A Review of CUDA, MapReduce, and Pthreads Parallel Computing Models Kato Mivule1, Benjamin Harvey2, Crystal Cobb3, and Hoda El Sayed4 1 Computer Science Department, Bowie State University, Bowie, MD, USA
[email protected] [email protected] [email protected] [email protected] Abstract – The advent of high performance computing models to assist high performance computing users (HPC) and graphics processing units (GPU), present an with a faster understanding of parallel programming enormous computation resource for Large data concepts and thus better implementation of big data transactions (big data) that require parallel processing for parallel programming projects. Although a number of robust and prompt data analysis. While a number of HPC models could have been chosen for this overview, we frameworks have been proposed, parallel programming focused on CUDA, MapReduce, and Pthreads models present a number of challenges – for instance, how to fully utilize features in the different programming models because of the underlying features in the three to implement and manage parallelism via multi-threading models that could be used to for multi-threading. The in both CPUs and GPUs. In this paper, we take an rest of this paper is organized as follows: In Section overview of three parallel programming models, CUDA, 2, a review of the latest literature on parallel MapReduce, and Pthreads. The goal is to explore literature computing models and determinism is done. In on the subject and provide a high level view of the features Section 3, an overview of CUDA is given, while in presented in the programming models to assist high Section a review of MapReduce features is performance users with a concise understanding of parallel presented.