ORE Open Research Exeter TITLE Optimisation of a Multi-Gravity Separator with Novel Modifications for the Recovery of Ferberite AUTHORS Fitzpatrick, RS; Hegarty, P; Fergusson, K; et al. JOURNAL Minerals DEPOSITED IN ORE 03 May 2018 This version available at http://hdl.handle.net/10871/32700 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication minerals Article Optimisation of a Multi-Gravity Separator with Novel Modifications for the Recovery of Ferberite Robert Fitzpatrick 1,*, Patrick Hegarty 1, Keith Fergusson 1, Gavyn Rollinson 1, Weiguo Xie 1 and Treve Mildren 2 1 Camborne School of Mines, University of Exeter, Penryn Campus, Exeter TR10 9FE, UK;
[email protected] (P.H.);
[email protected] (K.F.);
[email protected] (G.R.);
[email protected] (W.X.) 2 Gravity Mining Ltd., Glencarrow, New Road, Stithians TR3 7BL, UK;
[email protected] * Correspondence:
[email protected]; Tel.: +44-(0)1326-254-141 Received: 15 February 2018; Accepted: 20 April 2018; Published: 2 May 2018 Abstract: Tungsten is considered by the European Union as a critical raw material for future development due to its expected demand and scarcity of resource within Europe. It is therefore, critical to optimize European tungsten operations and maximise recoveries. The role of enhanced gravity/centrifugal concentrators in recovering tungsten from ultra-fine fractions should form an important part of this aim.