Hep-Ex/0501010
Total Page:16
File Type:pdf, Size:1020Kb
CUORE: A CRYOGENIC UNDERGROUND OBSERVATORY FOR RARE EVENTS 29th October 2018 Dipartimento di Fisica dell’Università di Milano-Bicocca e Sezione di Milano dell’INFN,Milano I-20126, Italy Dipartimento di Ingegneria Strutturale del Politecnico di Milano, Milano I-20133, Italy Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208 USA Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L’Aquila), Italy Dipartimento di Fisica dell’Università di Firenze e Sezione di Firenze dell’INFN, Firenze I-50125, Italy Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Lawrence Livermore National Laboratory, Livermore, California, 94551, USA Laboratorio de Fisica Nuclear y Altas Energias, Universidad de Zaragoza, 50009 Zaragoza, Spain arXiv:hep-ex/0501010v1 6 Jan 2005 Kamerling Onnes Laboratory, Leiden University, 2300 RAQ, Leiden, The Netherlands Dipartimento di Scienze Chimiche, Fisiche e Matematiche dell’Università dell’Insubria e Sezione di Milano dell’INFN, Como I-22100, Italy Dipartimento di Fisica dell’Università di Genova e Sezione di Genova dell’INFN, Genova I-16146, Italy University of California, Berkeley, California 94720 USA Laboratori Nazionali di Legnaro, 1 2 I-35020 Legnaro (Padova), Italy Dipartimento di Fisica dell’Università di Roma e Sezione di Roma 1 dell’INFN, Roma I-16146, Italy ( The CUORE Collaboration ) Professor Ettore Fiorini, Università di Milano Bicocca, Spokesman. 3 SCIENTIFIC PERSONAL MEMBERS OF THE CUORE COLLABORATION R. Ardito1,2, C. Arnaboldi1, D. R. Artusa3, F. T. Avignone III3, M. Balata4, I. Bandac3, M. Barucci5, J.W. Beeman6, F. Bellini14, C. Brofferio1, C. Bucci4, S. Capelli1, F. Capozzi1, L. Carbone1, S. Cebrian7, C. Cosmelli14, O. Cremonesi1, R. J. Creswick3, I. Dafinei14, A. de Waard8, M. Diemoz14, M. Dolinski6,11, H. A. Farach3, F. Ferroni14, E. Fiorini1, G. Frossati8, C. Gargiulo14, E. Guardincerri10, A. Giuliani9, P. Gorla7, T.D. Gutierrez6, E. E. Haller6,11, I. G. Irastorza7, E. Longo14, G. Maier2, R. Maruyama6,11, S. Morganti14, S. Nisi4, E. B. Norman13, A. Nucciotti1, E. Olivieri5, P. Ottonello10, M. Pallavicini10, V. Palmieri12, E. Pasca5, M. Pavan1, M. Pedretti9, G. Pessina1, S. Pirro1, E. Previtali1, B. Quiter6,11, L. Risegari5, C. Rosenfeld3, S. Sangiorgio9, M. Sisti1, A. R. Smith6, S. Toffanin12, L. Torres1, G. Ventura5, N. Xu6, and L. Zanotti1 1. Dipartimento di Fisica dell’Università di Milano-Bicocca e Sezione di Milano dell’INFN, Milano I-20126, Italy 2. Dipartimento di Ingegneria Strutturale del Politecnico di Milano, Milano I-20133, Italy 3. Dept.of Physics and Astronomy, University of South Carolina, Columbia, South Carolina, USA 29208 4. Laboratori Nazionali del Gran Sasso, I-67010, Assergi (L’Aquila), Italy 5. Dipartimento di Fisica dell’Università di Firenze e Sezione di Firenze dell’INFN, Firenze I-50125, Italy 6. Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA 7. Laboratorio de Fisica Nuclear y Altas Energias, Universidàd de Zaragoza, 50009 Zaragoza, Spain 8. Kamerling Onnes Laboratory, Leiden University, 2300 RAQ, Leiden, The Nether- lands 9. Dipartimento di Fisica e Matematica dell’Università dell’Insubria e Sezione di Milano dell’INFN, Como I-22100, Italy 10. Dipartimento di Fisica dell’Università di Genova e Sezione di Genova dell’INFN, Genova I-16146, Italy 4 11. University of California, Berkeley, California 94720, USA 12. Laboratori Nazionali di Legnaro, I-35020 Legnaro ( Padova ), Italy 13. Lawrence Livermore National Laboratory, Livermore, California, 94550, USA 14. Dipartimento di Fisica dell’Università di Roma e Sezione di Roma 1 dell’INFN, Roma I-16146, Italy CONTENTS 1 Contents 1 Executive summary 10 2 CUORE Science Motivation 12 2.1 Theoretical Motivation of Neutrinoless Double-Beta Decay Experiments 12 2.2 NeutrinoMixingMatrix . 13 2.3 NeutrinolessDouble-BetaDecay . 13 2.4 ExperimentalProspects . 15 3 Status of Neutrinoless Double-Beta Decay Experiments 19 3.1 MainstrategiesforDoubleBetaDecaysearches . ..... 21 3.2 Overview of main experiments and synopsis of results . ....... 24 3.3 Thermaldetectorapproachtodoublebetadecay . ..... 27 3.4 Nextgenerationexperiments . 28 4 CUORE experimental prospects 31 4.1 Doublebetadecayprospects . 33 4.2 OtherphysicswithCUORE. 35 4.2.1 WIMPdetection ......................... 35 4.2.2 Solaraxiondetection . 40 4.2.3 Searchesforotherrareprocesses. 43 5 Principles of operation of TeO2 bolometers 47 5.1 Basicprinciplesofthermalparticledetectors . ........ 47 5.2 Semiconductorthermistors . 49 5.3 Detectoroperation ............................ 50 5.4 Bolometerapplications . 51 5.5 Detectormodel .............................. 53 6 PreviousresultsofMiDBDandCUORICINO 59 6.1 LNGScryogenicsetups. 59 6.2 MiDBDexperiment............................ 60 6.3 CUORICINOexperiment. 70 6.3.1 CUORICINObackgroundmeasurements . 72 6.3.2 CUORICINObackgroundanalysis. 72 6.3.3 AnalysisoftheCUORICINObackgroundabove3MeV . 80 6.3.4 Preliminary measurements of the Copper surface contaminations 83 6.3.5 CUORICINOvs.CUORE . 84 CONTENTS 2 7 CUORE project 85 7.1 SingleCUOREdetector. 86 7.2 TheNTDthermistors ........................... 89 7.3 ModularstructureoftheCUOREdetector . .. 94 7.4 Location.................................. 97 8 Cryogenic system 99 8.1 DevelopmentofaPulse-Tube-assistedcryostat . ...... 101 8.2 Shieldingrequirements . 102 9 Required laboratory 104 9.1 Coolingwaterrequirements. 106 9.2 Powerrequirements.. .. .. .. .. .. .. .. 106 9.3 Safety ................................... 106 9.4 Spacerequirement ............................ 106 10 Electronics 107 10.1 GeneralDescription. 107 10.2 Thermistorbiasinganddetectorwiring . ..... 108 10.3 PreamplifierandColdbufferstage . 110 10.4 Programmablegainamplifier . 112 10.5 Antialiasingfilterandanalogtrigger . ..... 112 10.6 CalibratingPulseGeneratorSystem . 112 10.7 VoltageSupplysystem . 113 10.8 Digitalcontrol............................... 113 10.9 EMIShielding............................... 114 10.10Noiseconsiderations . 114 11 Data acquisition system (DAQ) 116 11.1 Requirements ............................... 116 11.2 Generalarchitecture. 117 11.3 Readoutboard............................... 119 11.4 ComputingsystemandDAQlayout . 121 11.5 Slowcontrol................................ 121 12 Construction procedures 123 12.1 MaterialSelection. 123 12.1.1 Materialsforcrystalgrowth . 123 12.1.2 Materialsforthedetectorstructure . 124 12.1.3 Shieldingmaterials . 126 12.1.4 Othercomponentsoftheexperimentalsetup . 126 CONTENTS 3 12.2 Constructionenvironment. 126 12.3 Low background technology transfer to the crystal growthcompany . 128 12.4 CUOREassemblyprocedure . 129 12.5 Work breakdown and construction schedule for the CUORE detector . 133 12.6 GeneraltimescheduleoftheCUOREproject . 133 13 Off-line analysis 136 13.1 First-levelanalysis . 136 13.2 Second-levelanalysis . 139 14 Simulation and predicted performances 140 14.1 Backgroundsimulations . 140 14.2 Bulkcontaminations . 142 14.3 Surfacecontaminations . 143 14.4 Cosmogeniccontribution . 147 14.5 Underground neutron, µ and γ interactions. 151 14.6 Twoneutrinosdoublebetadecaybackground . 154 15 Innovations in the CUORE structure 155 15.1 Innovationinthesinglemodule. 155 15.1.1 Optimizationofthethermistorsensitivity . ..... 155 15.1.2 Innovative thermal couplings in detector construction. 156 15.1.3 Modificationofthebasiccrystalsize. 156 15.2 Possible insertion in CUORE of crystals containing compounds of other nuclear candidates for ββ(0ν) ......................157 15.3 Development of surface sensitive TeO2 elements. 159 15.4 Development of scintillating TeO2 bolometers . 163 16 Cleaning of CUORE structure: crystals, frames and ancillaries 165 16.1 Surfacecleaningtechniques . 165 16.2 Conclusions................................ 180 17 Enrichment option 182 18 Structure of the collaboration 183 19 Cost statement 185 20 Conclusions 188 LIST OF FIGURES 4 List of Figures 1 Normal and inverted mass hierarchies schemes. Quasi-degenerate hier- archy corresponds to the case m1 >> δmAT >>δmS.......... 14 2 Exclusion projected for 1 year of CUORE assuming a threshold of 10 keV, a low energy resolution of 1 keV, and low energy background lev- els of 0.05 and 0.01 c/keV/kg/day respectively. The dashed line corre- spondstotheMiDBDresult. 37 3 The solid lines represent the sensitivity plot in the (m, σ) plane for CUORE, assuming a threshold of 10 keV, two years of exposure (1500 kg year) and flat backgrounds of 0.05 and 0.01 c/keV/kg/day. It has been calculated for δ2 = 5.6 (see the text). The sensitivity curve has been also calculatedh fori a possible threshold of 5 keV with a background of 0.01c/keV/kg/day(dashedline). 39 4 Best bound attainable with CUORE (straight line labelled "CUORE") comparedwithotherslimits. 42 5 Simplified model of a thermal detector (a) and schematic read-out of a resistivethermometer(b) . 48 6 TypicalloadcurveforathermistoratT=8mK)(a)andresistance-power curves for a thermistor at different base temperatures (b). ........ 50 7 left panel: evaluation of the optimum point of a bolometer; right panel: evaluation of operation point which maximizes the signal/noiseratio.. 52 8 Networkrepresentingthedetectormodel. .. 54 9 Detector Merit Curve: simulation (solid curve) and experimental points forthe20detectorarray. 56 10 Real pulses (full line) and simulated pulses (line+points)......... 56 11 SchemeoftheMiDBDdetectors.. 60 12 AnU+Thcalibration,sumspectrumofthe20detectors . ..... 61 13 Distribution of the single MiDBD detector energy resolutions (FWHM) on the