Evaluation of Next Generation Beach and Dune Erosion Model to Predict High Frequency Changes Along the Panhandle Coast of Florida

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Next Generation Beach and Dune Erosion Model to Predict High Frequency Changes Along the Panhandle Coast of Florida EVALUATION OF NEXT GENERATION BEACH AND DUNE EROSION MODEL TO PREDICT HIGH FREQUENCY CHANGES ALONG THE PANHANDLE COAST OF FLORIDA By NICOLE SHELBY SHARP A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2008 1 © 2008 Nicole Shelby Sharp 2 To my mother and father 3 ACKNOWLEDGMENTS I would like to thank my supervisory committee chair, Dr. Robert G. Dean, for his continuous support and guidance. His insight and knowledge into the subject is inspiring, and his time that he has spent with me over the past two years has been very insightful. I also thank Dr. Arnoldo Valle Levinson for serving on my supervisory committee. I would also like to thank Jamie MacMahan for introducing to me the topic of coastal engineering. If it were not for his spirit and enthusiasm for the subject, I feel as though I would not be where I am today. Lastly, I cannot forget to thank my parents and my sister for their patience in my schooling process and for always answering the phone in my times of need. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................4 LIST OF TABLES...........................................................................................................................7 LIST OF FIGURES .........................................................................................................................8 ABSTRACT...................................................................................................................................11 CHAPTER 1 INTRODUCTION ..................................................................................................................12 Coastal Processes....................................................................................................................12 Shoreline Forecasting .............................................................................................................14 Objective and Scope ...............................................................................................................15 2 LITERATURE REVIEW.......................................................................................................18 Mean High Water (MHW) Erosion Calculation Methods......................................................18 Hurricane Model.....................................................................................................................19 Bathystrophic Storm Tide Model ...........................................................................................21 Shoreline Change Models.......................................................................................................23 3 METHODOLOGY .................................................................................................................29 Hurricane Model.....................................................................................................................29 Hurricane Storm Surge Model................................................................................................30 NEXTGEN Erosion Model.....................................................................................................35 Contour Changes ....................................................................................................................36 Measured Contour Change..............................................................................................36 Predicted Contour Change...............................................................................................37 Statistical Analysis of Results ................................................................................................38 Measured versus Predicted..............................................................................................39 Measured 10 Foot Contour versus Measured Zero Foot Contour...................................39 4 RESULTS AND ANALYSIS.................................................................................................44 Measured Shoreline Change Results ......................................................................................44 Storm Surge Results ...............................................................................................................46 Cross-Shore Transport Model.................................................................................................49 Statistical Analysis of Data.....................................................................................................53 Measured 10 Foot versus Predicted 10 Foot Predicted Contour .....................................53 Measured 10 Foot versus Measured Zero Foot Contour.................................................54 Model Sensitivity to Input Variables...............................................................................55 5 5 CONCLUSIONS AND RECOMMENDATIONS.................................................................77 Summary and Conclusions .....................................................................................................77 Storm Surge Model..........................................................................................................77 Measured Contour Change..............................................................................................78 Representation of High-Frequency Shoreline Changes ..................................................78 Recommendations for Future Study .......................................................................................79 Storm Surge Model..........................................................................................................79 Measured Contour Change..............................................................................................79 Representation of High-Frequency Shoreline Changes ..................................................80 APPENDIX A STORM SURGE HYDROGRAPHS .....................................................................................81 B NEXTGEN PROFILE EVOLUTION RESULTS..................................................................87 LIST OF REFERENCES.............................................................................................................117 BIOGRAPHICAL SKETCH .......................................................................................................120 6 LIST OF TABLES Table page 4-1 Comparison between predicted and measured storm surge...............................................72 4-2 Individual setup values and maximum adjusted surge ......................................................73 4-3 Individual R-squared and r values of predicted versus measured +10 contour change for six common profiles in each storm event.....................................................................74 4-4 Individual R-squared values for measured +10 contour change versus measured zero contour change for each storm event .................................................................................75 4-5 Predicted average change of +10 contour from NEXTGEN model for the three cases of storm surge ....................................................................................................................76 7 LIST OF FIGURES Figure page 1-1 General location of study area and Department of Environmental Protection monuments.........................................................................................................................17 2-1 Sketch of idealized hurricane model..................................................................................27 2-2 Basic concepts for Kriebel and Dean’s erosion model . ....................................................28 3-1 Definition sketch of hurricane “catchment” zone..............................................................41 3-2 Geometric sketch of θrot ,θl , and coordinate system. ........................................................42 3-3 Example sketch of μ and θslnew_ .......................................................................................43 4-1 Average +10 and zero foot contour change over nine common Monuments....................57 4-2 Zero foot contour accretion due to large storms. ...............................................................58 4-3 Predicted storm surge hydrograph for Hurricane Eloise....................................................59 4-4 Plot of maximum predicted un-scaled surge versus maximum measured surge at location of maximum surge. ..............................................................................................60 4-5 Measured storm surge hydrograph for Hurricane Eloise from historical tide gage data.....................................................................................................................................61 4-6 Measured storm surge hydrograph for Hurricane Opal from NOAA CO-OPS database..............................................................................................................................62 4-7 Measured storm surge hydrograph for Hurricane Ivan from NOAA CO-OPS database..............................................................................................................................63 4-8 Measured storm surge hydrograph for Hurricane Dennis from NOAA CO-OPS database..............................................................................................................................64
Recommended publications
  • Hurricane and Tropical Storm
    State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development.
    [Show full text]
  • Hurricane Waves in the Ocean
    WAVE-INDUCED SURGES DURING HURRICANE OPAL Chung-Sheng Wu*, Arthur A. Taylor, Jye Chen and Wilson A. Shaffer Meteorological Development Laboratory National Weather Service/NOAA, Silver Spring, Maryland 1. INTRODUCTION Hurricanes storm surges and waves at the coastline Holliday (1977) developed a simple formula relating the have been the cause of damages in the coastal zone. cyclone’s pressure drop to maximum sustained wind for On the U.S. Gulf Coast, for example, Hurricane Opal the Western Pacific. A more general form was (1995) made landfall near the time of low tide and proposed by Holland (1980). The merit of these models resulted in severe flooding by storm surges and waves. is that they are analytical models for the surface wind Storm surge can penetrate miles inland from the coast. profile in a hurricane. A similar formulation was applied Waves ride above the surge levels, causing wave runup to the wave model in the present work. The framework and mean water level set-up. These wave effects are of the hurricane wave model is described below. significant near the landfall area and are affected by the process that hurricane approaches the coastline. 2.1 HURRICANE WIND AND STORM SURGES During 1950-1977, hurricane wave models based on Holland (1980) employed a standard pressure profile for significant wave height and period were developed (e.g. a tropical cyclone and obtained the popular gradient Bretschneider, 1957; Ross, 1976) for marine weather wind profile. Jelesnianski and Taylor (1976) assumed a prediction and offshore oil industry design. Cardone surface wind profile in the pressure equation.
    [Show full text]
  • Fishing Pier Design Guidance Part 1
    Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31,
    [Show full text]
  • Hurricane & Tropical Storm
    5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard.
    [Show full text]
  • 'Service Assessment': Hurricane Isabel September 18-19, 2003
    Service Assessment Hurricane Isabel September 18-19, 2003 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover: Moderate Resolution Imaging Spectroradiometer (MODIS) Rapid Response Team imagery, NASA Goddard Space Flight Center, 1555 UTC September 18, 2003. Service Assessment Hurricane Isabel September 18-19, 2003 May 2004 U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary National Oceanic and Atmospheric Administration Vice Admiral Conrad C. Lautenbacher, Jr., U.S. Navy (retired), Administrator National Weather Service Brigadier General David L. Johnson, U.S. Air Force (Retired), Assistant Administrator Preface The hurricane is one of the most potentially devastating natural forces. The potential for disaster increases as more people move to coastlines and barrier islands. To meet the mission of the National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS) - provide weather, hydrologic, and climatic forecasts and warnings for the protection of life and property, enhancement of the national economy, and provide a national weather information database - the NWS has implemented an aggressive hurricane preparedness program. Hurricane Isabel made landfall in eastern North Carolina around midday Thursday, September 18, 2003, as a Category 2 hurricane on the Saffir-Simpson Hurricane Scale (Appendix A). Although damage estimates are still being tabulated as of this writing, Isabel is considered one of the most significant tropical cyclones to affect northeast North Carolina, east central Virginia, and the Chesapeake and Potomac regions since Hurricane Hazel in 1954 and the Chesapeake-Potomac Hurricane of 1933. Hurricane Isabel will be remembered not for its intensity, but for its size and the impact it had on the residents of one of the most populated regions of the United States.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • Florida Hurricanes and Tropical Storms
    FLORIDA HURRICANES AND TROPICAL STORMS 1871-1995: An Historical Survey Fred Doehring, Iver W. Duedall, and John M. Williams '+wcCopy~~ I~BN 0-912747-08-0 Florida SeaGrant College is supported by award of the Office of Sea Grant, NationalOceanic and Atmospheric Administration, U.S. Department of Commerce,grant number NA 36RG-0070, under provisions of the NationalSea Grant College and Programs Act of 1966. This information is published by the Sea Grant Extension Program which functionsas a coinponentof the Florida Cooperative Extension Service, John T. Woeste, Dean, in conducting Cooperative Extensionwork in Agriculture, Home Economics, and Marine Sciences,State of Florida, U.S. Departmentof Agriculture, U.S. Departmentof Commerce, and Boards of County Commissioners, cooperating.Printed and distributed in furtherance af the Actsof Congressof May 8 andJune 14, 1914.The Florida Sea Grant Collegeis an Equal Opportunity-AffirmativeAction employer authorizedto provide research, educational information and other servicesonly to individuals and institutions that function without regardto race,color, sex, age,handicap or nationalorigin. Coverphoto: Hank Brandli & Rob Downey LOANCOPY ONLY Florida Hurricanes and Tropical Storms 1871-1995: An Historical survey Fred Doehring, Iver W. Duedall, and John M. Williams Division of Marine and Environmental Systems, Florida Institute of Technology Melbourne, FL 32901 Technical Paper - 71 June 1994 $5.00 Copies may be obtained from: Florida Sea Grant College Program University of Florida Building 803 P.O. Box 110409 Gainesville, FL 32611-0409 904-392-2801 II Our friend andcolleague, Fred Doehringpictured below, died on January 5, 1993, before this manuscript was completed. Until his death, Fred had spent the last 18 months painstakingly researchingdata for this book.
    [Show full text]
  • Hydrologic Response of Forested Lands During The
    HYDROLOGICAND WATER-QUALITYRESPONSE OF FORESTED AND AGRICULTURALLANDS DURING THE 1999 EXTREME WEATHERCONDITIONS IN EASTERN NORTH CAROLINA J. D. Shelby, G. M. Chescheir, R. W. Skaggs, D. M. Amatya ABSTRACT. This study evaluated hydrologic and water-quality data collected on a coastal-plain research watershed during a series of hurricanes and tropical storms that hit coastal North Carolina in 1999, including hurricanes Dennis, Floyd, and Irene. DUring September and October 1999, the research watershed received approximately 555 mm of rainfall associated with hurricanes. This was the wettest such period in a 49-year historical weather record (1951 -1999). Prior to the hurricanes, the watershed experienced a dry late wintel; spring, and summer (565 cm for Feb.-Aug.). Tlzis was the third driest such period in the 49-year record Maximum daily flow rates measured across the research watershed were greater during hurricane Floyd than for any other time in a four-year (1996-1999) study of the watershed. Daily flows observed for an agricultural subwatershed were generally greater than for a forested subwatershed throughout the study, and during the hurricanes of 1999. Daily nutrient loads measured across the research watershed were greater during hurricane Floyd than for any other time in the study. In general, the two-month period of hurricanes produced total nitrogen and total phosphorus loads nearly equal to average loads for an entire year: Total annual nitrogen export from an agricultural subwatershed was 18 kghin 1999, with 11 kgh(61 %) lost during September and October: Total annual nitrogen export from a forested subwatershed was 15 kghin 1999, with 10 kgha (67%)lost during September and October: The nitrogen export observed in the forested subwatershed was high compared to other forested areas, likely due to the highly permeable organic soils in the watershed.
    [Show full text]
  • The Impact of Hurricane on Caribbean Tourist Arrivals 2013
    Tourism Economics, 2013, 19 (6), 1401–1409 doi: 10.5367/te.2013.0238 The impact of hurricane strikes on tourist arrivals in the Caribbean CHARLEY GRANVORKA CEREGMIA, Université des Antilles et de la Guyane, Pointe-à-Pitre, Guadeloupe ERIC STROBL Department of Economics, École Polytechnique, 91128 Palaiseau, France, and SALISES, University of the West Indies, Trinidad and Tobago. E-mail: [email protected]. (Corresponding author.) The authors quantify the impact of hurricane strikes on the tourism industry in the Caribbean. To this end they first derive a hurricane destruction index that allows them to calculate the actual wind speed experienced at any locality relative to the hurricane eye of a passing or land falling hurricane. They then employ this hurricane index in a cross-country panel data context to estimate its impact on country- level tourist numbers. The results suggest that an average hurricane strike causes tourism arrivals to be about 2% lower than they would have been had no strike occurred. Keywords: hurricanes; tourist arrivals; Caribbean The Caribbean is more dependent on tourism to sustain livelihoods than almost any other region of the world in that the sector often serves as the primary industry or at least as a major earner of foreign exchange. For example, in terms of output generation, in the British Virgin Islands, Antigua and Barbuda, and Anguilla tourism constitutes over 70% of gross domestic product (GDP), while in other islands, such as Aruba, Barbados and the Bahamas, more than half of GDP is generated through tourism and related receipts (World Travel and Tourism Council, 2010).
    [Show full text]
  • MASARYK UNIVERSITY BRNO Diploma Thesis
    MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories.
    [Show full text]
  • ON the PERFORMANCE of BUILDINGS in HURRICANES a STUDY for the SAFFIR-SIMSPON SCALE COMMITTEE by Tim Marshall, P.E
    ON THE PERFORMANCE OF BUILDINGS IN HURRICANES A STUDY FOR THE SAFFIR-SIMSPON SCALE COMMITTEE by Tim Marshall, P.E. Meteorologist HAAG ENGINEERING CO. October 18, 2009 DRAFT COPY INTRODUCTION Over the past 30 years, the author has surveyed building damage in 30 hurricanes beginning with Hurricane Allen (1980). Many of these hurricanes, the author has experienced firsthand by riding out the storms in hotels, vehicles, or parking garages. Within weeks after each hurricane, ground and sometimes aerial surveys were performed to document the performance of buildings and measure the heights of the storm surge using levels, rods, and benchmarks. Then, the author spent several months in the disaster areas conducting individual inspections to hundreds of structures. To date, the author has amassed tens of thousands of images of hurricane damage to buildings and has written and assembled numerous references with regard to building performance in hurricanes. One thing that is clear is that not all buildings perform the same in a hurricane and that certain types of buildings, or their components, fail at relatively low wind speeds. This is especially true if there are poor attachments at critical connections. Certainly there have been a number of building improvements due to code upgrades in Florida and a few other states, after Hurricane Andrew, which has resulted in better building performance in subsequent hurricanes. In the author’s study of storm surge, it has become obvious there is not a direct relationship between the magnitude of the wind and the height of the storm surge. There are many reasons for this including the size of the hurricane, angle of its attack to the shoreline, coastal topography, bathymetry, etc.
    [Show full text]
  • Statement on Hurricane Opal October 4, 1995
    Administration of William J. Clinton, 1995 / Oct. 4 women in Beijing, China. Your words supported an answer to many, many prayers around the the statement she made on behalf of all Ameri- world, but many of them were led by you, Holy cans, that if women are healthy and educated, Father, and for that, you have the gratitude free from violence, if they have a chance to of all the American people. work and earn as full and equal partners, their On the threshold of a new millennium, more families will flourish. And when families flourish, than ever, we need your message of faith and communities and nations will flourish. family, community and peace. That is what we We know that if we value our families, as must work toward for millions of reasons, as we must, public policy must also support them. many reasons as there are children on this It must see to it that children live free of pov- Earth. erty with the opportunity of a good and decent It has been said that you can see the future education. If we value our families, we must by looking into the eyes of a child. Well, we let them know the dignity of work with decent are joined here today by 2,000 children from wages. If we value our families, we must care the Archdiocese of Newark and surrounding par- for them across the generations from the oldest ishes. Your Holiness, looking out at them now to the youngest. and into their eyes, we can see that the future Your Holiness, it is most fitting that you have is very bright indeed.
    [Show full text]