Estimation of the Autocovariance Function of a Stationary Process

Total Page:16

File Type:pdf, Size:1020Kb

Estimation of the Autocovariance Function of a Stationary Process Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Umberto Triacca Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica Universit`adell'Aquila, [email protected] Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Introduction The autocovariance function plays a key role in the construction of the DGP's model of our time series. Thus an important question is: Is it possible to obtain a 'good' estimate of the autocovariance function? Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Introduction This question is not trivial since we observe only one realization of the process. We cannot, for example, observe a second realization of Italian annual GDP for the period from 2001 to 2011. In general, with a single realization we are unable to estimate a moment function of a stochastic process. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The Mean Function of a stochastic process First, we consider the mean function. Definition. Let fxt ; t 2 Zg be a stochastic process such that Var(xt ) < 1 8t 2 Z. The function µx : Z ! R defined by µx (t) = E(xt ) is called Mean Function of the stochastic process fxt ; t 2 Zg. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The Mean Function of a weakly stationary process Let fxt ; t 2 Zg be a weakly stationary stochastic process. The mean function is given by µx (t) = µ 8t 2 Z Thus, for a weakly stationary process, the mean function is the constant function which takes always the same value µ. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean Function How do we estimate µ? Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean Function If were possible to obtain m independent realizations n (j) (j)o x1 ; :::; xT j = 1; :::; m we could estimate the mean of fxt ; t 2 Zg by averaging over the realizations m (δ) 1 X (j) µ~ = x ; δ 2 f1; 2; :::; T g m m δ j=1 Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean Function Since 2 γ (0) E µ~(δ) − µ = x m m we have (δ) 2 limm!1E µ~m − µ = 0 (δ) The estimatorµ ~m converges in quadratic mean to µ as the number of realizations increase. (δ) This implies thatµ ~m is consistent for µ. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean Function Unfortunately, as we have already seen, it is impossible to obtain multiple realizations. We have a single finite realization x1; x2;:::; xT Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean and Autocovariance Function Then, the only way to perform the average is along the time axis. + The mean and covariance functions can be estimated by their corresponding time averages: T 1 X x¯ = x T T t t=1 and T 1 X γ^ (k) = (x − x¯ )(x − x¯ ) for k = 0; 1;:::; T − 1 x T t T t−k T t=k+1 Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean and Autocovariance Function Now the question is: are these estimators `good'? Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Estimation of Mean and Autocovariance Function The answer is yes, if the stationary process is ergodic Ergodic comes from Greek.From ergon `energy, work'and hodos `way, path'. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic processes What is an ergodic process? Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic processes Definition. A stationary stochastic process is said ergodic, with respect to a given population moment, if the sample (or time) moment for a single finite realization of length T converges in quadratic mean to the population moment as T increases to 1. Remark. Note that we cannot simply refer to a process as ergodic. Ergodicity must be related directly to the particular population moment, e.g. mean value, covariance, etc. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic processes In particular, a stationary process xt with mean µ is mean-ergodic if h 2i limT !1E (¯xT − µ) = 0 and it is covariance-ergodic if 2 T !23 1 X lim E (x − x¯ )(x − x¯ ) − γ (k) = 0 T !1 4 T t T t−k T x 5 t=k+1 Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process ergodic processes It is important to underline that covariance-ergodicity implies mean-ergodicity, but not the reverse. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process ergodic processes A simple example of mean and covariance-ergodic process is the process ut ∼ i:i:d:N(0; 1) Problem: Show that the process ut ∼ i:i:d:N(0; 1) is mean-ergodic We observe that the process ut has no memory, in the sense that the value of the process at time t is uncorrelated with all past values up to time t − 1: Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process ergodic processes It is important to note that not all stationary processes are ergodic. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic processes Consider the stationary process fxt ; t 2 Zg, with xt = A 8t 2 Z, where A is a random variable with mean 3 and variance 7. This process is not mean-ergodic since the sample meanx ¯T does not converge to µ as T ! 1 Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic processes In fact we have 2 limT !1E (¯xT − 3) = 7 6= 0 Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The meaning of the ergodicity The ergodicity is a matter of information contained in a single realization of a long duration of the process. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The meaning of the ergodicity If the process is not too persistent (ergodicity), so that each element of the realization x1; x2;:::; xT will contain some information not available from the other elements, then a single realization of a long duration will be sufficient to obtain a good estimate of its moments. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The meaning of the ergodicity We have seen that: 1 the process ut ∼ i:i:d:N(0; 1) is mean-ergodic; 2 the process xt = A, where A is a random variable with mean 3 and variance 7 is not mean-ergodic. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The meaning of the ergodicity Consider the process ut ∼ i:i:d:N(0; 1) and let u1; u2;:::; uT be a time series from this process. Each element of the time series u1; u2;:::; uT will contain some information not available from the other elements. There are new information contained in the new observations. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The meaning of the ergodicity Now, we consider the process xt = A, where A is a random variable with mean 3 and variance 7. We note that a time series from this process will has the form a; a; :::; a where with a we have denoted a realization of the random variable A. Thus in the time series x1 = a; x2 = a; :::; xT = a there is the same infomation contained in the first observation x1. There aren't new information contained in the new observations. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process The meaning of the ergodicity The process ut has no memory, in the sense that the value of the process at time t is uncorrelated with all past values up to time t − 1: The process xt = A, instead, is too persistent. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic Theorems Now, we present some theoretical results, called ergodic theorems. These theorems give some necessary and/or sufficient condition for mean-ergodicity of a stationary process. Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic Theorems Theorem. (Slutsky's Theorem) A stationary process xt with mean µ and autocovariance function γx (k) is mean-ergodic iff T −1 1 X lim γ (k) = 0 T !1 T x k=0 Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic Theorems We note that T −1 1 X γ(k) = Cov(¯x ; x ): T T T k=0 Thus T −1 1 X lim γ(k) = 0 () lim Cov(¯x ; x ) = 0 T !1 T T !1 T T k=0 We have that a stationary process xt is mean-ergodic if and only if as the sample size T is increased there is less and less correlation (covariance) between the sample meanx ¯T and the last observation xT . Umberto Triacca Lesson 6: Estimation of the Autocovariance Function of a Stationary Process Ergodic Theorems Corollary 1 (Sufficient condition for mean-ergodicity). Let xt be a stationary process with mean µ and autocovariance function γx (k).
Recommended publications
  • Stationary Processes and Their Statistical Properties
    Stationary Processes and Their Statistical Properties Brian Borchers March 29, 2001 1 Stationary processes A discrete time stochastic process is a sequence of random variables Z1, Z2, :::. In practice we will typically analyze a single realization z1, z2, :::, zn of the stochastic process and attempt to esimate the statistical properties of the stochastic process from the realization. We will also consider the problem of predicting zn+1 from the previous elements of the sequence. We will begin by focusing on the very important class of stationary stochas- tic processes. A stochastic process is strictly stationary if its statistical prop- erties are unaffected by shifting the stochastic process in time. In particular, this means that if we take a subsequence Zk+1, :::, Zk+m, then the joint distribution of the m random variables will be the same no matter what k is. Stationarity requires that the mean of the stochastic process be a constant. E[Zk] = µ. and that the variance is constant 2 V ar[Zk] = σZ : Also, stationarity requires that the covariance of two elements separated by a distance m is constant. That is, Cov(Zk;Zk+m) is constant. This covariance is called the autocovariance at lag m, and we will use the notation γm. Since Cov(Zk;Zk+m) = Cov(Zk+m;Zk), we need only find γm for m 0. The ≥ correlation of Zk and Zk+m is the autocorrelation at lag m. We will use the notation ρm for the autocorrelation. It is easy to show that γk ρk = : γ0 1 2 The autocovariance and autocorrelation ma- trices The covariance matrix for the random variables Z1, :::, Zn is called an auto- covariance matrix.
    [Show full text]
  • Stochastic Process - Introduction
    Stochastic Process - Introduction • Stochastic processes are processes that proceed randomly in time. • Rather than consider fixed random variables X, Y, etc. or even sequences of i.i.d random variables, we consider sequences X0, X1, X2, …. Where Xt represent some random quantity at time t. • In general, the value Xt might depend on the quantity Xt-1 at time t-1, or even the value Xs for other times s < t. • Example: simple random walk . week 2 1 Stochastic Process - Definition • A stochastic process is a family of time indexed random variables Xt where t belongs to an index set. Formal notation, { t : ∈ ItX } where I is an index set that is a subset of R. • Examples of index sets: 1) I = (-∞, ∞) or I = [0, ∞]. In this case Xt is a continuous time stochastic process. 2) I = {0, ±1, ±2, ….} or I = {0, 1, 2, …}. In this case Xt is a discrete time stochastic process. • We use uppercase letter {Xt } to describe the process. A time series, {xt } is a realization or sample function from a certain process. • We use information from a time series to estimate parameters and properties of process {Xt }. week 2 2 Probability Distribution of a Process • For any stochastic process with index set I, its probability distribution function is uniquely determined by its finite dimensional distributions. •The k dimensional distribution function of a process is defined by FXX x,..., ( 1 x,..., k ) = P( Xt ≤ 1 ,..., xt≤ X k) x t1 tk 1 k for anyt 1 ,..., t k ∈ I and any real numbers x1, …, xk .
    [Show full text]
  • Autocovariance Function Estimation Via Penalized Regression
    Autocovariance Function Estimation via Penalized Regression Lina Liao, Cheolwoo Park Department of Statistics, University of Georgia, Athens, GA 30602, USA Jan Hannig Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA Kee-Hoon Kang Department of Statistics, Hankuk University of Foreign Studies, Yongin, 449-791, Korea Abstract The work revisits the autocovariance function estimation, a fundamental problem in statistical inference for time series. We convert the function estimation problem into constrained penalized regression with a generalized penalty that provides us with flexible and accurate estimation, and study the asymptotic properties of the proposed estimator. In case of a nonzero mean time series, we apply a penalized regression technique to a differenced time series, which does not require a separate detrending procedure. In penalized regression, selection of tuning parameters is critical and we propose four different data-driven criteria to determine them. A simulation study shows effectiveness of the tuning parameter selection and that the proposed approach is superior to three existing methods. We also briefly discuss the extension of the proposed approach to interval-valued time series. Some key words: Autocovariance function; Differenced time series; Regularization; Time series; Tuning parameter selection. 1 1 Introduction Let fYt; t 2 T g be a stochastic process such that V ar(Yt) < 1, for all t 2 T . The autoco- variance function of fYtg is given as γ(s; t) = Cov(Ys;Yt) for all s; t 2 T . In this work, we consider a regularly sampled time series f(i; Yi); i = 1; ··· ; ng. Its model can be written as Yi = g(i) + i; i = 1; : : : ; n; (1.1) where g is a smooth deterministic function and the error is assumed to be a weakly stationary 2 process with E(i) = 0, V ar(i) = σ and Cov(i; j) = γ(ji − jj) for all i; j = 1; : : : ; n: The estimation of the autocovariance function γ (or autocorrelation function) is crucial to determine the degree of serial correlation in a time series.
    [Show full text]
  • Covariances of ARMA Models
    Statistics 910, #9 1 Covariances of ARMA Processes Overview 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation function 5. Discussion Review of ARMA processes ARMA process A stationary solution fXtg (or if its mean is not zero, fXt − µg) of the linear difference equation Xt − φ1Xt−1 − · · · − φpXt−p = wt + θ1wt−1 + ··· + θqwt−q φ(B)Xt = θ(B)wt (1) 2 where wt denotes white noise, wt ∼ WN(0; σ ). Definition 3.5 adds the • identifiability condition that the polynomials φ(z) and θ(z) have no zeros in common and the • normalization condition that φ(0) = θ(0) = 1. Causal process A stationary process fXtg is said to be causal if there ex- ists a summable sequence (some require square summable (`2), others want more and require absolute summability (`1)) sequence f jg such that fXtg has the one-sided moving average representation 1 X Xt = jwt−j = (B)wt : (2) j=0 Proposition 3.1 states that a stationary ARMA process fXtg is causal if and only if (iff) the zeros of the autoregressive polynomial Statistics 910, #9 2 φ(z) lie outside the unit circle (i.e., φ(z) 6= 0 for jzj ≤ 1). Since φ(0) = 1, φ(z) > 0 for jzj ≤ 1. (The unit circle in the complex plane consists of those x 2 C for which jzj = 1; the closed unit disc includes the interior of the unit circle as well as the circle; the open unit disc consists of jzj < 1.) If the zeros of φ(z) lie outside the unit circle, then we can invert each Qp of the factors (1 − B=zj) that make up φ(B) = j=1(1 − B=zj) one at a time (as when back-substituting in the derivation of the AR(1) representation).
    [Show full text]
  • Covariance Functions
    C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml Chapter 4 Covariance Functions We have seen that a covariance function is the crucial ingredient in a Gaussian process predictor, as it encodes our assumptions about the function which we wish to learn. From a slightly different viewpoint it is clear that in supervised learning the notion of similarity between data points is crucial; it is a basic similarity assumption that points with inputs x which are close are likely to have similar target values y, and thus training points that are near to a test point should be informative about the prediction at that point. Under the Gaussian process view it is the covariance function that defines nearness or similarity. An arbitrary function of input pairs x and x0 will not, in general, be a valid valid covariance covariance function.1 The purpose of this chapter is to give examples of some functions commonly-used covariance functions and to examine their properties. Section 4.1 defines a number of basic terms relating to covariance functions. Section 4.2 gives examples of stationary, dot-product, and other non-stationary covariance functions, and also gives some ways to make new ones from old. Section 4.3 introduces the important topic of eigenfunction analysis of covariance functions, and states Mercer’s theorem which allows us to express the covariance function (under certain conditions) in terms of its eigenfunctions and eigenvalues. The covariance functions given in section 4.2 are valid when the input domain X is a subset of RD.
    [Show full text]
  • Lecture 1: Stationary Time Series∗
    Lecture 1: Stationary Time Series∗ 1 Introduction If a random variable X is indexed to time, usually denoted by t, the observations {Xt, t ∈ T} is called a time series, where T is a time index set (for example, T = Z, the integer set). Time series data are very common in empirical economic studies. Figure 1 plots some frequently used variables. The upper left figure plots the quarterly GDP from 1947 to 2001; the upper right figure plots the the residuals after linear-detrending the logarithm of GDP; the lower left figure plots the monthly S&P 500 index data from 1990 to 2001; and the lower right figure plots the log difference of the monthly S&P. As you could see, these four series display quite different patterns over time. Investigating and modeling these different patterns is an important part of this course. In this course, you will find that many of the techniques (estimation methods, inference proce- dures, etc) you have learned in your general econometrics course are still applicable in time series analysis. However, there are something special of time series data compared to cross sectional data. For example, when working with cross-sectional data, it usually makes sense to assume that the observations are independent from each other, however, time series data are very likely to display some degree of dependence over time. More importantly, for time series data, we could observe only one history of the realizations of this variable. For example, suppose you obtain a series of US weekly stock index data for the last 50 years.
    [Show full text]
  • Lecture 5: Gaussian Processes & Stationary Processes
    Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2019 Lecture 5: Gaussian processes & Stationary processes Readings Recommended: • Pavliotis (2014), sections 1.1, 1.2 • Grimmett and Stirzaker (2001), 8.2, 8.6 • Grimmett and Stirzaker (2001) 9.1, 9.3, 9.5, 9.6 (more advanced than what we will cover in class) Optional: • Grimmett and Stirzaker (2001) 4.9 (review of multivariate Gaussian random variables) • Grimmett and Stirzaker (2001) 9.4 • Chorin and Hald (2009) Chapter 6; a gentle introduction to the spectral decomposition for continuous processes, that gives insight into the link to the spectral decomposition for discrete processes. • Yaglom (1962), Ch. 1, 2; a nice short book with many details about stationary random functions; one of the original manuscripts on the topic. • Lindgren (2013) is a in-depth but accessible book; with more details and a more modern style than Yaglom (1962). We want to be able to describe more stochastic processes, which are not necessarily Markov process. In this lecture we will look at two classes of stochastic processes that are tractable to use as models and to simulat: Gaussian processes, and stationary processes. 5.1 Setup Here are some ideas we will need for what follows. 5.1.1 Finite dimensional distributions Definition. The finite-dimensional distributions (fdds) of a stochastic process Xt is the set of measures Pt1;t2;:::;tk given by Pt1;t2;:::;tk (F1 × F2 × ··· × Fk) = P(Xt1 2 F1;Xt2 2 F2;:::Xtk 2 Fk); k where (t1;:::;tk) is any point in T , k is any integer, and Fi are measurable events in R.
    [Show full text]
  • Introduction to Random Fields and Scale Invariance Hermine Biermé
    Introduction to random fields and scale invariance Hermine Biermé To cite this version: Hermine Biermé. Introduction to random fields and scale invariance. 2017. hal-01493834v2 HAL Id: hal-01493834 https://hal.archives-ouvertes.fr/hal-01493834v2 Preprint submitted on 5 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introduction to random fields and scale invariance Hermine Bierme´ Abstract In medical imaging, several authors have proposed to characterize rough- ness of observed textures by their fractal dimensions. Fractal analysis of 1D signals is mainly based on the stochastic modeling using the famous fractional Brownian motion for which the fractal dimension is determined by its so-called Hurst param- eter. Lots of 2D generalizations of this toy model may be defined according to the scope. This lecture intends to present some of them. After an introduction to random fields, the first part will focus on the construction of Gaussian random fields with prescribed invariance properties such as stationarity, self-similarity, or operator scal- ing property. Sample paths properties such as modulus of continuity and Hausdorff dimension of graphs will be settled in the second part to understand links with frac- tal analysis.
    [Show full text]
  • Basic Properties of the Multivariate Fractional Brownian Motion Pierre-Olivier Amblard, Jean-François Coeurjolly, Frédéric Lavancier, Anne Philippe
    Basic properties of the Multivariate Fractional Brownian Motion Pierre-Olivier Amblard, Jean-François Coeurjolly, Frédéric Lavancier, Anne Philippe To cite this version: Pierre-Olivier Amblard, Jean-François Coeurjolly, Frédéric Lavancier, Anne Philippe. Basic properties of the Multivariate Fractional Brownian Motion. Séminaires et congrès, Société mathématique de France, 2013, 28, pp.65-87. hal-00497639v2 HAL Id: hal-00497639 https://hal.archives-ouvertes.fr/hal-00497639v2 Submitted on 25 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BASIC PROPERTIES OF THE MULTIVARIATE FRACTIONAL BROWNIAN MOTION PIERRE-OLIVIER AMBLARD, JEAN-FRANÇOIS COEURJOLLY, FRÉDÉRIC LAVANCIER, AND ANNE PHILIPPE Abstract. This paper reviews and extends some recent results on the multivariate frac- tional Brownian motion (mfBm) and its increment process. A characterization of the mfBm through its covariance function is obtained. Similarly, the correlation and spectral analyses of the increments are investigated. On the other hand we show that (almost) all mfBm’s may be reached as the limit of partial sums of (super)linear processes. Fi- nally, an algorithm to perfectly simulate the mfBm is presented and illustrated by some simulations. 1. Introduction The fractional Brownian motion is the unique Gaussian self-similar process with station- ary increments.
    [Show full text]
  • Mixed Effects Models for Complex Data
    Mixed Effects Models for Complex Data Lang Wu . University of British Columbia Contents 1 Introduction 3 1.1 Introduction 3 1.2 Longitudinal Data and Clustered Data 5 1.3 Some Examples 8 1.3.1 A Study on Mental Distress 8 1.3.2 An AIDS Study 11 1.3.3 A Study on Students’ Performance 14 1.3.4 A Study on Children’s Growth 15 1.4 Regression Models 16 1.4.1 General Concepts and Approaches 16 1.4.2 Regression Models for Cross-Sectional Data 18 1.4.3 Regression Models for Longitudinal Data 22 1.4.4 Regression Models for Survival Data 25 1.5 Mixed Effects Models 26 1.5.1 Motivating Examples 26 1.5.2 LME Models 29 1.5.3 GLMM, NLME, and Frailty Models 31 1.6 Complex or Incomplete Data 32 1.6.1 Missing Data 33 1.6.2 Censoring, Measurement Error, and Outliers 34 1.6.3 Simple Methods 35 1.7 Software 36 1.8 Outline and Notation 37 iii iv MIXED EFFECTS MODELS FOR COMPLEX DATA 2 Mixed Effects Models 41 2.1 Introduction 41 2.2 Linear Mixed Effects (LME) Models 43 2.2.1 Linear Regression Models 43 2.2.2 LME Models 44 2.3 Nonlinear Mixed Effects (NLME) Models 51 2.3.1 Nonlinear Regression Models 51 2.3.2 NLME Models 54 2.4 Generalized Linear Mixed Models (GLMMs) 60 2.4.1 Generalized Linear Models (GLMs) 60 2.4.2 GLMMs 64 2.5 Nonparametric and Semiparametric Mixed Effects Models 68 2.5.1 Nonparametric and Semiparametric Regression Models 68 2.5.2 Nonparametric and Semiparametric Mixed Effects Models 76 2.6 Computational Strategies 80 2.6.1 “Exact” Methods 83 2.6.2 EM Algorithms 85 2.6.3 Approximate Methods 87 2.7 Further Topics 91 2.7.1 Model Selection and
    [Show full text]
  • 2.1 Stochastic Processes and Random Fields
    2 Random Fields 2.1 Stochastic Processes and Random Fields As you read in the Preface, for us a random field is simply a stochastic pro- cess, taking values in a Euclidean space, and defined over a parameter space of dimensionality at least one. Actually, we shall be rather loose about exchang- ing the terms `random field’ and `stochastic process'. In general, we shall use ‘field’ when the geometric structure of the parameter space is important to us, and shall use `process' otherwise. We shall usually denote parameter spaces by either T or M, generally using T when the parameter space is simple Euclidean domain, such as a cube, and M when refering to manifolds, or surfaces. Elements of both T and M will be denoted by t, in a notation harking back to the early days of stochastic processes when the parameter was always one-dimensional `time'. Of course, we have yet to define what a stochastic process is. To do this properly, we should really talk about notions such as probability spaces, mea- surability, separability, and so forth, as we did in RFG. However, we shall send the purist to RFG to read about such things, and here take a simpler route. Definition 2.1.1. Given a parameter space T , a stochastic process f over T is a collection of random variables ff(t): t 2 T g : If T is a set of dimension N, and the random variables f(t) are all vector valued of dimension d, then we call the vector valued random field f a (N; d) random field.
    [Show full text]
  • Fractional Brownian Motion in Finance and Queueing
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Fractional Brownian motion in finance and queueing Tommi Sottinen Academic dissertation To be presented, with the premission of the Faculty of Science of the University of Helsinki, for public criticism in Auditorium XIV of the Main Building of the University, on March 29th, 2003, at 10 o’clock a.m. Department of Mathematics Faculty of Science University of Helsinki Helsinki 2003 ISBN 952-91-5653-7 (Paperback) ISBN 952-10-0984-5 (PDF) Yliopistopaino Helsinki 2003 3 Acknowledgements I wish to express my sincere gratitude to my mentor Esko Valkeila for his guidance and for his help on my (unsuccesful) project to go to Jamaica. Thanks are also due to Stefan Geiss and Paavo Salminen for reading the manuscript and for making useful suggestions. My collaborators Yuriy Kozachenko, Esko Valkeila and Olga Vasylyk de- serve my greatest gratitude. Without them I could not have written this thesis. I would like to acknowledge interesting mathematical discussions with Ilkka Norros. I wish to thank Goran Peskir for his hospitality during my days at the University of Aarhus. In general, I would like to acknowledge the friendly atmosphere of the Stochastics group gathered around the Finnish Graduate School in Stochastics. For financial support I am indebted with University of Helsinki, Academy of Finland, Finnish Graduate School in Stochastics and NorFA network “Sto- chastic analysis and its Applications”. I wish to thank my mother for her support. Finally, I would like to thank my companion Saara, who has always been too loving and patient.
    [Show full text]