Regulation of the Brown and White Fat Gene Programs Through a PRDM16/Ctbp Transcriptional Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of Estrogen Receptor Beta and the Isoflavone Genistein
WCP2018 OR28-3 Oral session White-to-brown adipose differentiation: role of estrogen receptor beta and the isoflavone genistein Alessandra Bitto, Federica Mannino, Natasha Irrera, Giovanni Pallio, Domenica Altavilla, Francesco Squadrito Clinical and experimental medicine, University of Messina, Italy The two types of fat cells in mammals brown and white have different functions. White adipose tissue (WAT) stores excess energy in the form of triglyceride and releases free fatty acids during caloric deficiency. Brown adipose tissue (BAT) on the other hand can dissipate energy through thermogenesis. Genistein can have an effect on energy expenditure UCP (uncoupling protein) expression and protect against the obesogenic effect of a high calorie diet. The effect of genistein in inducing white-to-brown transdifferentiation was investigated in 3T3-L1 cells differentiated into white adipocytes with a specific medium (DMEM 10% calf serum 1% penicillin/streptomycin 500 uM 3isobutyl1 methylxanthine 10ug/ml insulin 250 nM dexmethasone 8 ug/ml biotin and 4 ug/ml pantothenic acid). Fully differentiated white adipocytes were treated after 10 days with different genistein doses (10-50-100-200 uM) for 24-48h or left untreated. Two specific ER-beta and PPAR-gamma receptor inhibitors were also used to understand if genistein effects are mediated by the estrogen or the PPAR receptor. Also a CRISPR/Cas9 approach was used to delete either ER-beta or PPAR-gamma to clarify which receptor is involved in genistein action. Intracellular lipid accumulation was determined by oil-red-O staining after 24 and 48hours of treatment. The expression of UCP1 estrogen receptor alpha and beta PPARalpha and gamma DIO2 (Type II iodothyronine deiodinase) PRDM16 (PR domain containing 16) and CIDEA (cell death inducing DNA fragmentation factor) were evaluated by qPCR after 24 and 48hours of genistein treatment. -
GRIM19 Impedes Obesity by Regulating Inflammatory White Fat
cells Article GRIM19 Impedes Obesity by Regulating Inflammatory White Fat Browning and Promoting Th17/Treg Balance JooYeon Jhun 1,†, Jin Seok Woo 1,† , Seung Hoon Lee 2, Jeong-Hee Jeong 1, KyungAh Jung 3, Wonhee Hur 4, Seon-Yeong Lee 1, Jae Yoon Ryu 1, Young-Mee Moon 1, Yoon Ju Jung 5, Kyo Young Song 5, Kiyuk Chang 6, Seung Kew Yoon 4,7 , Sung-Hwan Park 1,8 and Mi-La Cho 1,8,* 1 The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] (J.J.); [email protected] (J.S.W.); [email protected] (J.-H.J.); [email protected] (S.-Y.L.); [email protected] (J.Y.R.); [email protected] (Y.-M.M.); [email protected] (S.-H.P.) 2 Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; [email protected] 3 Research Center, Impact Biotech, Seoul 137-040, Korea; [email protected] 4 The Catholic University Liver Research Center & WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] (W.H.); [email protected] (S.K.Y.) 5 Division of Gastrointestinal Surgery, Department of General Surgery, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] (Y.J.J.); [email protected] (K.Y.S.) 6 Cardiovascular Center and Cardiology Division, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-040, Korea; [email protected] 7 Department of Internal Medicine, Seoul St. -
Letters to the Editor
LETTERS TO THE EDITOR The closely related rare and severe acute myeloid leukemias carrying EVI1 or PRDM16 rearrangements share singular biological features In a recent issue of Haematologica , Matsuo et al .1 pinpoint the pejorative effect of EVI1 overexpression in 18 acute myeloid leukemias (AML) with MLL rearrangements. However, EVI1 overexpression has also been reported in patients with translocations involving chromosome 3 and the EVI1 gene. 2,3 Because of the poor prognosis associated to these anomalies, it is important to investigate them at an early stage in order to adapt patient management. Indeed, previous reports 4-6 and the 2008 WHO classification 7 indi - cate that EVI1-rearranged (EVI1-r) AML display typical fea - tures, such as absence of thrombopenia, atypical megakary - Figure 1. Algorithm for the suspicion of EVI1 and PRDM16 AMLs. ocytes and multilineage dysplasia 2-4 which can be detected by current diagnostic reference methods. In this line, we compared a cohort of 17 EVI1-r AML, aged between 8 and 79-years old (median 54 years) to 1822 other cases of AML months. diagnosed in the same laboratory over 14 years. At diagno - This study consolidates the unusual base-line character - sis, there were similar hemoglobin levels or white blood istics and clinical features of EVI1-r AML cases. Moreover, cell counts in both groups. Median platelet counts were it indicates a very low rate of MPO expression in EVI1-r 9 9 123x10 /L, higher than 100x10 /L in 53% of EVI1-r AML AML patients. It is interesting to note that relationships patients, compared to 25% in the control AML population have been reported between EVI1 expression and MPO (P=0.02). -
Characterization of the Human CIDEA Promoter in Fat Cells
International Journal of Obesity (2008) 32, 1380–1387 & 2008 Macmillan Publishers Limited All rights reserved 0307-0565/08 $32.00 www.nature.com/ijo ORIGINAL ARTICLE Characterization of the human CIDEA promoter in fat cells AT Pettersson1, J Laurencikiene1, EA Nordstro¨m1, BM Stenson1, V van Harmelen1, C Murphy2, I Dahlman1 and M Ryde´n1 1Department of Medicine, Huddinge, Lipid Laboratory, Novum, Karolinska Institutet, Stockholm, Sweden and 2Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. Background: Cell death-inducing DFFA (DNA fragmentation factor-a)-like effector A (CIDEA) is a protein that regulates lipolysis in human adipocytes through cross-talk involving tumor necrosis factor-a (TNF-a). TNF-a downregulates CIDEA mRNA although it is unclear whether this is mediated through transcriptional or post-transcriptional mechanisms. CIDEA has important metabolic effects in human fat cells and genetic variations in the human CIDEA gene have been correlated to the development of obesity. However, little is known about the factors regulating CIDEA expression in human adipocytes. We set out to describe the transcriptional control of human CIDEA. Methods: A 1.1-kb genomic fragment upstream of the transcriptional start site (TSS) of human CIDEA was cloned and deletion fragments were generated. Transcriptional activity of the promoter was analyzed by luciferase reporter assays in in vitro- differentiated human adipocytes. The effect of TNF-a was assessed in human adipocytes and murine 3T3-L1 cells transfected with deletion fragments of the CIDEA promoter. Protein–DNA interactions were analyzed by electrophoretic mobility shift assays (EMSA). Results: Basal transcriptional activity was found in a 97-bp region upstream of the TSS. -
Anti-CIDE a Antibody [V62P1E3*B10] (ARG10830)
Product datasheet [email protected] ARG10830 Package: 100 μg anti-CIDE A antibody [V62P1E3*B10] Store at: -20°C Summary Product Description Mouse Monoclonal antibody recognizes CIDE A Tested Reactivity Hu Tested Application IHC-P, WB Host Mouse Clonality Monoclonal Clone V62P1E3*B10 Isotype IgG1, kappa Target Name CIDE A Antigen Species Human Immunogen Ovalbumin-conjugated synthetic peptide. (QAKGRFTCG) Conjugation Un-conjugated Alternate Names CIDE-A; Cell death-inducing DFFA-like effector A; Cell death activator CIDE-A Application Instructions Application table Application Dilution IHC-P Assay-dependent WB Assay-dependent Application Note Antigen Retrieval: Boil tissue section for 10 - 20 min at 800 - 950W microwave with 10 mM Citrate buffer or Sodium citrate buffer (pH 6.0). * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 25 kDa Properties Form Liquid Purification Affinity purification with immunogen. Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation www.arigobio.com 1/3 Gene Symbol CIDEA Gene Full Name cell death-inducing DFFA-like effector a Background This gene encodes the homolog of the mouse protein Cidea that has been shown to activate apoptosis. This activation of apoptosis is inhibited by the DNA fragmentation factor DFF45 but not by caspase inhibitors. -
ETV6 Mutations in Early Immature Human T Cell Leukemias
Published December 12, 2011 Brief Definitive Report ETV6 mutations in early immature human T cell leukemias Pieter Van Vlierberghe,1 Alberto Ambesi-Impiombato,1 Arianne Perez-Garcia,1 J. Erika Haydu,1 Isaura Rigo,1 Michael Hadler,1 Valeria Tosello,1 Giusy Della Gatta,1 Elisabeth Paietta,4 Janis Racevskis,4 Peter H. Wiernik,4 Selina M. Luger,5 Jacob M. Rowe,6 Montserrat Rue,7 and Adolfo A. Ferrando1,2,3 1Institute for Cancer Genetics, 2Department of Pediatrics, and 3Department of Pathology, Columbia University Medical Center, New York, NY 10032 4Montefiore Medical Center North, Bronx, New York, NY 10467 5Hematologic Malignancies and Stem Cell Transplant Program, Hematology-Oncology Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104 6 Rambam Medical Center, Haifa 31096, Israel Downloaded from 7Department of Basic Medical Sciences, University of Lleida, Lleida 25003, Spain Early immature T cell acute lymphoblastic leukemias (T-ALLs) account for 5–10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. In this study, analysis of micro- array gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid jem.rupress.org leukemias. Many adult immature T-ALLs harbored mutations in myeloid-specific oncogenes and tumor suppressors including IDH1, IDH2, DNMT3A, FLT3, and NRAS. Moreover, we identifiedETV6 mutations as a novel genetic lesion uniquely present in immature adult T-ALL. Our results demonstrate that early immature adult T-ALL represents a heterogeneous category of leukemias characterized by the presence of overlapping myeloid and T-ALL on May 30, 2015 characteristics, and highlight the potential role of ETV6 mutations in these tumors. -
The Suppressive Effects of 1,25-Dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2014 The Suppressive Effects of 1,25-dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration Carolyn Jeanne Ricciardi University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Molecular, Genetic, and Biochemical Nutrition Commons Recommended Citation Ricciardi, Carolyn Jeanne, "The Suppressive Effects of 1,25-dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration. " Master's Thesis, University of Tennessee, 2014. https://trace.tennessee.edu/utk_gradthes/2876 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carolyn Jeanne Ricciardi entitled "The Suppressive Effects of 1,25-dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Nutrition. -
Single Cell Regulatory Landscape of the Mouse Kidney Highlights Cellular Differentiation Programs and Disease Targets
ARTICLE https://doi.org/10.1038/s41467-021-22266-1 OPEN Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets Zhen Miao 1,2,3,8, Michael S. Balzer 1,2,8, Ziyuan Ma 1,2,8, Hongbo Liu1,2, Junnan Wu 1,2, Rojesh Shrestha 1,2, Tamas Aranyi1,2, Amy Kwan4, Ayano Kondo 4, Marco Pontoglio 5, Junhyong Kim6, ✉ Mingyao Li 7, Klaus H. Kaestner2,4 & Katalin Susztak 1,2,4 1234567890():,; Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene- regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development. 1 Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. 2 Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. -
The Genetics of Bipolar Disorder
Molecular Psychiatry (2008) 13, 742–771 & 2008 Nature Publishing Group All rights reserved 1359-4184/08 $30.00 www.nature.com/mp FEATURE REVIEW The genetics of bipolar disorder: genome ‘hot regions,’ genes, new potential candidates and future directions A Serretti and L Mandelli Institute of Psychiatry, University of Bologna, Bologna, Italy Bipolar disorder (BP) is a complex disorder caused by a number of liability genes interacting with the environment. In recent years, a large number of linkage and association studies have been conducted producing an extremely large number of findings often not replicated or partially replicated. Further, results from linkage and association studies are not always easily comparable. Unfortunately, at present a comprehensive coverage of available evidence is still lacking. In the present paper, we summarized results obtained from both linkage and association studies in BP. Further, we indicated new potential interesting genes, located in genome ‘hot regions’ for BP and being expressed in the brain. We reviewed published studies on the subject till December 2007. We precisely localized regions where positive linkage has been found, by the NCBI Map viewer (http://www.ncbi.nlm.nih.gov/mapview/); further, we identified genes located in interesting areas and expressed in the brain, by the Entrez gene, Unigene databases (http://www.ncbi.nlm.nih.gov/entrez/) and Human Protein Reference Database (http://www.hprd.org); these genes could be of interest in future investigations. The review of association studies gave interesting results, as a number of genes seem to be definitively involved in BP, such as SLC6A4, TPH2, DRD4, SLC6A3, DAOA, DTNBP1, NRG1, DISC1 and BDNF. -
The Brown Adipocyte Protein CIDEA Promotes Lipid Droplet Fusion
1 The brown adipocyte protein CIDEA promotes lipid droplet 2 fusion via a phosphatidic acid-binding amphipathic helix 3 David Barneda1, Joan Planas-Iglesias2, Maria L. Gaspar3, Dariush Mohammadyani4, 4 Sunil Prasannan2, Dirk Dormann5, Gil-Soo Han5, Stephen A. Jesch3, George M. 5 Carman6, Valerian Kagan4, Malcolm G. Parker1, Nicholas T. Ktistakis7, Judith Klein- 6 Seetharaman2, 4, Ann M. Dixon8, Susan A. Henry3, Mark Christian1,2*. 7 1 Institute of Reproductive and Developmental Biology, Imperial College London, London W12 ONN, 8 UK 9 2 Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK. 10 3 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA. 11 4 Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA. 12 5 Microscopy Facility, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK 13 6 Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, 14 New Jersey 08901, USA. 15 7 Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK. 16 8 Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. 17 18 19 *Corresponding author. 20 E-mail: [email protected] 21 Phone number: 44 2476 96 8585 1 22 23 Summary 24 Maintenance of energy homeostasis depends on the highly regulated storage and 25 release of triacylglycerol primarily in adipose tissue and excessive storage is a feature of 26 common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown 27 adipocytes promoting the enlargement of LDs which are dynamic, ubiquitous organelles 28 specialized for storing neutral lipids. -
Downregulation of Prdm16 Is Critical for HOXB4-Mediated Benign HSC Expansion in Vivo Hui Yu University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2014 Downregulation of Prdm16 Is Critical for HOXB4-mediated Benign HSC Expansion In Vivo Hui Yu University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Genetics Commons, and the Medical Molecular Biology Commons Recommended Citation Yu, Hui , "Downregulation of Prdm16 Is Critical for HOXB4-mediated Benign HSC Expansion In Vivo" (2014). Theses and Dissertations (ETD). Paper 307. http://dx.doi.org/10.21007/etd.cghs.2014.0367. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Downregulation of Prdm16 Is Critical for HOXB4-mediated Benign HSC Expansion In Vivo Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biochemistry Track Therapeutics and Cell Signaling Research Advisor Brian P. Sorrentino, MD Committee Suzanne J. Baker, PhD Wing H. Leung, MD, PhD Janet F. Partridge, PhD Lawrence M. Pfeffer, PhD DOI 10.21007/etd.cghs.2014.0367 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/307 DOWNREGULATION OF PRDM16 IS CRITICAL FOR HOXB4-MEDIATED BENIGN HSC EXPANSION IN VIVO A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Hui Yu December 2014 Copyright © 2014 by Hui Yu All rights reserved ii DEDICATION This dissertation is dedicated to my parents, Guoquan Yu and Yan Xu, my husband, Satish Kumar Nandakumar and my precious daughter Emma Satish for all their love and support. -
An Important Region in Coronary Artery Disease: a Panel Approach to Investigation of the Coronary Artery Disease Etiology
Int J Cardiovasc Pract Review Article April 2019, Volume 4, Issue 2 (21-35) 9P21.3 locus; An Important Region in Coronary Artery Disease: A Panel Approach to Investigation of the Coronary Artery Disease Etiology Soodeh Omidi 1, Fatemeh Ebrahimzadeh 2, Samira Kalayinia 3,* 1 Department of Genetic, Faculty of Advanced Medical Technologies, Golestan University of Medical Science (GUMS), Gorgan, Iran 2 Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran 3 Cardiogenetics Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran * Corresponding author: Samira Kalayinia, Ph.D. Cardiogenetics Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical DOI: 10.29252/ijcp-25001 Sciences, Tehran, Iran. Tel: +98-2123923033, Fax: +98-2122663213, E-mail: [email protected] Submitted: 07-04-2019 Abstract Accepted: 06-05-2019 Coronary artery disease (CAD) is a disease of major concern worldwide. It is the main Keywords: cause of mortality in many societies and improving the understanding about the CAD Etiology mechanism, progression and treatment, is necessary. Recent discovery of genetic factors Heart Disease underlying CAD has improved our knowledge of the disease in support of well-known Genome Wide Association traditional risk factors. Genotype-environment interaction is known as the main risk Study factor. Loci on many different chromosomes have been identified as a risk factors that © 2019. International Journal increase CAD susceptibility. Here we performed a comprehensive literature review of Cardiovascular Practice. pinpointing hotspot loci involved in CAD pathogenicity. The 9p21.3 locus is the most common region associated with CAD and its specific structure and function have been remarkable in many studies.