Route Planning in Transportation Networks∗ Hannah Bast1, Daniel Delling2, Andrew Goldberg3, Matthias Müller-Hannemann4, Thomas Pajor5, Peter Sanders6, Dorothea Wagner7 and Renato F. Werneck8 1University of Freiburg, Germany,
[email protected] 2Sunnyvale, USA,
[email protected] 3Amazon, USA,
[email protected] 4Martin-Luther-Universität Halle-Wittenberg, Germany,
[email protected] 5Microsoft Research, USA,
[email protected] 6Karlsruhe Institute of Technology, Germany,
[email protected] 7Karlsruhe Institute of Technology, Germany,
[email protected] 8Amazon, USA,
[email protected] April 17, 2015 Abstract We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted arXiv:1504.05140v1 [cs.DS] 20 Apr 2015 modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs. ∗This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F.