Neutrino Physics @Berkeley

Total Page:16

File Type:pdf, Size:1020Kb

Neutrino Physics @Berkeley Neutrino Physics @Berkeley Alan Poon Group Leader, Neutrino Astrophysics Group http://neutrino.lbl.gov Neutrinos • Following the ATLAS (LHC) talk… Gino the Neutrino Professor Proton is the weakly interacting neutrino. The Berkeley Neutrino Puzzle Look for green bold-faced hints in this talk! Answer key at http://neutrino.lbl.gov/crossword Neutrino Physics @Berkeley • In the past decade, LBNL’s Nuclear Science and Physics Divisions played leadership roles in KamLAND and Sudbury Neutrino Observatory (SNO), which demonstrated non-zero neutrino mass and neutrino oscillations. • In the past few years, the Daya Bay reactor neutrino experiment measured the unknown mixing angle �13. [more later] Neutrino Physics @Berkeley • In the past decade, LBNL’s Nuclear Science and Physics Divisions played leadership roles in KamLAND and Sudbury Neutrino Observatory (SNO), which demonstrated non-zero neutrino mass and neutrino oscillations. • In the past few years, the Daya Bay reactor neutrino experiment measured the unknown mixing angle �13. [more later] SNO Daya Bay KamLAND Neutrino Physics @Berkeley • In the past decade, LBNL’s Nuclear Science and Physics Divisions played leadership roles in KamLAND and Sudbury Neutrino Observatory (SNO), which demonstrated non-zero neutrino mass and neutrino oscillations. • In the past few years, the Daya Bay reactor neutrino experiment measured the unknown mixing angle �13. • In 2015: – 1 Nobel Prize (SNO) – 3 Breakthrough Prizes (Daya Bay, KamLAND, SNO) SNO Daya Bay KamLAND Neutrino Physics @Berkeley • In the coming decade, we will try to answer the following fundamental questions concerning the neutrinos: – lepton number violation – CP violation in the neutrino sector – neutrino mass hierarchy – absolutely mass scale of the neutrinos – Dirac and/or Majorana nature of the neutrinos Graphics from Symmetry Magazine Neutrino mixing • A weak eigenstate ν α is a linear combination of mass eigenstates ν i : | 3 | ν = U ν | α αi| i i=1 where U = Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Ue1 Ue2 Ue3 ⎛ ⎞ U = Uµ1 Uµ2 Uµ3 ⎝ Uτ1 Uτ2 Uτ3 ⎠ 10 0 = ⎛ 0cosθ sin θ ⎞ 23 23 Atmospheric θ23 ~ 45° ⎝ 0 − sin θ23 cos θ23 ⎠ cos θ12 sin θ12 0 ⎛ − ⎞ × sin θ12 cos θ12 0 Solar θ12 ~ 34° ⎝ 001⎠ −iδCP cos θ13 0 e sin θ13 × ⎛ 010⎞ Reactor θ13 ~ 9° iδCP ⎝ −e sin θ13 0cosθ13 ⎠ You can measure the mixing angles with different sources Neutrino mixing If is on the Big Bang Theory, it must be important The discovery of neutrino oscillation (hence neutrino mass) provides the first direct evidence of physics beyond the Standard Model of Particle Physics. Neutrino mass questions Measuring the “mass” Determining the hierarchy [mi] mass 3 3 2 Cosmology: m = mi = m1 + m2 + m3 1 i=1 msmallest 3 β decays: m = U 2 m2 β ⌅ | ei| i ⇤i=1 Normal ⇤ mass ⇥ 2 3 1 2 ββ decays: mββ = Ueimi i=1 3 ⇥ msmallest 2 2 2 Oscillations: ∆mij = mj mi − Inverted Neutrino mass questions Measuring the “mass” Determining the hierarchy [mi] mass 3 3 2 Cosmology: m = mi = m1 + m2 + m3 1 i=1 msmallest 3 β decays: m = U 2 m2 β ⌅ | ei| i ⇤i=1 Normal ⇤ mass ⇥ 2 3 1 2 ββ decays: mββ = Ueimi i=1 3 ⇥ msmallest 2 2 2 Oscillations: ∆mij = mj mi − Inverted LBNL and UCB programs cover all these measurements Neutrino Oscillation Experiments • Daya Bay [Kam-Biu Luk] • DUNE [Kam-Biu Luk] • THEIA [Gabriel Orebi Gann] • IceCube [Spencer Klein] Daya Bay • Ongoing reactor antineutrino experiment focusing on • Precise measurement of mixing angle θ23 2 and mass splitting |Δm 32| • Precise measurement of absolute flux and energy spectrum of reactor antineutrinos • Search for a light sterile neutrino • Search for new neutrino phenomena • Search for supernova neutrinos • Continue collecting data until 2020. Neutrino oscillations - future Deep Underground Neutrino Experiment (DUNE) • A long-baseline neutrino experiment designed for studying • CP violation in neutrino oscillation • Neutrino mass-hierarchy problem 2 • Precise measurement of mixing angle θ23 and mass splitting Δm 32 • Nucleon decay • Supernova neutrinos • Berkeley involves in • ProtoDUNE – beam-test of full-scale liquid-argon TPC at CERN • Design and detector R&D of near detector • Simulation and physics analysis using NERSC supercomputers R. Bonventre, J. Caravaca, F. Descamps, B. Land, G. D. Orebi Gann, J. Wallig THEIA • Large WbLS detector (50-100 kton) • Fast, high-efficiency photon detection with high coverage • Deep underground (e.g. Homestake) • Isotope loading (Gd, Te, Li...) • Flexible! Target, loading, configuration ➡ Broad physics program! 1.4 ➡ long baseline, NLDBD, solar, geonu, 1.2 nucleon decay, supernova, DSNB…. 1 0.8 Concept paper - arXiv:1409.5864 0.6 0.4 Hit Time Residuals (ns) 0.2 Local R&D: CHESS 0 CHErenkov Scintillation Separation experiment ➡ Directional info in a low-threshold • Ring-imaging of cosmic muons detector Demonstrate separation in charge & time Unprecedented level • of in-situ background • Successful separation in LAB, LAB/PPO and WbLS! rejection Neutrinoless Double Beta Decay Experiments • CUORE (130Te) [Brian Fujikawa, Yury Kolomensky] • MAJORANA (76Ge) [Alan Poon] • SNO+ (130Te) [Gabriel Orebi Gann] Beta Decay Experiment • KATRIN (3H) [Alan Poon] Neutrinoless double-beta decay is a big deal Lepton number violation and Neutrinoless Double Beta Decays SM allowed process Lepton number violation 26 T1/2 ~1018-21 y T1/2 >10 y CUORE @ Berkeley • Located at LNGS (Gran Sasso) • TeO 2 crystal serves as both source of radioactive decay and detector for resultant electrons • Bolometer: • Electrons deposit energy in crystal • Energy converted into heat • Temperature of crystal read out using thermistor thermometers Cuoricino CUORE-0 CUORE 2003–2008 2013–2015 2016–2022 11 kg 130Te 11 kg 130Te 206 kg 130Te CUORE @ Berkeley • Detector assembly (complete) • Taking commissioning data • Data processing and monitoring (CUORE-0 and CUORE) • Neutrinoless double-beta decay analysis (CUORE-0 and CUORE) • Hardware R+D for future experiments Superconducting transition edge sensors (TES) for detecting heat pulse and Cherenkov light Dilution refrigerator on campus 18 MAJORANA DEMONSTRATOR • Physics: • To search for LNV via 76Ge 0νββ decay • To search for light WIMPs (<10 GeV/c2) • Status: – Production data taking in progress • LBNL contributions: – Development and procurement of 76Ge detectors – Design and fabrication of low-noise signal processing electronics; detector construction & commissioning – Simulation and analysis • Future: – R&D for a ton-scale experiment starting R. Bonventre, J. Caravaca, F. Descamps, C. Kefelian, B. Land, G. D. Orebi Gann, J. Wallig • Analysis (DBD, solar, SNO+ backgrounds) • DAQ leaders - HV control, alarm GUI, channel monitoring • Constructing optical calibration source 780 ton scintillator (LAB) • Responsible for calibration • of PMT array & • 9500 PMTs electronics • Load LAB with 0.5% natTe — NDBD search • Ultra-low background (solar ν dominates) • Large target mass, easy to scale • Sensitivity to bottom of IH in phase II! • Broad program of other physics! Solar, supernova, geoneutrino, nucleon decay • Water data taking ongoing right now! LS data — autumn 2017. Neutrino mass Knowing the neutrino mass is important! ⇡+ µ+ + ⌫ ! µ β decay: KATRIN • 3H beta decay • Sensitivity: mβ<0.2 eV (90% CL) • Commissioning in progress. • 3H Data taking will begin next year • LBNL involves in analysis activities β decay: KATRIN • 3H beta decay • Sensitivity: mβ<0.2 eV (90% CL) • Commissioning in progress. • 3H Data taking will begin next year • LBNL involves in analysis activities β decay: KATRIN • 3H beta decay • Sensitivity: mβ<0.2 eV (90% CL) • Commissioning in progress. • 3H Data taking will begin next year • LBNL involves in analysis activities The most energetic accelerators in the universe The UCB/LBNL IceCube Group ● Cosmic-rays have been observed with energies up to 3*1020 eV (50 joules!) ● Despite 100 years of effort, we have not found the accelerators that produce these particles ● Charged cosmic-rays bend in transit ● IceCube is a 1 km3 neutrino detector at the South Pole. ● 5,160 buried optical sensors detect Cherenkov light from the charged particles produced in high-energy (>100 GeV) neutrino interactions in the polar icecap. ● We have observed cosmic neutrinos with energies up to ~5 PeV (5*1015 eV) ● These neutrinos should (eventually) pinpoint these accelerators ● The flux is near the predicted upper limits, so sources should be easy to find. ● We have eliminated or disfavored most of the popular theories for the origins of these neutrinos: gamma-ray bursts, active galactic nuclei (galaxies containing supermassive black holes…), or supernovae. ● … a real science mystery… you can help solve it! ● IceCube also studies many other physics topics: dark matter, cosmic-ray anisotropies, magnetic monopoles, other exotica… IceCube @ LBNL ● A friendly group with 1 senior staff, 1 postdoc, 1-2 grad students and (usually) 1 undergrad ● LBNL played key roles in IceCube hardware ● Active in astrophysical neutrinos and cosmic-ray physics ● Measurement of the astrophysical neutrino flavor (νe:νµ:ντ) ratio* ● Measurement of the atmospheric νe energy spectrum ● First observation of neutrino absorption in the Earth and measurement of the neutrino- nucleon cross-section* ● Future interests include ● Characterization of TeV-PeV energy neutrino events (ν:ν ratio, etc.) via inelasticity measurements* and a more detailed energy spectra of the cosmic neutrino signal ● Precision measurement of the neutrino-nucleon cross-section ● Searches for leptoquarks, extra-dimensions or other exotica that
Recommended publications
  • Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos
    Snowmass 2021 Letter of Interest: Ultra-High-Energy Neutrinos Markus Ahlers,1 Jaime Alvarez-Mu~niz,´ 2 Rafael Alves Batista,3 Luis Anchordoqui,4 Carlos A. Arg¨uelles,5 Jos´e Bazo,6 James Beatty,7 Douglas R. Bergman,8 Dave Besson,9, 10 Stijn Buitink,11 Mauricio Bustamante,1, 12, ∗ Olga Botner,13 Anthony M. Brown,14 Washington Carvalho Jr.,15 Pisin Chen,16 Brian A. Clark,17 Amy Connolly,7 Linda Cremonesi,18 Cosmin Deaconu,19 Valentin Decoene,20 Paul de Jong,21, 22 Sijbrand de Jong,23, 22 Peter B. Denton,24, y Krijn De Vries,25 Michele Doro,26 Michael A. DuVernois,27 Ke Fang,28 Christian Glaser,13 Peter Gorham,29 Claire Gu´epin,30 Allan Hallgren,13 Jordan C. Hanson,31 Tim Huege,32, 11 Martin H. Israel,33 Albrecht Karle,27 Spencer R. Klein,34, 35 Kumiko Kotera,20 Ilya Kravchenko,36 John Krizmanic,30, 37 John G. Learned,29 Olivier Martineau-Huynh,38 Peter M´esz´aros,39 Thomas Meures,27 Miguel A. Mostaf´a,39, 40 Katharine Mulrey,11 Kohta Murase,39, 40, 41 Jiwoo Nam,16 Anna Nelles,42, 43 Eric Oberla,44 Foteini Oikonomou,45 Angela V. Olinto,44 Yasar Onel,46 A. Nepomuk Otte,47 Sergio Palomares-Ruiz,48 Alex Pizzuto,27 Steven Prohira,7 Brian Rauch,49 Mary Hall Reno,46 Juan Rojo,50, 51 Andr´esRomero-Wolf,52 Ibrahim Safa,5, 27 Olaf Scholten,53, 25 Frank G. Schr¨oder,54, 32 Wayne Springer,55 Irene Tamborra,1, 12 Charles Timmermans,51, 23 Diego F. Torres,56 Jo~aoR.
    [Show full text]
  • The Gran Sasso Underground Laboratory Program
    The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab
    [Show full text]
  • Required Sensitivity to Search the Neutrinoless Double Beta Decay in 124Sn
    Required sensitivity to search the neutrinoless double beta decay in 124Sn Manoj Kumar Singh,1;2∗ Lakhwinder Singh,1;2 Vivek Sharma,1;2 Manoj Kumar Singh,1 Abhishek Kumar,1 Akash Pandey,1 Venktesh Singh,1∗ Henry Tsz-King Wong2 1 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India. 2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. E-mail: ∗ [email protected] E-mail: ∗ [email protected] Abstract. The INdias TIN (TIN.TIN) detector is under development in the search for neutrinoless double-β decay (0νββ) using 90% enriched 124Sn isotope as the target mass. This detector will be housed in the upcoming underground facility of the India based Neutrino Observatory. We present the most important experimental parameters that would be used in the study of required sensitivity for the TIN.TIN experiment to probe the neutrino mass hierarchy. The sensitivity of the TIN.TIN detector in the presence of sole two neutrino double-β decay (2νββ) decay background is studied at various energy resolutions. The most optimistic and pessimistic scenario to probe the neutrino mass hierarchy at 3σ sensitivity level and 90% C.L. is also discussed. Keywords: Double Beta Decay, Nuclear Matrix Element, Neutrino Mass Hierarchy. arXiv:1802.04484v2 [hep-ph] 25 Oct 2018 PACS numbers: 12.60.Fr, 11.15.Ex, 23.40-s, 14.60.Pq Required sensitivity to search the neutrinoless double beta decay in 124Sn 2 1. Introduction Neutrinoless double-β decay (0νββ) is an interesting venue to look for the most important question whether neutrinos have Majorana or Dirac nature.
    [Show full text]
  • Nuclear Physics
    Nuclear Physics Overview One of the enduring mysteries of the universe is the nature of matter—what are its basic constituents and how do they interact to form the properties we observe? The largest contribution by far to the mass of the visible matter we are familiar with comes from protons and heavier nuclei. The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all forms of nuclear matter. Although the fundamental particles that compose nuclear matter—quarks and gluons—are themselves relatively well understood, exactly how they interact and combine to form the different types of matter observed in the universe today and during its evolution remains largely unknown. Nuclear physicists seek to understand not just the familiar forms of matter we see around us, but also exotic forms such as those that existed in the first moments after the Big Bang and that exist today inside neutron stars, and to understand why matter takes on the specific forms now observed in nature. Nuclear physics addresses three broad, yet tightly interrelated, scientific thrusts: Quantum Chromodynamics (QCD); Nuclei and Nuclear Astrophysics; and Fundamental Symmetries: . QCD seeks to develop a complete understanding of how the fundamental particles that compose nuclear matter, the quarks and gluons, assemble themselves into composite nuclear particles such as protons and neutrons, how nuclear forces arise between these composite particles that lead to nuclei, and how novel forms of bulk, strongly interacting matter behave, such as the quark-gluon plasma that formed in the early universe. Nuclei and Nuclear Astrophysics seeks to understand how protons and neutrons combine to form atomic nuclei, including some now being observed for the first time, and how these nuclei have arisen during the 13.8 billion years since the birth of the cosmos.
    [Show full text]
  • Arxiv:1906.07209V1 [Astro-Ph.HE] 17 Jun 2019 Hole-Black Hole and Neutron Star-Neutron Star Mergers)
    POEMMA's target of opportunity sensitivity to cosmic neutrino transient sources Tonia M. Venters Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA Mary Hall Reno Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, USA John F. Krizmanic CRESST/NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA University of Maryland, Baltimore County, Baltimore, MD 21250, USA Luis A. Anchordoqui Department of Physics, Graduate Center, City University of New York (CUNY), NY 10016, USA Department of Physics and Astronomy, Lehman College (CUNY), NY 10468, USA Department of Astrophysics, American Museum of Natural History, NY 10024, USA Claire Gu´epin Sorbonne Universit´e,CNRS, UMR 7095, Institut d'Astrophysique de Paris, 98 bis bd Arago, 75014 Paris, France Angela V. Olinto Department of Astronomy & Astrophysics, KICP, EFI, The University of Chicago, Chicago, IL 60637, USA (Dated: June 19, 2019) We calculate the sensitivity of space-based cosmic neutrino detection from transient sources in the context of the Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) mission using Target- of-Opportunity (ToO) observations. POEMMA uses two spacecraft each with a large Schmidt telescope to simultaneously view the optical signals generated by extensive air showers (EASs). POEMMA is designed for both ultrahigh-energy cosmic ray and very-high-energy neutrino mea- surements. POEMMA has significant neutrino sensitivity starting in the 10 PeV decade via mea- surements of Cherenkov signals from upward-moving EASs initiated by tau neutrinos interacting in the Earth. For ToO observations, POEMMA uses the ability to quickly repoint (90◦ in 500 seconds) each of the two spacecraft to the direction of the transient source.
    [Show full text]
  • THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
    UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement .
    [Show full text]
  • RES-NOVA Sensitivity to Core-Collapse and Failed Core-Collapse Supernova Neutrinos
    Prepared for submission to JCAP RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos L. Pattavinaa;b;1 N. Ferreiro Iachellinic;1 L. Pagnaninia;d L. Canonicac E. Celib;d M. Clemenzae F. Ferronid;f E. Fiorinie A. Garaic L. Gironie M. Mancusoc S. Nisia F. Petriccac S. Pirroa S. Pozzie A. Puiua;d J. Rotheb S. Schönertb L. Shtembaric R. Straussb V. Wagnerb aINFN Laboratori Nazionali del Gran Sasso, 67100 Assergi, Italy bPhysik-Department and Excellence Cluster Origins, Technische Universität München, 85747 Garching, Germany arXiv:2103.08672v2 [astro-ph.IM] 16 Aug 2021 cMax-Planck-Institut für Physik, 80805 München, Germany dGran Sasso Science Institute, 67100, L’Aquila, Italy eINFN Sezione Milano - Bicocca and Dipartimento di Fisica, Università di Milano - Bicocca, 20126 Milano, Italy f INFN Sezione di Roma1, 00185, Roma, Italy 1Corresponding authors. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], ettore.fi[email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CEνNS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe).
    [Show full text]
  • Full TIPP 2011 Program Book
    Second International Conference on Technology and Instrumentation in Particle Physics June 9-14, 2011 Program & Abstracts Sheraton Chicago Hotel and Towers, Chicago IL ii TIPP 2011 — June 9-14, 2011 Table of Contents Acknowledgements .................................................................................................................................... v Session Conveners ...................................................................................................................................vii Session Chairs .......................................................................................................................................... ix Agenda ....................................................................................................................................................... 1 Abstracts .................................................................................................................................................. 35 Poster Abstracts ..................................................................................................................................... 197 Abstract Index ........................................................................................................................................ 231 Poster Index ........................................................................................................................................... 247 Author List .............................................................................................................................................
    [Show full text]
  • Arxiv:1903.01609V2 [Astro-Ph.IM] 24 Jun 2019 the Origin of Ultra-High Energy Cosmic Rays (Uhecrs) Is One of the Biggest Mysteries in Astroparticle Physics
    Targeting ultra-high energy neutrinos with the ARIANNA experiment A. Ankera, S. W. Barwicka, H. Bernhoffb, D. Z. Bessonc,d, Nils Bingeforse, G. Gaswinta, C. Glasera,∗, A. Hallgrene, J. C. Hansonf, R. Lahmanna,g, U. Latifc, J. Namh, A. Novikovc,d, S. R. Kleini, S. A. Kleinfelderj, A. Nellesk,l, M. P. Paula, C. Persichillia, S. R. Shivelya, J. Tatara,m, E. Ungere, S.-H. Wangh, G. Yodha aDepartment of Physics and Astronomy, University of California, Irvine, CA 92697, USA bUppsala University Department of Engineering Sciences, Division of Electricity, Uppsala, SE-752 37 Sweden cDepartment of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA dNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia eUppsala University Department of Physics and Astronomy, Uppsala, SE-752 37, Sweden fWhittier College Department of Physics, Whittier, CA 90602, USA gECAP, Friedrich-Alexander Universit¨atErlangen-N¨urnberg, 91058 Erlangen, Germany hDepartment of Physics and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan iLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA jDepartment of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA kDESY, 15738 Zeuthen, Germany lHumbolt-Universit¨atzu Berlin, Institut f¨urPhysik, 12489 Berlin, Germany mResearch Cyberinfrastructure Center, University of California, Irvine, CA 92697 USA Abstract The measurement of ultra-high energy (UHE) neutrinos (E > 1016 eV) opens a new field of astronomy with the potential to reveal the sources of ultra-high energy cosmic rays especially if combined with observations in the electromagnetic spectrum and gravitational waves. The ARIANNA pilot detector explores the detection of UHE neutrinos with a surface array of independent radio detector stations in Antarctica which allows for a cost-effective instrumentation of large volumes.
    [Show full text]
  • Status and Outlook of the CUORE and CUPID Experimental Calorimetry Programs: an Overview
    Status and Outlook of the CUORE and CUPID Experimental Calorimetry Programs: An Overview Danielle H. Speller for the CUORE and CUPID Collaborations Johns Hopkins University August 5, 2020 Slides provided by CUORE, CUPID, CUPID‐Mo, and Acknowledgements CUPID‐0 Collaborations 8/5/2020 Danielle H. Speller (JHU), CUORE/CUPID, Snowmass Neutrino Workshop 2 Searching for Neutrinoless Double‐Beta Decay with CUORE CUORE: The Cryogenic Underground Observatory for Rare Events • The first tonne‐scale 0νββ experiment operating with thermal detectors • Main objective: 0νββ in 130Te 3 • 988 TeO2 crystals, 5×5×5 cm each • Total mass: 742 kg TeO2 • 130Te mass: 206 kg (all natural abundance) • Macrocalorimeter operation in ~10 mK cryostat Heat bath ~10 mK Thermistor (NTD-Ge) • Located underground at LNGS (Italy) (Copper) • Expected energy resolution at 2615 keV: 5 keV Absorber Crystal (TeO2) FWHM • Background goal: 0.01 cts/(keV∙kg ∙yr) at Qββ 0ν 25 • Sensitivity: T1/2 = 9×10 yr (90% C.I.) in 5 Energy Cryogenics 102, 9‐21 (2019). Thermal coupling release arxiv:1904.05745 years of data collection (Eur. Phys. J. C (2017) (PTFE) Cryogenics 93, 56‐65 (2018). 77:532) arxiv:1712.02753 Danielle H. Speller (JHU), CUORE/CUPID, Snowmass Neutrino 8/5/2020 3 Workshop • Total analyzed exposure: region of interest Recent Results: Improved 372.5 kg∙yr • Median exclusion sensitivity: • Resolution (expo.‐weighted 1.7 x 1025 yr 130 harmonic avg, Qββ): 7.0±0.4 0ν 25 • T1/2 > 3.2 x 10 yr (90% C.I.) Limit on 0νββ in Te with keV Bayesian lower limit on 130Te • Background: 1.38±0.07 x 10‐2 half‐life CUORE (2020) cts/(keV∙kg∙yr) in the 0νββ Phys.
    [Show full text]
  • Neutrinoless Double Beta Decay Searches
    FLASY2019: 8th Workshop on Flavor Symmetries and Consequences in 2016 Symmetry Magazine Accelerators and Cosmology Neutrinoless Double Beta Decay Ke Han (韩柯) Shanghai Jiao Tong University Searches: Status and Prospects 07/18, 2019 Outline .General considerations for NLDBD experiments .Current status and plans for NLDBD searches worldwide .Opportunities at CJPL-II NLDBD proposals in China PandaX series experiments for NLDBD of 136Xe 07/22/19 KE HAN (SJTU), FLASY2019 2 Majorana neutrino and NLDBD From Physics World 1935, Goeppert-Mayer 1937, Majorana 1939, Furry Two-Neutrino double beta decay Majorana Neutrino Neutrinoless double beta decay NLDBD 1930, Pauli 1933, Fermi + 2 + (2 ) Idea of neutrino Beta decay theory 136 136 − 07/22/19 54 → KE56 HAN (SJTU), FLASY2019 3 ̅ NLDBD probes the nature of neutrinos . Majorana or Dirac . Lepton number violation . Measures effective Majorana mass: relate 0νββ to the neutrino oscillation physics Normal Inverted Phase space factor Current Experiments Nuclear matrix element Effective Majorana neutrino mass: 07/22/19 KE HAN (SJTU), FLASY2019 4 Detection of double beta decay . Examples: . Measure energies of emitted electrons + 2 + (2 ) . Electron tracks are a huge plus 136 136 − 54 → 56 + 2 + (2)̅ . Daughter nuclei identification 130 130 − 52 → 54 ̅ 2νββ 0νββ T-REX: arXiv:1512.07926 Sum of two electrons energy Simulated track of 0νββ in high pressure Xe 07/22/19 KE HAN (SJTU), FLASY2019 5 Impressive experimental progress . ~100 kg of isotopes . ~100-person collaborations . Deep underground . Shielding + clean detector 1E+27 1E+25 1E+23 1E+21 life limit (year) life - 1E+19 half 1E+17 Sn Ca νββ Ge Te 0 1E+15 Xe 1E+13 1940 1950 1960 1970 1980 1990 2000 2010 2020 Year .
    [Show full text]
  • Ultra-High-Energy Cosmic-Ray Nuclei and Neutrinos in Models of Gamma-Ray Bursts and Extragalactic Propagation
    Ultra-high-energy cosmic-ray nuclei and neutrinos in models of gamma-ray bursts and extragalactic propagation DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach: Physik Spezialisierung: Theoretische Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M.Sc. Jonas Heinze Präsidentin der Humboldt-Universität zu Berlin: Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakultät: Prof. Dr. Elmar Kulke Gutachter: 1. PD Dr. Walter Winter 2. Prof. Dr. Thomas Lohse 3. Prof. Dr. Günter Sigl Tag der mündlichen Prüfung: 27. Januar 2020 Selbständigkeitserklärung Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von mir gemäß § 7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröf- fentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 42/2018 am 11.07.2018, angegebenen Hilfsmittel angefertigt habe. Abstract Ultra-high-energy cosmic rays (UHECRs) are the most energetic particles observed in the Uni- verse. Their energy spectrum, chemical composition and arrival directions are observed in extensive air-shower (EAS) experiments, notably the Pierre Auger Observatory (Auger) and Telescope Array (TA). While the astrophysical sources of UHECRs have not yet been uniquely identified, there are strong indications for an extragalactic origin. The interpretation of theob- servations requires both simulations of UHECR acceleration and energy losses inside the source environment as well as interactions during extragalactic propagation. Due to their extreme en- ergies, UHECR will interact with photons in these environments, producing a flux of secondary neutrinos. The IceCube observatory has detected a neutrino flux of astrophysical origin, which likely consists of neutrinos from astrophysical sources and not of neutrinos produced during extragalactic propagation of UHECRs (so-called ‘cosmogenic’ neutrinos).
    [Show full text]