Increased Ifi202b/IFI16 Expression Stimulates Adipogenesis in Mice and Humans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activated Peripheral-Blood-Derived Mononuclear Cells
Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays. -
Role of Estrogen Receptor Beta and the Isoflavone Genistein
WCP2018 OR28-3 Oral session White-to-brown adipose differentiation: role of estrogen receptor beta and the isoflavone genistein Alessandra Bitto, Federica Mannino, Natasha Irrera, Giovanni Pallio, Domenica Altavilla, Francesco Squadrito Clinical and experimental medicine, University of Messina, Italy The two types of fat cells in mammals brown and white have different functions. White adipose tissue (WAT) stores excess energy in the form of triglyceride and releases free fatty acids during caloric deficiency. Brown adipose tissue (BAT) on the other hand can dissipate energy through thermogenesis. Genistein can have an effect on energy expenditure UCP (uncoupling protein) expression and protect against the obesogenic effect of a high calorie diet. The effect of genistein in inducing white-to-brown transdifferentiation was investigated in 3T3-L1 cells differentiated into white adipocytes with a specific medium (DMEM 10% calf serum 1% penicillin/streptomycin 500 uM 3isobutyl1 methylxanthine 10ug/ml insulin 250 nM dexmethasone 8 ug/ml biotin and 4 ug/ml pantothenic acid). Fully differentiated white adipocytes were treated after 10 days with different genistein doses (10-50-100-200 uM) for 24-48h or left untreated. Two specific ER-beta and PPAR-gamma receptor inhibitors were also used to understand if genistein effects are mediated by the estrogen or the PPAR receptor. Also a CRISPR/Cas9 approach was used to delete either ER-beta or PPAR-gamma to clarify which receptor is involved in genistein action. Intracellular lipid accumulation was determined by oil-red-O staining after 24 and 48hours of treatment. The expression of UCP1 estrogen receptor alpha and beta PPARalpha and gamma DIO2 (Type II iodothyronine deiodinase) PRDM16 (PR domain containing 16) and CIDEA (cell death inducing DNA fragmentation factor) were evaluated by qPCR after 24 and 48hours of genistein treatment. -
Letters to the Editor
LETTERS TO THE EDITOR The closely related rare and severe acute myeloid leukemias carrying EVI1 or PRDM16 rearrangements share singular biological features In a recent issue of Haematologica , Matsuo et al .1 pinpoint the pejorative effect of EVI1 overexpression in 18 acute myeloid leukemias (AML) with MLL rearrangements. However, EVI1 overexpression has also been reported in patients with translocations involving chromosome 3 and the EVI1 gene. 2,3 Because of the poor prognosis associated to these anomalies, it is important to investigate them at an early stage in order to adapt patient management. Indeed, previous reports 4-6 and the 2008 WHO classification 7 indi - cate that EVI1-rearranged (EVI1-r) AML display typical fea - tures, such as absence of thrombopenia, atypical megakary - Figure 1. Algorithm for the suspicion of EVI1 and PRDM16 AMLs. ocytes and multilineage dysplasia 2-4 which can be detected by current diagnostic reference methods. In this line, we compared a cohort of 17 EVI1-r AML, aged between 8 and 79-years old (median 54 years) to 1822 other cases of AML months. diagnosed in the same laboratory over 14 years. At diagno - This study consolidates the unusual base-line character - sis, there were similar hemoglobin levels or white blood istics and clinical features of EVI1-r AML cases. Moreover, cell counts in both groups. Median platelet counts were it indicates a very low rate of MPO expression in EVI1-r 9 9 123x10 /L, higher than 100x10 /L in 53% of EVI1-r AML AML patients. It is interesting to note that relationships patients, compared to 25% in the control AML population have been reported between EVI1 expression and MPO (P=0.02). -
To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptGenes Dis Author Manuscript. Author manuscript; Author Manuscript available in PMC 2015 March 24. Published in final edited form as: Genes Dis. 2015 March ; 2(1): 46–56. doi:10.1016/j.gendis.2014.10.003. The roles of interferon-inducible p200 family members IFI16 and p204 in innate immune responses, cell differentiation and proliferation Hua Zhaoa,b, Elena Gonzalezgugela, Lei Chengb, Brendon Richbourgha, Lin Nieb,*, and Chuanju Liua,c aDepartment of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, United States bDepartment of Spine Surgery, Qilu Hospital of Shandong University, Jinan, 250014, China cDepartment of Cell Biology, New York University School of Medicine, New York, NY 10016, United States Abstract p204 is a member of the interferon-inducible p200 family proteins in mice. The p200 family has been reported to be multifunctional regulators of cell proliferation, differentiation, apoptosis and senescence. Interferon-inducible protein 16 (IFI16) is regarded as the human ortholog of p204 in several studies. This is possibly due to the similarity of their structures. However the consistency of their functions is still elusive. Currently, an emerging focus has been placed upon the role of the p200 proteins as sensors for microbial DNA in innate immune responses and provides new insights into infections as well as autoimmune diseases. This review specially focuses on IFI16 and p204, the member of p200 family in human and murine respectively, and their pathophysiological roles in innate immune responses, cell differentiation and proliferation. Keywords DNA sensor; IFI16; Innate immune; response; Multifunctional; regulator; p204 Introduction p204 is a multifunctional interferon-inducible murine protein in the p200 family (also known as PYHIN or HIN-200 proteins). -
Ten Commandments for a Good Scientist
Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre. -
ETV6 Mutations in Early Immature Human T Cell Leukemias
Published December 12, 2011 Brief Definitive Report ETV6 mutations in early immature human T cell leukemias Pieter Van Vlierberghe,1 Alberto Ambesi-Impiombato,1 Arianne Perez-Garcia,1 J. Erika Haydu,1 Isaura Rigo,1 Michael Hadler,1 Valeria Tosello,1 Giusy Della Gatta,1 Elisabeth Paietta,4 Janis Racevskis,4 Peter H. Wiernik,4 Selina M. Luger,5 Jacob M. Rowe,6 Montserrat Rue,7 and Adolfo A. Ferrando1,2,3 1Institute for Cancer Genetics, 2Department of Pediatrics, and 3Department of Pathology, Columbia University Medical Center, New York, NY 10032 4Montefiore Medical Center North, Bronx, New York, NY 10467 5Hematologic Malignancies and Stem Cell Transplant Program, Hematology-Oncology Division, University of Pennsylvania Medical Center, Philadelphia, PA 19104 6 Rambam Medical Center, Haifa 31096, Israel Downloaded from 7Department of Basic Medical Sciences, University of Lleida, Lleida 25003, Spain Early immature T cell acute lymphoblastic leukemias (T-ALLs) account for 5–10% of pediatric T-ALLs and are associated with poor prognosis. However, the genetic defects that drive the biology of these tumors remain largely unknown. In this study, analysis of micro- array gene expression signatures in adult T-ALL demonstrated a high prevalence of early immature leukemias and revealed a close relationship between these tumors and myeloid jem.rupress.org leukemias. Many adult immature T-ALLs harbored mutations in myeloid-specific oncogenes and tumor suppressors including IDH1, IDH2, DNMT3A, FLT3, and NRAS. Moreover, we identifiedETV6 mutations as a novel genetic lesion uniquely present in immature adult T-ALL. Our results demonstrate that early immature adult T-ALL represents a heterogeneous category of leukemias characterized by the presence of overlapping myeloid and T-ALL on May 30, 2015 characteristics, and highlight the potential role of ETV6 mutations in these tumors. -
The Suppressive Effects of 1,25-Dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2014 The Suppressive Effects of 1,25-dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration Carolyn Jeanne Ricciardi University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Molecular, Genetic, and Biochemical Nutrition Commons Recommended Citation Ricciardi, Carolyn Jeanne, "The Suppressive Effects of 1,25-dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration. " Master's Thesis, University of Tennessee, 2014. https://trace.tennessee.edu/utk_gradthes/2876 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carolyn Jeanne Ricciardi entitled "The Suppressive Effects of 1,25-dihydroxyvitamin D3 and Vitamin D Receptor on Brown Adipocyte Differentiation and Mitochondrial Respiration." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Nutrition. -
Single Cell Regulatory Landscape of the Mouse Kidney Highlights Cellular Differentiation Programs and Disease Targets
ARTICLE https://doi.org/10.1038/s41467-021-22266-1 OPEN Single cell regulatory landscape of the mouse kidney highlights cellular differentiation programs and disease targets Zhen Miao 1,2,3,8, Michael S. Balzer 1,2,8, Ziyuan Ma 1,2,8, Hongbo Liu1,2, Junnan Wu 1,2, Rojesh Shrestha 1,2, Tamas Aranyi1,2, Amy Kwan4, Ayano Kondo 4, Marco Pontoglio 5, Junhyong Kim6, ✉ Mingyao Li 7, Klaus H. Kaestner2,4 & Katalin Susztak 1,2,4 1234567890():,; Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene- regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development. 1 Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. 2 Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA. -
IFI16 and Cgas Cooperate in the Activation of STING During DNA Sensing in Human Keratinocytes
ARTICLE Received 15 Dec 2015 | Accepted 22 Dec 2016 | Published 13 Feb 2017 DOI: 10.1038/ncomms14392 OPEN IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes Jessica F. Almine1,2,*, Craig A.J. O’Hare1,2,*, Gillian Dunphy1,2, Ismar R. Haga3, Rangeetha J. Naik1, Abdelmadjid Atrih4, Dympna J. Connolly5, Jordan Taylor1, Ian R. Kelsall1, Andrew G. Bowie5, Philippa M. Beard3,6 & Leonie Unterholzner1,2 Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-g inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response. 1 Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. 2 Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK. 3 The Pirbright Institute, Pirbright, Surrey GU24 0NF, UK. 4 Fingerprints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. -
A Pathologic Link Between Wilms Tumor Suppressor Gene, WT1, And
Volume 10 Number 1 January 2008 pp. 69–78 69 www.neoplasia.com RESEARCH ARTICLE † Marianne K.-H. Kim*, Jacqueline M. Mason , A Pathologic Link between Wilms ‡ § Chi-Ming Li , Windy Berkofsky-Fessler , ∥ WT1 Le Jiang , Divaker Choubey¶, Paul E. Grundy#, Tumor Suppressor Gene, , ∥ and IFI161,2 Benjamin Tycko and Jonathan D. Licht* *Division of Hematology/Oncology, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; †The Campbell Family Institute for Breast Cancer Research at the Ontario, Cancer Institute, Ontario, Canada; ‡Translational Medicine, Amgen, Thousand Oaks, CA, USA; §Section of Bioinformatics, Genetics and Genomics, Hoffmann-La Roche Inc, Nutley, NJ, USA; ∥Institute for Cancer Genetics and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA; ¶University of Cincinnati, Cincinnati, OH, USA; #University of Alberta, Alberta, Canada Abstract The Wilms tumor gene (WT1) is mutated or deleted in patients with heredofamilial syndromes associated with the development of Wilms tumors, but is infrequently mutated in sporadic Wilms tumors. By comparing the micro- array profiles of syndromic versus sporadic Wilms tumors and WT1-inducible Saos-2 osteosarcoma cells, we iden- tified interferon-inducible protein 16 (IFI16), a transcriptional modulator, as a differentially expressed gene and a candidate WT1 target gene. WT1 induction in Saos-2 osteosarcoma cells led to strong induction of IFI16 expression and its promoter activity was responsive to the WT1 protein. Immunohistochemical analysis showed that IFI16 and WT1 colocalized in WT1-replete Wilms tumors, but not in normal human midgestation fetal kidneys, suggesting that the ability of WT1 to regulate IFI16 in tumors represented an aberrant pathologic relationship. -
Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in