruction because teeth are the most common or often the only micromammal fossils. Here, we infer the environmental ranges of extinct rodent genera by extracting habitat information from extant relatives and linking it to extinct taxa based on the phenogram of the cluster analysis, in which variables are derived from the principal component analysis on outline shape of the upper first molars. This phenotypic ``bracketing'' approach is particularly useful in the study of the fossil record Submitted 22 February 2017 of small mammals, which is mostly represented by isolated teeth. As a case study, Accepted 13 July 2017 we utilize extinct genera of murines and non-arvicoline cricetids, ranging from the Published 25 September 2017 Iberoccitanian latest middle Miocene to the Mio-Pliocene boundary, and compare our Corresponding author results thoroughly with previous paleoecological reconstructions inferred by different Ana R.
    [Show full text]
  • Palaeontologia Electronica Microtoid Cricetids and the Early History Of
    Palaeontologia Electronica http://palaeo-electronica.org Microtoid cricetids and the early history of arvicolids (Mammalia, Rodentia) Oldrich Fejfar, Wolf-Dieter Heinrich, Laszlo Kordos, and Lutz Christian Maul ABSTRACT In response to environmental changes in the Northern hemisphere, several lines of brachyodont-bunodont cricetid rodents evolved during the Late Miocene as “micro- toid cricetids.” Major evolutionary trends include increase in the height of cheek tooth crowns and development of prismatic molars. Derived from a possible Megacricetodon or Democricetodon ancestry, highly specialised microtoid cricetids first appeared with Microtocricetus in the Early Vallesian (MN 9) of Eurasia. Because of the morphological diversity and degree of parallelism, phylogenetic relationships are difficult to detect. The Trilophomyinae, a more aberrant cricetid side branch, apparently became extinct without descendants. Two branches of microtoid cricetids can be recognized that evolved into “true” arvicolids: (1) Pannonicola (= Ischymomys) from the Late Vallesian (MN 10) to Middle Turolian (MN 12) of Eurasia most probably gave rise to the ondatrine lineage (Dolomys and Propliomys) and possibly to Dicrostonyx, whereas (2) Microt- odon known from the Late Turolian (MN 13) and Early Ruscinian (MN 14) of Eurasia and possibly parts of North America evolved through Promimomys and Mimomys eventually to Microtus, Arvicola and other genera. The Ruscinian genus Tobienia is presumably the root of Lemmini. Under this hypothesis, in contrast to earlier views, two evolutionary sources of arvicolids would be taken into consideration. The ancestors of Pannonicola and Microtodon remain unknown, but the forerunner of Microtodon must have had a brachyodont-lophodont tooth crown pattern similar to that of Rotundomys bressanus from the Late Vallesian (MN 10) of Western Europe.
    [Show full text]
  • VIII Encuentro De Jóvenes Investigadores En Paleontología 2010
    VIII Encuentro de Jóvenes Investigadores en Paleontología 2010 Libro de resúmenes 2 CONFERENCIAS LO QUE NOS CUENTAN LOS ROEDORES Y OTRAS DIMINUTAS CRIATURAS DEL PASADO WHAT THE RODENTS AND OTHER CREATURES FROM THE PAST TELL US Gloria Cuenca-Bescós Aragosaurus-iuca, EIA-Atapuerca, Paleontología, Universidad de Zaragoza. Pedro Cerbuna, 12. 50009 Zaragoza. [email protected] RESUMEN 3 En esta comunicación se repasan las técnicas de estudio de los pequeños vertebrados a partir de la experiencia personal adquirida en Autol (La Rioja) y el trabajo en los equipos que innovaron el estudio de estos fósiles en la década de los 1970, y finalmente hasta nuestros días como responsable de la microfauna del proyecto de los yacimientos del Cuaternario de Atapuerca, desde comienzos de 1990. Por otra parte se examinan los datos que aportan los pequeños vertebrados y su aplicación en otras ciencias. Los pequeños mamíferos son una de las herramientas más útiles para correlacionar y datar relativamente los yacimientos, como los del Cuaternario con fósiles humanos. Además, por su abundancia y dependencia del medio en el que viven, son también buenos para hacer reconstrucciones paleoambientales, como ejemplo se citan los cambios climáticos detectados en Cantabria al final del Cuaternario. Palabras clave: Pequeños vertebrados, técnicas de lavado-tamizado, bioestratigrafía, paleoclimatología. ABSTRACT In this communication the techniques of study of fossil small vertebrates are reviewed from the acquired personal experience in Autol (La Rioja), and the work in the team that innovate the study of these fossils in the decade of the 1970, to nowadays, as the person in charge of the microfauna of the Quaternary localities of Atapuerca, since 1990.
    [Show full text]
  • Miocene Carnivorans from the Vallès-Penedès Basin (NE Iberian Peninsula)
    Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia Unitat d’Antropologia Biològica Miocene carnivorans from the Vallès-Penedès Basin (NE Iberian Peninsula) Josep Maria Robles Giménez Tesi Doctoral 2014 A mi padre y familia. INDEX Index .......................................................................................................................... 7 Preface and Acknowledgments [in Spanish] ....................................................... 13 I.–Introduction and Methodology ........................................................................ 19 Chapter 1. General introduction and aims of this dissertation .......................... 21 1.1. Aims and structure of this work .............................................................. 21 Motivation of this dissertation ................................................................ 21 Type of dissertation and general overview ............................................. 22 1.2. An introduction to the Carnivora ............................................................ 24 What is a carnivoran? ............................................................................. 24 Biology .................................................................................................... 25 Systematics and phylogeny ...................................................................... 28 Evolutionary history ................................................................................ 42 1.3. Carnivoran anatomy ...............................................................................
    [Show full text]