Underwater Vehicles the History of Working in Water

Total Page:16

File Type:pdf, Size:1020Kb

Underwater Vehicles the History of Working in Water Underwater Vehicles The history of working in water Photo courtesy of Robert Keith MAST 55 Why do people go underwater? Under the sea is a dangerous, hostile environment. • Humans can’t breath underwater • Cold • Pressure • Weather The ocean is not always a nice place to work! Photo courtesy of Robert Keith Why do people go underwater? • Profit – If you are willing and able to work in difficult terrain where others cannot work, you can make a bigger profit. • Discovery – Humans have a tendency to be curious and a desire to see and learn new things. • Military Advantage – Go where you enemy cannot see you and you have an advantage. History of working underwater Ancient Greece: Greek Sponge Divers were the first recorded people to work in the underwater environment. At first they didn’t have any special equipment. New Technologies: Diving bell Air inside leather bladders This tech wasn’t much, but it helped them to stay down longer and complete more work. From Nautical Museum of Kalymnos Why did the Greeks go underwater? • Profit: They could acquire a product, sponges, that no one on land could get. • Discovery: Alexander the Great reportedly went underwater with a diving bell to look around. • Military advantage: The Greeks used sponge divers who could hold their breath to cut the anchor lines of enemy ships. Why do you want to go underwater? First recorded female undersea worker. Cyana and her father, Scyillis. 500 BC. The need for technology People found resources (profit) deeper in the oceans. Explorers wanted to explore further into the seas. Eventually they ran up against the limits of the human body. People are only built to go so deep. So scientists and thinkers of the time developed technology to go deeper and deeper in the ocean. Photos: Seabotix LBV, Video Ray, Phoenix International Bot Early Military Submarines The Turtle The Brandtaucher The Hunley US Revolutionary War Prussian American Civil War Attacked British ship in Used to break a Danish Used to break the in New York harbor blockade blockade of Charleston, SC Human Powered Human Powered Human Powered (8 men) Unsuccessful Partially successful Mission successful Never returned Photos Courtesy of Rick Cecchetti - Deep Submergence System Program Office at Portsmouth Naval Shipyard Early Modern Submarines US Navy Competition: 1887, 1888, 1893 Engineer: John Holland On March 3, 1895, the US Navy contracted for the Plunger. On April 11, 1900, the navy accepted the Plunger and renamed it the USS John Holland. John Holland is considered the father of modern submarines. His company, the Electric Boat Company, is still in existence today. Photos Courtesy of Rick Cecchetti World Wars Submarine technology advanced quickly during World War I and World War II. German U-boats (Unterseeboot) revolutionized modern undersea warfare. Was considered ‘ungentlemanly’ warfare, but it worked. Greatly curtailed shipping. Technology: Mix of Diesel and Electric Battery Snorkel Torpedoes Sonar USS Squalus / Sailfish German U-boat. www.theonion.com Modern Military Submarines New Technologies, Capabilities Nuclear Power: Human endurance, food stocks became the limiting factor. Capabilities of modern military submarines: 1000 meters? USS Nautilus (SSN-571) USS Salt Lake City Picture courtesy of Rick Ceccetti www.usnavy/navydata Early Manned Vehicles Diving Bell Don Lethbridge’s Diving Engine – elongated, waterproofed barrel with arms extending out and a little viewing port Bathysphere ( deep sphere ) – Metal sphere with view ports. Did not move, simply hung from a cable that also provided electricity. Bathyscaph ( deep boat ) – Was not attached by a cable. A bathyscaph is an independent diving craft with its own buoyancy system. Photos from NASA SEAWIFS The Trieste First vehicle to the deepest part of the ocean. Mariana Trench - Challenger Deep. 10,900+ meters deep. Designed by Auguste Piccard, a Swiss physicist On January 23, 1960, piloted by Piccard’s son, Dr. Jacques Piccard, and US Navy Lieutenant Don Walsh, the Trieste made a historic dive to the Challenger Deep. Measured a depth of 10,916 meters (35,813 feet – almost 7 miles ). • Until 2012, Piccard and Walsh are the ONLY humans to have ever visited the Challenger Deep. • Two ROV’s, unmanned vehicles, the Japanese vehicle Kaiko, and the Nereus operated by Woods Hole, have also visited the area. • In 2012, James Cameron went back to the Challenger Deep. The Trieste - Innovations picture of Trieste Photo from US Navy archive 1) Reinforced, spherical steel ball housed the occupants. 2) Buoyancy: 7 meter long, gasoline filled housing. 3) Detachable lead shot ballast, including a long steel chain. Early Atmospheric Diving Suits The early history of the Atmospheric Diving Suit ( ADS ) is the same as that of submersibles – getting people underwater. • Diving bells • Diving bells with operators protected, somewhat, against the water. - Salvage of the Swedish warship VASA Men in diving bells protected from the water by leather suits. • Hardhat Diving: A hardhat is the functional equivalent - of a diving bell. Hard hat is mobile, where the old style diving bells were not. Invention of the air pump revolutionized picture of suit this technology. Now divers could replenish their air supply. History of Hardhat Diving • Don Lethbridge’s diving engine in 1715. Was trying a different approach to finding sunken treasure. • Klinger’s Dive Suit, 1797. Klinger’s Dive Suit • Air pumps began seeing underwater use in 1789, began by John Smeaton. Allowed fresh air to be pumped to diver. • More modern hardhat diving, with the standard underwater helmet, began in 1827. • This technology lasted for 150 years. Courtesy of Drew Michel Divers vs ROV’s in the workplace • Divers (hardhat) was the method of choice, for underwater work up until the 1980’s. Through the 1980’s, ROV’s began to take over work that had previously been completed by human divers. Advantages of an ROV: Didn’t get the bends Time on bottom Could venture deeper - But there are still diving suits in use. Modern ADS • Modern Atmospheric Dive Suit technology is derived from space technology. • And ADS is quite similar to a space suit worn by an astronaut. It is designed to withstand positive pressure instead of negative pressure. • The modern ADS works at 1 atmosphere internal pressure. No decompression. • Articulated pressure joints allow the operator to move arms and legs. • Operating depth: 600 meters (2000 ft) • Modern ADS are called Exosuits. ‘Exo’ means outer, and these suits are an outer protective skin worn to protect an operator from the environment. • New Exosuits include self propulsions systems. Operators no longer have to walk Nuytech Newtsuit along the bottom. Photo courtesy of Drew Michel Early RCV (before they were called ROVs) History of ROV’s • First remotely operated vehicle was constructed by Dimitri Rebikoff in 1953. - First variation was simply a torpedo that would tow a diver - In 1953, Rebikoff added a tether to control steering an a camera. - Named this device POODLE, and is considered the first ROV. • Many companies were started in the 1950’s and 1960’s. - Government cold war contracts prevalent. - Money dried up in the 1970’s, but that is when the oil boom began, and ROV’s really started to make an impact. • By the 1980’s, ROV’s were replacing divers as the means to accomplish work underwater. .
Recommended publications
  • Rebreather' Helps Navy Divers Beneath the Waves 31 May 2018, by Warren Duffie Jr
    Deep breath: New 'rebreather' helps navy divers beneath the waves 31 May 2018, by Warren Duffie Jr. Panama City. The technology is sponsored by the Office of Naval Research Global (ONR Global) TechSolutions program. TechSolutions is ONR Global's rapid- response science and technology program that develops prototype technologies to address problems voiced by Sailors and Marines, usually within 12 months. "This rebreather system is an awesome opportunity to enhance the capabilities of Navy divers and accelerate their deployments," said ONR Command Master Chief Matt Matteson, who heads up TechSolutions. A US Navy diver gives the okay sign following his dive using the Office of Naval Research Global Navy diving missions include underwater rescues, TechSolutions-sponsored MK29 Mixed Gas Rebreather explosive ordnance disposal, ship hull system, which was developed at the Naval Surface maintenance, recovery of sunken equipment, and Warfare Center, Panama City Division. The new system salvage of vessels and aircraft. will conserve helium, which is a valuable natural resource, accelerate the deployment of Navy divers, and increase safety. Credit: U.S. Navy photo by John F. Beneath the waves, Navy divers breathe a careful Williams/Released mixture of oxygen and nitrogen. Below 150 feet, however, nitrogen becomes toxic—leading to nitrogen narcosis, a drowsy state that can dull mental sharpness severely and jeopardize safe The muscular U.S. Navy diver hoisted a 60-pound return to the surface. life-support regulator onto his back, then donned a 30-pound metal helmet. The solution is to replace nitrogen with helium. However, helium is expensive and hard to obtain Fellow divers connected his diving suit to an because of recent worldwide shortages.
    [Show full text]
  • How to Make Solo Rebreather Diving Safer
    technical So,what’s Say that you dive on your own with wrong about a rebreather and wait for the reactions. matters bringing a Rubiks cube You’ll hear some nasty comments about along on a dive? you being an accident waiting to happen Discussions about diving never did a solo dive. The other 92 percent have done at least a few Column by are very often boring— solo dives, with 33 percent doing Cedric Verdier always the same stories mostly solo diving. about numerous sharks Of course, a poll only represents dangerously close, strong the opinion of a few individuals current ripping a mask off who want to answer the questions. It cannot be considered as the “big or friendly dolphins play- picture” of the entire rebreather ing during a deco stop. diver community. Nevertheless, it We heard them so many shows that some rebreather divers times. keep on diving solo, even if the perceived risk is so high… So, if you want to have some Why people don’t dive fun, simply say that you dive on solo with a rebreather? your own with a rebreather and Simply because that’s one wait for the reactions. You’ll hear of the most basic rules some nasty comments about one learns during the you being an accident waiting Open Water Diver to happen, and some people course: “Never dive will clearly show you their option alone”. It’s so famous about your mental health. that it’s almost a dogma. And it sounds Why? Because everybody so logical? knows that CCR Solo diving is the most stupid thing to do on Earth 1.
    [Show full text]
  • FNRS 1 Balloon
    Technical Data Sheet 1 FNRS 1 BALLOOn Balloon External diameter : 30 metres Payload : 1000 kg Materials : cotton and rubber Fuel : hydrogen Construction : Riedinger Ballon Fabrik (A), in 1931 The balloon was inflated with hydrogen, since the production of helium was too expensive in 1930. The diameter of the inflated balloon was 30 metres, its volume 14,130 m3. The balloon’s payload was 1000 kg and it was therefore clearly oversized in relation to the load to be carried. Its capacity theoretically enabled it to lift a locomotive! The balloon’s envelope consisted of two layers of cotton bonded by an intermediate layer of rubber. The fabric was dyed yellow (chloramine). This colour absorbs part of the sun’s blue, violet and ultraviolet rays. On take-off the balloon took the shape of a pear. It was only at altitude, when the pressure fell, that the balloon became spherical. Gondola External diameter : 2.10 metres Empty weight : 136 kg Crew : 2 men Endurance : 24 hours Thickness : 3.5 mm Materials : aluminium Portholes : glass Average on board temperature : -2 to + 40°C! Manufacturer of gondola : Georges L’Hoir, Liège (B) Interior equipment : Jacques Destappes, mechanic, Brussels (B) In structural terms, the sphere offers the highest volume for the smallest surface area, and therefore the lowest weight. The 2.10 metre diameter meanwhile, according to Auguste Piccard, is “(…) the smallest dimension in which two observers and a great deal of instrumentation can be accommodated”. The first gondola was painted in two colours. It was thus able to present a light or a dark side to the sun.
    [Show full text]
  • Upper Respiratory Tract and Aural Flora of Saturation Divers
    J Clin Pathol: first published as 10.1136/jcp.31.8.721 on 1 August 1978. Downloaded from Journal of Clinical Pathology, 1978, 31, 721-723 Upper respiratory tract and aural flora of saturation divers D. M. JONES AND P. DAVIS From the Department ofBacteriology, Withington Hospital, Manchester M20 8LR, UK SUMMARY The conditions of helium saturation diving promote the proliferation of Gram-negative bacterial species in the external auditory meatus of divers. These changes in flora occurred in the absence of operational diving, that is, no contact with water. The colonising bacteria were auto- genous in origin and cross-colonisation was observed between divers. On return to normal atmos- pheric conditions the aural flora became predominantly Gram-positive again within 48 hours. The slow return to normal pressures by deep-sea a high ambient temperature (30°-350C), and the divers, necessary to avoid decompression sickness, relative humidity is high. restricts the period that can be maintained at depth. Underwater exploration is a relatively new indus- This problem is overcome by the saturation diving try and by its nature is extremely dangerous. It is technique whereby the divers are maintained at high important that divers remain fit during the conduct of pressure in their living quarters and are transported a saturation dive because if a diver becomes unwell to the sea bed in a detachable diving bell. The com- the extreme slowness with which decompression can copyright. pression chamber and transfer chamber are anchored be carried out means that immediate medical atten- to the deck of an oil production platform, and the tion is not readily available.
    [Show full text]
  • Anastasi 2032
    Shashwat Goel & Ankita Phulia ​Anastasi 2032 Table of Contents Section Page Number 0 Introduction 2 1 Basic Requirements 4 2 Structural Design 15 3 Operations 31 4 Human Factors 54 5 Business 65 6 Bibliography 80 Fletchel Constructors 1 Shashwat Goel & Ankita Phulia ​Anastasi 2032 0 Introduction What is an underwater base doing in a space settlement design competition? Today, large-scale space habitation, and the opportunity to take advantage of the vast resources and possibilities of outer space, remains more in the realm of speculation than reality. We have experienced fifteen years of continuous space habitation and construction, with another seven years scheduled. Yet we have still not been able to take major steps towards commercial and industrial space development, which is usually the most-cited reason for establishing orbital colonies. This is mainly due to the prohibitively high cost, even today. In this situation, we cannot easily afford the luxury of testing how such systems could eventually work in space. This leaves us looking for analogous situations. While some scientists have sought this in the mountains of Hawaii, this does not tell the full story. We are unable to properly fathom or test how a large-scale industrial and tourism operation, as it is expected will eventually exist on-orbit, on Earth. This led us to the idea of building an oceanic base. The ocean is, in many ways, similar to free space. Large swathes of it remain unexplored. There are unrealised commercial opportunities. There are hostile yet exciting environments. Creating basic life support and pressure-containing structures are challenging.
    [Show full text]
  • Notes on Diving in Ancient Egypt
    A Brief History of Underwater Enterprise and Exploration The incentives to risk one’s life underwater from the earliest records of diving: 1) Subsistence and general aquatic harvest 2) Commerce/salvage 3) Warfare A sponge diver about to take the plunge, Classical Greece ca. 500 BCE The beginnings: subsistence in Ancient Egypt: skin divers netting fish in the Nile th Tomb of Djar, 11 Dynasty (ca. 2000 BCE) ‘Pull out well! (It is) a Happy day! Measure you, measure you, for you, good great fishes’ Text and image from the tomb of Ankhtifi (ca. 2100 BCE) The beginnings: other kinds of aquatic/underwater harvest: mother of pearl (left) and sponge diving (right) Mesopotamia (southern Iraq, ca. 2500 BCE) Classical Greece (ca. 500 BCE) The so-called ‘Standard of Ur’: a mosaic of lapis lazuli A sponge diver about to take the (from the exotic region of Afghanistan) and mother of plunge with a knife and a sack, the pearl (from the exotic source of a seabed), deposited in jar was also deposited in an elite tomb an elite tomb in Mesopotamia The beginnings: in search of exotic and high value things (things difficult to access/procure) Epic of Gilgamesh (composed in Mesopotamia no later than ca. 2100 BCE) records a heroic dive after a ‘plant of immortality’ on the seabed ‘He tied heavy stones *to his feet+ They pulled him down into the deep [and he saw the plant] He took the plant though it pricked his hands He cut the heavy stones from his feet The sea cast him up upon the shore’ The value of mother of pearl and sea sponge resides, in part, in the process of procuring them The beginnings: salvaging lost cargoes (lost valuable things) Scyllias and his daughter Hydna: the first professional divers known by name, famed for salvaging huge volumes of gold and silver (tribute and booty) from a Persian fleet in the Aegean that lost many ships in a storm (ca.
    [Show full text]
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • DNVGL-OS-E402 Diving Systems
    OFFSHORE STANDARDS DNVGL-OS-E402 Edition January 2017 Diving systems The content of this service document is the subject of intellectual property rights reserved by DNV GL AS ("DNV GL"). The user accepts that it is prohibited by anyone else but DNV GL and/or its licensees to offer and/or perform classification, certification and/or verification services, including the issuance of certificates and/or declarations of conformity, wholly or partly, on the basis of and/or pursuant to this document whether free of charge or chargeable, without DNV GL's prior written consent. DNV GL is not responsible for the consequences arising from any use of this document by others. The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. DNV GL AS FOREWORD DNV GL offshore standards contain technical requirements, principles and acceptance criteria related to classification of offshore units. © DNV GL AS January 2017 Any comments may be sent by e-mail to [email protected] This service document has been prepared based on available knowledge, technology and/or information at the time of issuance of this document. The use of this document by others than DNV GL is at the user's sole risk. DNV GL does not accept any liability or responsibility for loss or damages resulting from any use of this document. CHANGES – CURRENT This document supersedes DNV-OS-E402 Offshore standard for Diving systems, October 2010 and DNV-DS- E403 Standard for Surface Diving Systems, July 2012 Changes in this document are highlighted in red colour.
    [Show full text]
  • The History of Dräger Johann Heinrich Dräger (1847–1917) Dr
    D The History of Dräger Johann Heinrich Dräger (1847–1917) Dr. Bernhard Dräger (1870–1928) Dr. Heinrich Dräger (1898–1986) Contents 04 The Early Years: From Inventor’s Workshop to Medical and Safety Technology Specialist 10 Turbulent Times: Between Innovation Challenges and Political Constraints 20 New Beginnings: Transformation to a Modern Technology Group 30 Globalization: Realignment as a Global Technology Leader Dr. Christian Dräger (*1934) Theo Dräger (*1938) Stefan Dräger (*1963) Technology for Life for over 120 years Dräger is technology for life. Every day we take on the responsibility and put all our passion, know-how and experience into making life better: With outstanding, pioneering technology which is 100 percent driven by life. We do it for all the people around the world who entrust their lives to our technology, for the environment and for our common future. The key to the continued success of the Company, based in Lübeck, Germany, is its clear focus on the promising growth industries of medical and safety technology, its early expansi- on to international markets, and above all, the trust it has built and maintains with custo- mers, employees, shareholders, and the general public. The Company has always been managed by entrepreneurial members of the Dräger family, who have responsibly met new challenges while never losing sight of the vision: Johann Heinrich Dräger, Dr. Bernhard Dräger, Dr. Heinrich Dräger, Dr. Christian Dräger, Theo Dräger, and now Stefan Dräger. Healthy growth has consistently remained the main objective of the family business and shapes decisions within the Company even now. Founded in 1889 by Johann Heinrich Dräger, the family business has been headed in the fifth generation by CEO Stefan Dräger since 2005.
    [Show full text]
  • Downloaded From
    bioRxiv preprint doi: https://doi.org/10.1101/250399; this version posted January 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Charting the cross-functional map between transcription factors and cancer metabolism Karin Ortmayr 1, Sébastien Dubuis 1 and Mattia Zampieri 1,* Affiliations: 1 Institute of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, CH-8093 Zurich, Switzerland. *To whom correspondence should be addressed: [email protected] Abstract Transcriptional reprogramming of cellular metabolism is a hallmark feature of cancer. However, a systematic approach to study the role of transcription factors (TFs) in mediating cancer metabolic rewiring is missing. Here, we chart a genome-scale map of TF-metabolite associations in human using a new combined computational-experimental framework for large-scale metabolic profiling of adherent cell lines, and the integration of newly generated intracellular metabolic profiles of 54 cancer cell lines with transcriptomic and proteomic data. We unravel a large space of dependencies between TFs and central metabolic pathways, suggesting that the regulation of carbon metabolism in tumors may be more diverse and flexible than previously appreciated. This map provides an unprecedented resource to predict TFs responsible for metabolic transformation in patient-derived tumor samples, opening new opportunities in designing modulators of oncogenic TFs and in understanding disease etiology. Introduction Transcription factors (TFs) are at the interface between the cell’s ability to sense and respond to external stimuli or changes in internal cell-state1.
    [Show full text]
  • Underwater Welding Code
    A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark D3.6M:2017 An American National Standard Underwater Welding Code http://www.mohandes-iran.com AWS D3.6M:2017 An American National Standard Approved by the American National Standards Institute January 10, 2017 Underwater Welding Code 6th Edition Supersedes AWS D3.6M:2010 Prepared by the American Welding Society (AWS) D3 Committee on Marine Welding Under the Direction of the AWS Technical Activities Committee Approved by the AWS Board of Directors Abstract This code covers the requirements for welding structures or components under the surface of water. It includes welding in both dry and wet environments. Clauses 1 through 8 constitute the general requirements for underwater welding, while clauses 9 through 11 contain the special requirements applicable to three individual classes of weld as follows: Class A—Comparable to above-water welding Class B—For less critical applications Class O—To meet the requirements of another designated code or specification http://www.mohandes-iran.com AWS D3.6M:2017 International Standard Book Number: 978-0-87171-902-7 © 2017 by American Welding Society All rights reserved Printed in the United States of America Photocopy Rights. No portion of this standard may be reproduced, stored in a retrieval system, or transmitted in any form, including mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Authorization to photocopy items for internal, personal, or educational classroom use only or the internal, personal, or educational classroom use only of specific clients is granted by the American Welding Society provided that the appropri- ate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, tel: (978) 750-8400; Internet: <www.copyright.com>.
    [Show full text]
  • Underwater Search for the Lost Radioisotope Device in the Hard-To-Reach Region of the Sea of Okhotsk
    Underwater Search for the Lost Radioisotope Device in the Hard-to-Reach Region of the Sea of Okhotsk Accidental drop of IEU-1 type RTG during its transportation to the lighthouse site of Maria Cape of the Sakhalin island as external load with Mi-8t helicopter belonging to Nickolayevsk flight took place not in the vicinity of the Cape from the height of 100 meters on the 8-th of August 1997 at 5 PM. Radioisotope power generators convert the heat energy generated during fission of the active part of the radionuclide source into electric energy due to the semiconductor thermoelectric converter, store it and supply it to the consumer – navigation equipment. This allows operating the equipment for a long period of time without additional servicing of it. Strontium-90 with the half-life of 28.4 years is the radionuclide source. Activity of radionuclide by the time of the generator decommissioning was 12.95x1014 Bq. The radionuclide itself is located inside the sealed cylindrical container of stainless steel. Gamma radiation presenting potential threat of external radiation does not exceed 200mR/h. Radiation shielding of the device consists of the lead, tungsten-nickel alloy, depleted uranium, and of alloys on its basis. Transportation of RTG is allowed in a special steel transportation container. The sizes are – 1.8x1.3x1.7 m, its weight is 2800 kg. Manufacturing plant guarantees integrity if IEU-1 RTG when it falls from one hundred meters. Search for the sunken RTG was started by the Hydrographic service of the Pacific Fleet, which is in charge of the navigation equipment, in August 1997 and was carried out practically every year.
    [Show full text]