Stochastic Process - Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Stochastic Process - Introduction Stochastic Process - Introduction • Stochastic processes are processes that proceed randomly in time. • Rather than consider fixed random variables X, Y, etc. or even sequences of i.i.d random variables, we consider sequences X0, X1, X2, …. Where Xt represent some random quantity at time t. • In general, the value Xt might depend on the quantity Xt-1 at time t-1, or even the value Xs for other times s < t. • Example: simple random walk . week 2 1 Stochastic Process - Definition • A stochastic process is a family of time indexed random variables Xt where t belongs to an index set. Formal notation, { t : ∈ ItX } where I is an index set that is a subset of R. • Examples of index sets: 1) I = (-∞, ∞) or I = [0, ∞]. In this case Xt is a continuous time stochastic process. 2) I = {0, ±1, ±2, ….} or I = {0, 1, 2, …}. In this case Xt is a discrete time stochastic process. • We use uppercase letter {Xt } to describe the process. A time series, {xt } is a realization or sample function from a certain process. • We use information from a time series to estimate parameters and properties of process {Xt }. week 2 2 Probability Distribution of a Process • For any stochastic process with index set I, its probability distribution function is uniquely determined by its finite dimensional distributions. •The k dimensional distribution function of a process is defined by FXX x,..., ( 1 x,..., k ) = P( Xt ≤ 1 ,..., xt≤ X k) x t1 tk 1 k for anyt 1 ,..., t k ∈ I and any real numbers x1, …, xk . • The distribution function tells us everything we need to know about the process {Xt }. week 2 3 Moments of Stochastic Process • e can describe a stochastic prWocess via its moments, i.e., 2 EXEXEXX()t ,,( t ) ()t⋅ s etc. We often use the first two moments. • s is The mean function of the procesEX( t) = μ t. 2 • The variance function of the process isVar ()t X= σ t . • The covariance function between Xt , Xs is XXEXXCov( t s) , = (( t− μ t)( s− μ ) s) • The correlation function between Xt , Xs is CovXX( t s) , ρXX()t, s = 2 2 σt σ s • hese moments are often function of time.T week 2 4 Stationary Processes XX,..., • A process is said to be strictly stationary if ( t 1 tk ) has the same joint distribution as XX ,..., . That is, if ( t+1 Δ t+k Δ) FXX,..., x( 1 ,...,k x) = X F,..., X x( 1 ,..., xk ) t1 tk t1+ Δ tk+ Δ 2 { fX •It } is a strictly stationary process andEX ( t < ) ∞ then, the mean function is a constant and the variance function is also a constant. • oreover, for a strictly stationaMoments ry process with first two m finite, the covariance function, and the correlation function depend only on the time difference s. • A trivial example of a strictly stationary process is a sequence f o i.i.d random variables. week 2 5 Weak Stationarity • Strict stationarity is too strong of a condition in practice. It is often difficult assumption to assess based on an observed time series x1,…,xk. • In time series analysis we often use a weaker sense of stationarity in terms of the moments of the process. • A process is said to be nth-order weakly stationary if all its joint moments up to order n exists and are time invariant, i.e., independent of time origin. • For example, a second-order weakly stationary process will have constant mean and variance, with the covariance and the correlation being functions of the time difference along. • A strictly stationary process with the first two moments finite is also a second-ordered weakly stationary. But a strictly stationary process may not have finite moments and therefore may not be weakly stationary. week 2 6 The Autocovariance and Autocorrelation Functions • For a stationary process {Xt }, with constant mean μ and constant variance σ2. The covariance between Xt and Xt+s is sγ ()=cov X( t X t+ , s) = E(( t − Xμ)( s − μ) X) • The correlation between Xt and Xt+s is covXX( ,) γ (s) ρ()s = t s = varXX()t var()s γ ()0 Where varXX()t = var( t+ s) = γ (0) . • s functions of As, γ(s) s called the autocovariancei function and ρ(s) is called the autocorrelation function (ATF). They represent the covariance and correlation between Xt and Xt+s s, from the same proces separated only by s time lags. week 2 7 Properties of γ(s) and ρ(s) • For a stationary process, the autocovariance function γ(s) and the autocorrelation function ρ(s) have the following properties: 0¾ γ () var= (X t ) ;ρ( ) = 0 1 . ¾−1 ≤ρ()s ≤ 1. ¾ γs()=γ ( − s )andρ( ) = sρ(− s) . ¾ The autocovariance function γ(s) and the autocorrelation function ρ(s) are positive semidefinite in the sense that n n n n ∑∑αi α j ()i− γ 0 j ≥ and ∑∑αi α j ()i− ρ j ≥0 i==11j i==11j bers for any real num,α1α 2 ,...,α n . week 2 8 Correlogram • A correlogram is a plot of the autocorrelation function ρ(s) versus the lag s where s = 0,1, …. •Example… week 2 9 Partial Autocorrelation Function • Often we want to investigate the dependency / association between Xt and Xt+k adjusting for their dependency on Xt+1, Xt+2,…, Xt+k-1. • The conditional correlation Corr(Xt , Xt+k | Xt+1, Xt+2,…, Xt+k-1) is usually referred to as the partial correlation in time series analysis. • Partial autocorrelation is usually useful for identifying autoregressive models. week 2 10 Gaussian process • A stochastic process is said to be a normal or Gaussian process if its joint probability distribution is normal. • A Gaussian process is strictly and weakly stationary because the normal distribution is uniquely characterized by its first two moments. • The processes we will discuss are assumed to be Gaussian unless mentioned otherwise. • Like other areas in statistics, most time series results are established for Gaussian processes. week 2 11 White Noise Processes • A process {Xt} is called white noise process if it is a sequence of uncorrelated random variables from a fixed distribution with constant mean μ (usually assume to be 0) and constant variance σ2. • A white noise process is stationary with autocovariance and autocorrelation functions given by …. • A white noise process is Gaussian if its joint distribution is normal. week 2 12 Estimation of the mean • Given a single realization {xt} of a stationary process {Xt}, a natural estimator of the mean ( XE t ) = μ is the sample mean 1 n x = ∑ xt n t=1 which is the time average of n observations. • It can be shown that the sample mean is unbiased and consistent estimator for μ. week 2 13 Sample Autocovariance Function • Given a single realization {xt} of a stationary process {Xt}, the sample autocovariance function given by 1n= k ˆ γ ()=k ∑x()t − x()t x+ k − x n t=1 is an estimate of the autocivariance function. week 2 14 Sample Autocorrelation Function • For a given time series {xt}, the sample autocorrelation function is given by n= k x()− x() x − x ∑ t t+ k γˆ k ˆ t=1 () ρ()k = n = . 2 γˆ()0 ∑x()t − x t=1 • The sample autocorrelation function is non-negative definite. • The sample autocovariance and autocorrelation functions have the same properties as the autocovariance and autocorrelation function of the entire process. week 2 15 Example week 2 16.
Recommended publications
  • Stationary Processes and Their Statistical Properties
    Stationary Processes and Their Statistical Properties Brian Borchers March 29, 2001 1 Stationary processes A discrete time stochastic process is a sequence of random variables Z1, Z2, :::. In practice we will typically analyze a single realization z1, z2, :::, zn of the stochastic process and attempt to esimate the statistical properties of the stochastic process from the realization. We will also consider the problem of predicting zn+1 from the previous elements of the sequence. We will begin by focusing on the very important class of stationary stochas- tic processes. A stochastic process is strictly stationary if its statistical prop- erties are unaffected by shifting the stochastic process in time. In particular, this means that if we take a subsequence Zk+1, :::, Zk+m, then the joint distribution of the m random variables will be the same no matter what k is. Stationarity requires that the mean of the stochastic process be a constant. E[Zk] = µ. and that the variance is constant 2 V ar[Zk] = σZ : Also, stationarity requires that the covariance of two elements separated by a distance m is constant. That is, Cov(Zk;Zk+m) is constant. This covariance is called the autocovariance at lag m, and we will use the notation γm. Since Cov(Zk;Zk+m) = Cov(Zk+m;Zk), we need only find γm for m 0. The ≥ correlation of Zk and Zk+m is the autocorrelation at lag m. We will use the notation ρm for the autocorrelation. It is easy to show that γk ρk = : γ0 1 2 The autocovariance and autocorrelation ma- trices The covariance matrix for the random variables Z1, :::, Zn is called an auto- covariance matrix.
    [Show full text]
  • Generalized Linear Models and Generalized Additive Models
    00:34 Friday 27th February, 2015 Copyright ©Cosma Rohilla Shalizi; do not distribute without permission updates at http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ Chapter 13 Generalized Linear Models and Generalized Additive Models [[TODO: Merge GLM/GAM and Logistic Regression chap- 13.1 Generalized Linear Models and Iterative Least Squares ters]] [[ATTN: Keep as separate Logistic regression is a particular instance of a broader kind of model, called a gener- chapter, or merge with logis- alized linear model (GLM). You are familiar, of course, from your regression class tic?]] with the idea of transforming the response variable, what we’ve been calling Y , and then predicting the transformed variable from X . This was not what we did in logis- tic regression. Rather, we transformed the conditional expected value, and made that a linear function of X . This seems odd, because it is odd, but it turns out to be useful. Let’s be specific. Our usual focus in regression modeling has been the condi- tional expectation function, r (x)=E[Y X = x]. In plain linear regression, we try | to approximate r (x) by β0 + x β. In logistic regression, r (x)=E[Y X = x] = · | Pr(Y = 1 X = x), and it is a transformation of r (x) which is linear. The usual nota- tion says | ⌘(x)=β0 + x β (13.1) · r (x) ⌘(x)=log (13.2) 1 r (x) − = g(r (x)) (13.3) defining the logistic link function by g(m)=log m/(1 m). The function ⌘(x) is called the linear predictor. − Now, the first impulse for estimating this model would be to apply the transfor- mation g to the response.
    [Show full text]
  • Autocovariance Function Estimation Via Penalized Regression
    Autocovariance Function Estimation via Penalized Regression Lina Liao, Cheolwoo Park Department of Statistics, University of Georgia, Athens, GA 30602, USA Jan Hannig Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA Kee-Hoon Kang Department of Statistics, Hankuk University of Foreign Studies, Yongin, 449-791, Korea Abstract The work revisits the autocovariance function estimation, a fundamental problem in statistical inference for time series. We convert the function estimation problem into constrained penalized regression with a generalized penalty that provides us with flexible and accurate estimation, and study the asymptotic properties of the proposed estimator. In case of a nonzero mean time series, we apply a penalized regression technique to a differenced time series, which does not require a separate detrending procedure. In penalized regression, selection of tuning parameters is critical and we propose four different data-driven criteria to determine them. A simulation study shows effectiveness of the tuning parameter selection and that the proposed approach is superior to three existing methods. We also briefly discuss the extension of the proposed approach to interval-valued time series. Some key words: Autocovariance function; Differenced time series; Regularization; Time series; Tuning parameter selection. 1 1 Introduction Let fYt; t 2 T g be a stochastic process such that V ar(Yt) < 1, for all t 2 T . The autoco- variance function of fYtg is given as γ(s; t) = Cov(Ys;Yt) for all s; t 2 T . In this work, we consider a regularly sampled time series f(i; Yi); i = 1; ··· ; ng. Its model can be written as Yi = g(i) + i; i = 1; : : : ; n; (1.1) where g is a smooth deterministic function and the error is assumed to be a weakly stationary 2 process with E(i) = 0, V ar(i) = σ and Cov(i; j) = γ(ji − jj) for all i; j = 1; : : : ; n: The estimation of the autocovariance function γ (or autocorrelation function) is crucial to determine the degree of serial correlation in a time series.
    [Show full text]
  • Variance Function Regressions for Studying Inequality
    Variance Function Regressions for Studying Inequality The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Western, Bruce and Deirdre Bloome. 2009. Variance function regressions for studying inequality. Working paper, Department of Sociology, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2645469 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Variance Function Regressions for Studying Inequality Bruce Western1 Deirdre Bloome Harvard University January 2009 1Department of Sociology, 33 Kirkland Street, Cambridge MA 02138. E-mail: [email protected]. This research was supported by a grant from the Russell Sage Foundation. Abstract Regression-based studies of inequality model only between-group differ- ences, yet often these differences are far exceeded by residual inequality. Residual inequality is usually attributed to measurement error or the in- fluence of unobserved characteristics. We present a regression that in- cludes covariates for both the mean and variance of a dependent variable. In this model, the residual variance is treated as a target for analysis. In analyses of inequality, the residual variance might be interpreted as mea- suring risk or insecurity. Variance function regressions are illustrated in an analysis of panel data on earnings among released prisoners in the Na- tional Longitudinal Survey of Youth. We extend the model to a decomposi- tion analysis, relating the change in inequality to compositional changes in the population and changes in coefficients for the mean and variance.
    [Show full text]
  • Flexible Signal Denoising Via Flexible Empirical Bayes Shrinkage
    Journal of Machine Learning Research 22 (2021) 1-28 Submitted 1/19; Revised 9/20; Published 5/21 Flexible Signal Denoising via Flexible Empirical Bayes Shrinkage Zhengrong Xing [email protected] Department of Statistics University of Chicago Chicago, IL 60637, USA Peter Carbonetto [email protected] Research Computing Center and Department of Human Genetics University of Chicago Chicago, IL 60637, USA Matthew Stephens [email protected] Department of Statistics and Department of Human Genetics University of Chicago Chicago, IL 60637, USA Editor: Edo Airoldi Abstract Signal denoising—also known as non-parametric regression—is often performed through shrinkage estima- tion in a transformed (e.g., wavelet) domain; shrinkage in the transformed domain corresponds to smoothing in the original domain. A key question in such applications is how much to shrink, or, equivalently, how much to smooth. Empirical Bayes shrinkage methods provide an attractive solution to this problem; they use the data to estimate a distribution of underlying “effects,” hence automatically select an appropriate amount of shrinkage. However, most existing implementations of empirical Bayes shrinkage are less flexible than they could be—both in their assumptions on the underlying distribution of effects, and in their ability to han- dle heteroskedasticity—which limits their signal denoising applications. Here we address this by adopting a particularly flexible, stable and computationally convenient empirical Bayes shrinkage method and apply- ing it to several signal denoising problems. These applications include smoothing of Poisson data and het- eroskedastic Gaussian data. We show through empirical comparisons that the results are competitive with other methods, including both simple thresholding rules and purpose-built empirical Bayes procedures.
    [Show full text]
  • Variance Function Estimation in Multivariate Nonparametric Regression by T
    Variance Function Estimation in Multivariate Nonparametric Regression by T. Tony Cai, Lie Wang University of Pennsylvania Michael Levine Purdue University Technical Report #06-09 Department of Statistics Purdue University West Lafayette, IN USA October 2006 Variance Function Estimation in Multivariate Nonparametric Regression T. Tony Cail, Michael Levine* Lie Wangl October 3, 2006 Abstract Variance function estimation in multivariate nonparametric regression is consid- ered and the minimax rate of convergence is established. Our work uses the approach that generalizes the one used in Munk et al (2005) for the constant variance case. As is the case when the number of dimensions d = 1, and very much contrary to the common practice, it is often not desirable to base the estimator of the variance func- tion on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference-based estimator that achieves minimax rate of convergence in one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions. Keywords: Minimax estimation, nonparametric regression, variance estimation. AMS 2000 Subject Classification: Primary: 62G08, 62G20. Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 19104. The research of Tony Cai was supported in part by NSF Grant DMS-0306576. 'Corresponding author. Address: 250 N. University Street, Purdue University, West Lafayette, IN 47907. Email: [email protected]. Phone: 765-496-7571. Fax: 765-494-0558 1 Introduction We consider the multivariate nonparametric regression problem where yi E R, xi E S = [0, Ild C Rd while a, are iid random variables with zero mean and unit variance and have bounded absolute fourth moments: E lail 5 p4 < m.
    [Show full text]
  • Variance Function Program
    Variance Function Program Version 15.0 (for Windows XP and later) July 2018 W.A. Sadler 71B Middleton Road Christchurch 8041 New Zealand Ph: +64 3 343 3808 e-mail: [email protected] (formerly at Nuclear Medicine Department, Christchurch Hospital) Contents Page Variance Function Program 15.0 1 Windows Vista through Windows 10 Issues 1 Program Help 1 Gestures 1 Program Structure 2 Data Type 3 Automation 3 Program Data Area 3 User Preferences File 4 Auto-processing File 4 Graph Templates 4 Decimal Separator 4 Screen Settings 4 Scrolling through Summaries and Displays 4 The Variance Function 5 Variance Function Output Examples 8 Variance Stabilisation 11 Histogram, Error and Biological Variation Plots 12 Regression Analysis 13 Limit of Blank (LoB) and Limit of Detection (LoD) 14 Bland-Altman Analysis 14 Appendix A (Program Delivery) 16 Appendix B (Program Installation) 16 Appendix C (Program Removal) 16 Appendix D (Example Data, SD and Regression Files) 16 Appendix E (Auto-processing Example Files) 17 Appendix F (History) 17 Appendix G (Changes: Version 14.0 to Version 15.0) 18 Appendix H (Version 14.0 Bug Fixes) 19 References 20 Variance Function Program 15.0 1 Variance Function Program 15.0 The variance function (the relationship between variance and the mean) has several applications in statistical analysis of medical laboratory data (eg. Ref. 1), but the single most important use is probably the construction of (im)precision profile plots (2). This program (VFP.exe) was initially aimed at immunoassay data which exhibit relatively extreme variance relationships. It was based around the “standard” 3-parameter variance function, 2 J σ = (β1 + β2U) 2 where σ denotes variance, U denotes the mean, and β1, β2 and J are the parameters (3, 4).
    [Show full text]
  • Examining Residuals
    Stat 565 Examining Residuals Jan 14 2016 Charlotte Wickham stat565.cwick.co.nz So far... xt = mt + st + zt Variable Trend Seasonality Noise measured at time t Estimate and{ subtract off Should be left with this, stationary but probably has serial correlation Residuals in Corvallis temperature series Temp - loess smooth on day of year - loess smooth on date Your turn Now I have residuals, how could I check the variance doesn't change through time (i.e. is stationary)? Is the variance stationary? Same checks as for mean except using squared residuals or absolute value of residuals. Why? var(x) = 1/n ∑ ( x - μ)2 Converts a visual comparison of spread to a visual comparison of mean. Plot squared residuals against time qplot(date, residual^2, data = corv) + geom_smooth(method = "loess") Plot squared residuals against season qplot(yday, residual^2, data = corv) + geom_smooth(method = "loess", size = 1) Fitted values against residuals Looking for mean-variance relationship qplot(temp - residual, residual^2, data = corv) + geom_smooth(method = "loess", size = 1) Non-stationary variance Just like the mean you can attempt to remove the non-stationarity in variance. However, to remove non-stationary variance you divide by an estimate of the standard deviation. Your turn For the temperature series, serial dependence (a.k.a autocorrelation) means that today's residual is dependent on yesterday's residual. Any ideas of how we could check that? Is there autocorrelation in the residuals? > corv$residual_lag1 <- c(NA, corv$residual[-nrow(corv)]) > head(corv) . residual residual_lag1 . 1.5856663 NA xt-1 = lag 1 of xt . -0.4928295 1.5856663 .
    [Show full text]
  • Covariances of ARMA Models
    Statistics 910, #9 1 Covariances of ARMA Processes Overview 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation function 5. Discussion Review of ARMA processes ARMA process A stationary solution fXtg (or if its mean is not zero, fXt − µg) of the linear difference equation Xt − φ1Xt−1 − · · · − φpXt−p = wt + θ1wt−1 + ··· + θqwt−q φ(B)Xt = θ(B)wt (1) 2 where wt denotes white noise, wt ∼ WN(0; σ ). Definition 3.5 adds the • identifiability condition that the polynomials φ(z) and θ(z) have no zeros in common and the • normalization condition that φ(0) = θ(0) = 1. Causal process A stationary process fXtg is said to be causal if there ex- ists a summable sequence (some require square summable (`2), others want more and require absolute summability (`1)) sequence f jg such that fXtg has the one-sided moving average representation 1 X Xt = jwt−j = (B)wt : (2) j=0 Proposition 3.1 states that a stationary ARMA process fXtg is causal if and only if (iff) the zeros of the autoregressive polynomial Statistics 910, #9 2 φ(z) lie outside the unit circle (i.e., φ(z) 6= 0 for jzj ≤ 1). Since φ(0) = 1, φ(z) > 0 for jzj ≤ 1. (The unit circle in the complex plane consists of those x 2 C for which jzj = 1; the closed unit disc includes the interior of the unit circle as well as the circle; the open unit disc consists of jzj < 1.) If the zeros of φ(z) lie outside the unit circle, then we can invert each Qp of the factors (1 − B=zj) that make up φ(B) = j=1(1 − B=zj) one at a time (as when back-substituting in the derivation of the AR(1) representation).
    [Show full text]
  • Covariance Functions
    C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml Chapter 4 Covariance Functions We have seen that a covariance function is the crucial ingredient in a Gaussian process predictor, as it encodes our assumptions about the function which we wish to learn. From a slightly different viewpoint it is clear that in supervised learning the notion of similarity between data points is crucial; it is a basic similarity assumption that points with inputs x which are close are likely to have similar target values y, and thus training points that are near to a test point should be informative about the prediction at that point. Under the Gaussian process view it is the covariance function that defines nearness or similarity. An arbitrary function of input pairs x and x0 will not, in general, be a valid valid covariance covariance function.1 The purpose of this chapter is to give examples of some functions commonly-used covariance functions and to examine their properties. Section 4.1 defines a number of basic terms relating to covariance functions. Section 4.2 gives examples of stationary, dot-product, and other non-stationary covariance functions, and also gives some ways to make new ones from old. Section 4.3 introduces the important topic of eigenfunction analysis of covariance functions, and states Mercer’s theorem which allows us to express the covariance function (under certain conditions) in terms of its eigenfunctions and eigenvalues. The covariance functions given in section 4.2 are valid when the input domain X is a subset of RD.
    [Show full text]
  • Lecture 1: Stationary Time Series∗
    Lecture 1: Stationary Time Series∗ 1 Introduction If a random variable X is indexed to time, usually denoted by t, the observations {Xt, t ∈ T} is called a time series, where T is a time index set (for example, T = Z, the integer set). Time series data are very common in empirical economic studies. Figure 1 plots some frequently used variables. The upper left figure plots the quarterly GDP from 1947 to 2001; the upper right figure plots the the residuals after linear-detrending the logarithm of GDP; the lower left figure plots the monthly S&P 500 index data from 1990 to 2001; and the lower right figure plots the log difference of the monthly S&P. As you could see, these four series display quite different patterns over time. Investigating and modeling these different patterns is an important part of this course. In this course, you will find that many of the techniques (estimation methods, inference proce- dures, etc) you have learned in your general econometrics course are still applicable in time series analysis. However, there are something special of time series data compared to cross sectional data. For example, when working with cross-sectional data, it usually makes sense to assume that the observations are independent from each other, however, time series data are very likely to display some degree of dependence over time. More importantly, for time series data, we could observe only one history of the realizations of this variable. For example, suppose you obtain a series of US weekly stock index data for the last 50 years.
    [Show full text]
  • Lecture 5: Gaussian Processes & Stationary Processes
    Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2019 Lecture 5: Gaussian processes & Stationary processes Readings Recommended: • Pavliotis (2014), sections 1.1, 1.2 • Grimmett and Stirzaker (2001), 8.2, 8.6 • Grimmett and Stirzaker (2001) 9.1, 9.3, 9.5, 9.6 (more advanced than what we will cover in class) Optional: • Grimmett and Stirzaker (2001) 4.9 (review of multivariate Gaussian random variables) • Grimmett and Stirzaker (2001) 9.4 • Chorin and Hald (2009) Chapter 6; a gentle introduction to the spectral decomposition for continuous processes, that gives insight into the link to the spectral decomposition for discrete processes. • Yaglom (1962), Ch. 1, 2; a nice short book with many details about stationary random functions; one of the original manuscripts on the topic. • Lindgren (2013) is a in-depth but accessible book; with more details and a more modern style than Yaglom (1962). We want to be able to describe more stochastic processes, which are not necessarily Markov process. In this lecture we will look at two classes of stochastic processes that are tractable to use as models and to simulat: Gaussian processes, and stationary processes. 5.1 Setup Here are some ideas we will need for what follows. 5.1.1 Finite dimensional distributions Definition. The finite-dimensional distributions (fdds) of a stochastic process Xt is the set of measures Pt1;t2;:::;tk given by Pt1;t2;:::;tk (F1 × F2 × ··· × Fk) = P(Xt1 2 F1;Xt2 2 F2;:::Xtk 2 Fk); k where (t1;:::;tk) is any point in T , k is any integer, and Fi are measurable events in R.
    [Show full text]