Stationary Processes and Their Statistical Properties

Total Page:16

File Type:pdf, Size:1020Kb

Stationary Processes and Their Statistical Properties Stationary Processes and Their Statistical Properties Brian Borchers March 29, 2001 1 Stationary processes A discrete time stochastic process is a sequence of random variables Z1, Z2, :::. In practice we will typically analyze a single realization z1, z2, :::, zn of the stochastic process and attempt to esimate the statistical properties of the stochastic process from the realization. We will also consider the problem of predicting zn+1 from the previous elements of the sequence. We will begin by focusing on the very important class of stationary stochas- tic processes. A stochastic process is strictly stationary if its statistical prop- erties are unaffected by shifting the stochastic process in time. In particular, this means that if we take a subsequence Zk+1, :::, Zk+m, then the joint distribution of the m random variables will be the same no matter what k is. Stationarity requires that the mean of the stochastic process be a constant. E[Zk] = µ. and that the variance is constant 2 V ar[Zk] = σZ : Also, stationarity requires that the covariance of two elements separated by a distance m is constant. That is, Cov(Zk;Zk+m) is constant. This covariance is called the autocovariance at lag m, and we will use the notation γm. Since Cov(Zk;Zk+m) = Cov(Zk+m;Zk), we need only find γm for m 0. The ≥ correlation of Zk and Zk+m is the autocorrelation at lag m. We will use the notation ρm for the autocorrelation. It is easy to show that γk ρk = : γ0 1 2 The autocovariance and autocorrelation ma- trices The covariance matrix for the random variables Z1, :::, Zn is called an auto- covariance matrix. γ0 γ1 γ2 : : : γn 1 2 − 3 γ1 γ0 γ1 : : : γn 2 Γ = − n 6 ::::::::::::::: 7 6 7 4 γn 1 γn 2 : : : γ1 γ0 5 − − Similarly, we can form an autocorrelation matrix 1 ρ1 ρ2 : : : ρn 1 2 − 3 ρ1 1 ρ1 : : : ρn 2 P = − : n 6 ::::::::::::::: 7 6 7 4 ρn 1 ρn 2 : : : ρ1 1 5 − − Note that 2 Γn = σZ Pn: An important property of the autocovariance and autocorrelation matrices is that they are positive semidefinite (PSD). That is, for any vector x, T T x Γnx 0 and x Pnx 0. To prove this, consider the stochastic process Wk, where ≥ ≥ Wk = x1Zk + x2Zk 1 + : : : xnZk n+1 − − The variance of Wk is given by n n V ar(Wk) = xixjγ i j X X j − j i=1 j=1 T V ar(Wk) = x Γnx Since V ar(Wk) 0, the matrix Γn is PSD. In fact, the only way that V ar(Wk) ≥ can be zero is Wk is constant. This rarely happens in practice. Challenge: Find a nonconstant stochastic process Zk for which there is some constant Wk. Notice that by the definition of stationarity, the process Wk is also stationary! An important example of a stationary process that we will work with occurs when the joint distribution of Zk, :::, Zk+n is multivariate normal. In this situation, the autocovariance matrix Γn is precisely the covariance matrix C for the multivariate normal distribution. 2 3 Estimating the mean, autocovariance, and au- tocorrelation Given a realization z1, z2, :::, zn, how can we estimate the mean, variance, autocovariance and autocorrelation? We will estimate the mean by n zi z¯ = Pi=1 n We will estimate the autocovariance at lag k with n k 1 − ck = (zi z¯)(zi+k z¯) n X − − i=1 Note that c0 is an estimate of the variance, but it is not the same unbiased estimate that we used in the last lecture. The problem here is that the zi are correlated, so that the formula from the last lecture no longer provides an unbiased estimator. The formula given here is also biased, but is considered to work better in practice. We will estimate the autocorrelation at lag k with ck rk = c0 The following example demonstrates the computation of autocorrelation and autocovariance estimates. Example 1 Consider the following time series of yields from a batch chem- ical process. These data are taken from p 31 of Box, Jenkins, and Reinsel. Read the table by rows. Figure 1 shows the estimated autocorrelation for this data set. Notice that the autocorrelation tends to alternate between positive and negative values, and that after about k = 6, the autocorrelation seems to die out to a random noise level. 47 64 23 71 38 64 55 41 59 48 71 35 57 40 58 44 80 55 37 74 51 57 50 60 45 57 50 45 25 59 50 71 56 74 50 58 45 54 36 54 48 55 45 57 50 62 44 64 43 52 38 59 55 41 53 49 34 35 54 45 68 38 50 60 39 59 40 57 54 23 Table 1: An example time series. 3 1 0.8 0.6 0.4 k r 0.2 0 −0.2 −0.4 0 5 10 15 20 k Figure 1: Estimated autocorrelation for the example data. Just as with the sample mean, the autocorrelation estimate rk is a random quantity with its own standard deviation. It can be shown that 1 1 2 2 2 V ar(rk) (ρv + ρv+kρv k 4ρkρvρv k + 2ρvρk) n X − − ≈ v= − −∞ The autocorrelation function typically decays rapidly, so that we can identify a lag q beyond which rk is effectively 0. Under these circumstances, the formula simplifies to q 1 V ar(r ) (1 + 2 ρ2); k > q: k n X v ≈ v=1 In practice we don't know ρv, but we can use the estimates rv in the above formula. This provides a statistical test to determine whether or not an auto- correlation rk is statistically different from 0. An approximate 95% confidence interval for rk is rk 1:96 V ar(rk). If this confidence interval includes 0, ± ∗ p then we can't rule out the possibility that rk really is 0 and that there is no correlation at lag k. Example 2 Returning to our earlier data set, consider the variance of our estimate of r6. Using q = 5, we estimate that V ar(r6) = :0225 and that the standard deviation is about 0:14. Since r6 = 0:0471 is considerably smaller − than the standard deviation, we will decide to ignore rk for k 6. ≥ 4 4 The periodogram The major alternative to using autocorrelation/autocovariance to analyze time series is the use of the periodogram. In this section we will show that there is an equivalence between a form of the periodogram and the autocovariance function. For our purposes, the autocorrelation function is more convenient, so we will continue to use it throughout this sequence of lectures. The form of the periodogram that we will use is slightly different from the periodogram that we have previously obtained from the FFT. We will fit a Fourier series of the form q z = a + (a cos(2πjn=N) + b sin(2πjn=N)) n 0 X j j j=1 to the time series. Here N is the number of data points (which we will assume is even), and q = N=2. The coefficients can be obtained by a0 =z ¯ 2 N aj = zk cos(2πjk=N); j = 1; 2; : : : ; q 1 N X − k=1 2 N bj = zk sin(2πjk=N); j = 1; 2; : : : ; q 1 N X − k=1 N 1 j aq = ( 1) zj N X − j=1 bq = 0: The relationship between these coefficients and the fft Zn is 2πij=N aj = 2 real(Zj+1e− ); j = 1; 2; : : : ; q 1 − 2πij=N bj = 2 imag(Zj+1e− ); j = 1; 2; : : : ; q 1 − − aq = Zq+1=N − bq = 0 The periodogram is then defined to be N I(j) = (a2 + b2); j = 1; 2; : : : ; q 1 2 j j − 2 I(q) = Naq We can go a step further, and define the sample spectrum at any frequency f, 0 f < 1=2, as ≤ N I(f) = (a2 + b2 ) 2 f f 5 where 2 N a = z cos(2πfj) f N X j j=1 and 2 N b = z sin(2πfj) f N X j j=1 The connection between the sample spectrum and our estimate of the auto- covariance function is N 1 − I(f) = 2 c + 2 c cos(2πfk)! 0 X k k=1 The sample specturm is the Fourier transform of the autocovariance. A proof can be found in Box, Jenkins, and Reinsel. In practice, the sample spectrum from a short time series is extremely noisy. For this reason, various smoothing techniques have been proposed. These are similar to the techniques that we have previously discussed for computing the PSD. Even with such techniques, it's extremely difficult to make sense of the spectrum. On the other hand, it is much easier to make sense of the auto- correlation function of a short time series. For this reason, we'll focus on the autocorrelation from now on. Example 3 Figure 2 shows the sample spectrum for our example data. It's very difficult to detect any real features in this spectrum. This is similar to what we saw earlier when we took the FFT of a short time series. The problem is that with a short time series you get little frequency resolution, and lots of noise. Longer time series make it possible to obtain both better frequency resolution (by using a longer window) and reduced noise (by averaging over many windows.) 6 140 120 100 80 60 I(f) (db) 40 20 0 −20 0 0.1 0.2 0.3 0.4 0.5 f Figure 2: Sample spectrum for the example data.
Recommended publications
  • Methods of Monte Carlo Simulation II
    Methods of Monte Carlo Simulation II Ulm University Institute of Stochastics Lecture Notes Dr. Tim Brereton Summer Term 2014 Ulm, 2014 2 Contents 1 SomeSimpleStochasticProcesses 7 1.1 StochasticProcesses . 7 1.2 RandomWalks .......................... 7 1.2.1 BernoulliProcesses . 7 1.2.2 RandomWalks ...................... 10 1.2.3 ProbabilitiesofRandomWalks . 13 1.2.4 Distribution of Xn .................... 13 1.2.5 FirstPassageTime . 14 2 Estimators 17 2.1 Bias, Variance, the Central Limit Theorem and Mean Square Error................................ 19 2.2 Non-AsymptoticErrorBounds. 22 2.3 Big O and Little o Notation ................... 23 3 Markov Chains 25 3.1 SimulatingMarkovChains . 28 3.1.1 Drawing from a Discrete Uniform Distribution . 28 3.1.2 Drawing From A Discrete Distribution on a Small State Space ........................... 28 3.1.3 SimulatingaMarkovChain . 28 3.2 Communication .......................... 29 3.3 TheStrongMarkovProperty . 30 3.4 RecurrenceandTransience . 31 3.4.1 RecurrenceofRandomWalks . 33 3.5 InvariantDistributions . 34 3.6 LimitingDistribution. 36 3.7 Reversibility............................ 37 4 The Poisson Process 39 4.1 Point Processes on [0, )..................... 39 ∞ 3 4 CONTENTS 4.2 PoissonProcess .......................... 41 4.2.1 Order Statistics and the Distribution of Arrival Times 44 4.2.2 DistributionofArrivalTimes . 45 4.3 SimulatingPoissonProcesses. 46 4.3.1 Using the Infinitesimal Definition to Simulate Approx- imately .......................... 46 4.3.2 SimulatingtheArrivalTimes . 47 4.3.3 SimulatingtheInter-ArrivalTimes . 48 4.4 InhomogenousPoissonProcesses. 48 4.5 Simulating an Inhomogenous Poisson Process . 49 4.5.1 Acceptance-Rejection. 49 4.5.2 Infinitesimal Approach (Approximate) . 50 4.6 CompoundPoissonProcesses . 51 5 ContinuousTimeMarkovChains 53 5.1 TransitionFunction. 53 5.2 InfinitesimalGenerator . 54 5.3 ContinuousTimeMarkovChains .
    [Show full text]
  • Stochastic Process - Introduction
    Stochastic Process - Introduction • Stochastic processes are processes that proceed randomly in time. • Rather than consider fixed random variables X, Y, etc. or even sequences of i.i.d random variables, we consider sequences X0, X1, X2, …. Where Xt represent some random quantity at time t. • In general, the value Xt might depend on the quantity Xt-1 at time t-1, or even the value Xs for other times s < t. • Example: simple random walk . week 2 1 Stochastic Process - Definition • A stochastic process is a family of time indexed random variables Xt where t belongs to an index set. Formal notation, { t : ∈ ItX } where I is an index set that is a subset of R. • Examples of index sets: 1) I = (-∞, ∞) or I = [0, ∞]. In this case Xt is a continuous time stochastic process. 2) I = {0, ±1, ±2, ….} or I = {0, 1, 2, …}. In this case Xt is a discrete time stochastic process. • We use uppercase letter {Xt } to describe the process. A time series, {xt } is a realization or sample function from a certain process. • We use information from a time series to estimate parameters and properties of process {Xt }. week 2 2 Probability Distribution of a Process • For any stochastic process with index set I, its probability distribution function is uniquely determined by its finite dimensional distributions. •The k dimensional distribution function of a process is defined by FXX x,..., ( 1 x,..., k ) = P( Xt ≤ 1 ,..., xt≤ X k) x t1 tk 1 k for anyt 1 ,..., t k ∈ I and any real numbers x1, …, xk .
    [Show full text]
  • Autocovariance Function Estimation Via Penalized Regression
    Autocovariance Function Estimation via Penalized Regression Lina Liao, Cheolwoo Park Department of Statistics, University of Georgia, Athens, GA 30602, USA Jan Hannig Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA Kee-Hoon Kang Department of Statistics, Hankuk University of Foreign Studies, Yongin, 449-791, Korea Abstract The work revisits the autocovariance function estimation, a fundamental problem in statistical inference for time series. We convert the function estimation problem into constrained penalized regression with a generalized penalty that provides us with flexible and accurate estimation, and study the asymptotic properties of the proposed estimator. In case of a nonzero mean time series, we apply a penalized regression technique to a differenced time series, which does not require a separate detrending procedure. In penalized regression, selection of tuning parameters is critical and we propose four different data-driven criteria to determine them. A simulation study shows effectiveness of the tuning parameter selection and that the proposed approach is superior to three existing methods. We also briefly discuss the extension of the proposed approach to interval-valued time series. Some key words: Autocovariance function; Differenced time series; Regularization; Time series; Tuning parameter selection. 1 1 Introduction Let fYt; t 2 T g be a stochastic process such that V ar(Yt) < 1, for all t 2 T . The autoco- variance function of fYtg is given as γ(s; t) = Cov(Ys;Yt) for all s; t 2 T . In this work, we consider a regularly sampled time series f(i; Yi); i = 1; ··· ; ng. Its model can be written as Yi = g(i) + i; i = 1; : : : ; n; (1.1) where g is a smooth deterministic function and the error is assumed to be a weakly stationary 2 process with E(i) = 0, V ar(i) = σ and Cov(i; j) = γ(ji − jj) for all i; j = 1; : : : ; n: The estimation of the autocovariance function γ (or autocorrelation function) is crucial to determine the degree of serial correlation in a time series.
    [Show full text]
  • Examples of Stationary Time Series
    Statistics 910, #2 1 Examples of Stationary Time Series Overview 1. Stationarity 2. Linear processes 3. Cyclic models 4. Nonlinear models Stationarity Strict stationarity (Defn 1.6) Probability distribution of the stochastic process fXtgis invariant under a shift in time, P (Xt1 ≤ x1;Xt2 ≤ x2;:::;Xtk ≤ xk) = F (xt1 ; xt2 ; : : : ; xtk ) = F (xh+t1 ; xh+t2 ; : : : ; xh+tk ) = P (Xh+t1 ≤ x1;Xh+t2 ≤ x2;:::;Xh+tk ≤ xk) for any time shift h and xj. Weak stationarity (Defn 1.7) (aka, second-order stationarity) The mean and autocovariance of the stochastic process are finite and invariant under a shift in time, E Xt = µt = µ Cov(Xt;Xs) = E (Xt−µt)(Xs−µs) = γ(t; s) = γ(t−s) The separation rather than location in time matters. Equivalence If the process is Gaussian with finite second moments, then weak stationarity is equivalent to strong stationarity. Strict stationar- ity implies weak stationarity only if the necessary moments exist. Relevance Stationarity matters because it provides a framework in which averaging makes sense. Unless properties like the mean and covariance are either fixed or \evolve" in a known manner, we cannot average the observed data. What operations produce a stationary process? Can we recognize/identify these in data? Statistics 910, #2 2 Moving Average White noise Sequence of uncorrelated random variables with finite vari- ance, ( 2 often often σw = 1 if t = s; E Wt = µ = 0 Cov(Wt;Ws) = 0 otherwise The input component (fXtg in what follows) is often modeled as white noise. Strict white noise replaces uncorrelated by independent. Moving average A stochastic process formed by taking a weighted average of another time series, often formed from white noise.
    [Show full text]
  • Stationary Processes
    Stationary processes Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania [email protected] http://www.seas.upenn.edu/users/~aribeiro/ November 25, 2019 Stoch. Systems Analysis Stationary processes 1 Stationary stochastic processes Stationary stochastic processes Autocorrelation function and wide sense stationary processes Fourier transforms Linear time invariant systems Power spectral density and linear filtering of stochastic processes Stoch. Systems Analysis Stationary processes 2 Stationary stochastic processes I All probabilities are invariant to time shits, i.e., for any s P[X (t1 + s) ≥ x1; X (t2 + s) ≥ x2;:::; X (tK + s) ≥ xK ] = P[X (t1) ≥ x1; X (t2) ≥ x2;:::; X (tK ) ≥ xK ] I If above relation is true process is called strictly stationary (SS) I First order stationary ) probs. of single variables are shift invariant P[X (t + s) ≥ x] = P [X (t) ≥ x] I Second order stationary ) joint probs. of pairs are shift invariant P[X (t1 + s) ≥ x1; X (t2 + s) ≥ x2] = P [X (t1) ≥ x1; X (t2) ≥ x2] Stoch. Systems Analysis Stationary processes 3 Pdfs and moments of stationary process I For SS process joint cdfs are shift invariant. Whereby, pdfs also are fX (t+s)(x) = fX (t)(x) = fX (0)(x) := fX (x) I As a consequence, the mean of a SS process is constant Z 1 Z 1 µ(t) := E [X (t)] = xfX (t)(x) = xfX (x) = µ −∞ −∞ I The variance of a SS process is also constant Z 1 Z 1 2 2 2 var [X (t)] := (x − µ) fX (t)(x) = (x − µ) fX (x) = σ −∞ −∞ I The power of a SS process (second moment) is also constant Z 1 Z 1 2 2 2 2 2 E X (t) := x fX (t)(x) = x fX (x) = σ + µ −∞ −∞ Stoch.
    [Show full text]
  • Solutions to Exercises in Stationary Stochastic Processes for Scientists and Engineers by Lindgren, Rootzén and Sandsten Chapman & Hall/CRC, 2013
    Solutions to exercises in Stationary stochastic processes for scientists and engineers by Lindgren, Rootzén and Sandsten Chapman & Hall/CRC, 2013 Georg Lindgren, Johan Sandberg, Maria Sandsten 2017 CENTRUM SCIENTIARUM MATHEMATICARUM Faculty of Engineering Centre for Mathematical Sciences Mathematical Statistics 1 Solutions to exercises in Stationary stochastic processes for scientists and engineers Mathematical Statistics Centre for Mathematical Sciences Lund University Box 118 SE-221 00 Lund, Sweden http://www.maths.lu.se c Georg Lindgren, Johan Sandberg, Maria Sandsten, 2017 Contents Preface v 2 Stationary processes 1 3 The Poisson process and its relatives 5 4 Spectral representations 9 5 Gaussian processes 13 6 Linear filters – general theory 17 7 AR, MA, and ARMA-models 21 8 Linear filters – applications 25 9 Frequency analysis and spectral estimation 29 iii iv CONTENTS Preface This booklet contains hints and solutions to exercises in Stationary stochastic processes for scientists and engineers by Georg Lindgren, Holger Rootzén, and Maria Sandsten, Chapman & Hall/CRC, 2013. The solutions have been adapted from course material used at Lund University on first courses in stationary processes for students in engineering programs as well as in mathematics, statistics, and science programs. The web page for the course during the fall semester 2013 gives an example of a schedule for a seven week period: http://www.maths.lu.se/matstat/kurser/fms045mas210/ Note that the chapter references in the material from the Lund University course do not exactly agree with those in the printed volume. v vi CONTENTS Chapter 2 Stationary processes 2:1. (a) 1, (b) a + b, (c) 13, (d) a2 + b2, (e) a2 + b2, (f) 1.
    [Show full text]
  • Random Processes
    Chapter 6 Random Processes Random Process • A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). • For a fixed (sample path): a random process is a time varying function, e.g., a signal. – For fixed t: a random process is a random variable. • If one scans all possible outcomes of the underlying random experiment, we shall get an ensemble of signals. • Random Process can be continuous or discrete • Real random process also called stochastic process – Example: Noise source (Noise can often be modeled as a Gaussian random process. An Ensemble of Signals Remember: RV maps Events à Constants RP maps Events à f(t) RP: Discrete and Continuous The set of all possible sample functions {v(t, E i)} is called the ensemble and defines the random process v(t) that describes the noise source. Sample functions of a binary random process. RP Characterization • Random variables x 1 , x 2 , . , x n represent amplitudes of sample functions at t 5 t 1 , t 2 , . , t n . – A random process can, therefore, be viewed as a collection of an infinite number of random variables: RP Characterization – First Order • CDF • PDF • Mean • Mean-Square Statistics of a Random Process RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function of timeà We use second order estimation RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function
    [Show full text]
  • 4.2 Autoregressive (AR) Moving Average Models Are Causal Linear Processes by Definition. There Is Another Class of Models, Based
    4.2 Autoregressive (AR) Moving average models are causal linear processes by definition. There is another class of models, based on a recursive formulation similar to the exponentially weighted moving average. Definition 4.11 (Autoregressive AR(p)). Suppose φ1,...,φp ∈ R are constants 2 2 and (Wi) ∼ WN(σ ). The AR(p) process with parameters σ , φ1,...,φp is defined through p Xi = Wi + φjXi−j, (3) Xj=1 whenever such stationary process (Xi) exists. Remark 4.12. The process in Definition 4.11 is sometimes called a stationary AR(p) process. It is possible to consider a ‘non-stationary AR(p) process’ for any φ1,...,φp satisfying (3) for i ≥ 0 by letting for example Xi = 0 for i ∈ [−p+1, 0]. Example 4.13 (Variance and autocorrelation of AR(1) process). For the AR(1) process, whenever it exits, we must have 2 2 γ0 = Var(Xi) = Var(φ1Xi−1 + Wi)= φ1γ0 + σ , which implies that we must have |φ1| < 1, and σ2 γ0 = 2 . 1 − φ1 We may also calculate for j ≥ 1 j γj = E[XiXi−j]= E[(φ1Xi−1 + Wi)Xi−j]= φ1E[Xi−1Xi−j]= φ1γ0, j which gives that ρj = φ1. Example 4.14. Simulation of an AR(1) process. phi_1 <- 0.7 x <- arima.sim(model=list(ar=phi_1), 140) # This is the explicit simulation: gamma_0 <- 1/(1-phi_1^2) x_0 <- rnorm(1)*sqrt(gamma_0) x <- filter(rnorm(140), phi_1, method = "r", init = x_0) Example 4.15. Consider a stationary AR(1) process. We may write n−1 n j Xi = φ1Xi−1 + Wi = ··· = φ1 Xi−n + φ1Wi−j.
    [Show full text]
  • Covariances of ARMA Models
    Statistics 910, #9 1 Covariances of ARMA Processes Overview 1. Review ARMA models: causality and invertibility 2. AR covariance functions 3. MA and ARMA covariance functions 4. Partial autocorrelation function 5. Discussion Review of ARMA processes ARMA process A stationary solution fXtg (or if its mean is not zero, fXt − µg) of the linear difference equation Xt − φ1Xt−1 − · · · − φpXt−p = wt + θ1wt−1 + ··· + θqwt−q φ(B)Xt = θ(B)wt (1) 2 where wt denotes white noise, wt ∼ WN(0; σ ). Definition 3.5 adds the • identifiability condition that the polynomials φ(z) and θ(z) have no zeros in common and the • normalization condition that φ(0) = θ(0) = 1. Causal process A stationary process fXtg is said to be causal if there ex- ists a summable sequence (some require square summable (`2), others want more and require absolute summability (`1)) sequence f jg such that fXtg has the one-sided moving average representation 1 X Xt = jwt−j = (B)wt : (2) j=0 Proposition 3.1 states that a stationary ARMA process fXtg is causal if and only if (iff) the zeros of the autoregressive polynomial Statistics 910, #9 2 φ(z) lie outside the unit circle (i.e., φ(z) 6= 0 for jzj ≤ 1). Since φ(0) = 1, φ(z) > 0 for jzj ≤ 1. (The unit circle in the complex plane consists of those x 2 C for which jzj = 1; the closed unit disc includes the interior of the unit circle as well as the circle; the open unit disc consists of jzj < 1.) If the zeros of φ(z) lie outside the unit circle, then we can invert each Qp of the factors (1 − B=zj) that make up φ(B) = j=1(1 − B=zj) one at a time (as when back-substituting in the derivation of the AR(1) representation).
    [Show full text]
  • Covariance Functions
    C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml Chapter 4 Covariance Functions We have seen that a covariance function is the crucial ingredient in a Gaussian process predictor, as it encodes our assumptions about the function which we wish to learn. From a slightly different viewpoint it is clear that in supervised learning the notion of similarity between data points is crucial; it is a basic similarity assumption that points with inputs x which are close are likely to have similar target values y, and thus training points that are near to a test point should be informative about the prediction at that point. Under the Gaussian process view it is the covariance function that defines nearness or similarity. An arbitrary function of input pairs x and x0 will not, in general, be a valid valid covariance covariance function.1 The purpose of this chapter is to give examples of some functions commonly-used covariance functions and to examine their properties. Section 4.1 defines a number of basic terms relating to covariance functions. Section 4.2 gives examples of stationary, dot-product, and other non-stationary covariance functions, and also gives some ways to make new ones from old. Section 4.3 introduces the important topic of eigenfunction analysis of covariance functions, and states Mercer’s theorem which allows us to express the covariance function (under certain conditions) in terms of its eigenfunctions and eigenvalues. The covariance functions given in section 4.2 are valid when the input domain X is a subset of RD.
    [Show full text]
  • Interacting Particle Systems MA4H3
    Interacting particle systems MA4H3 Stefan Grosskinsky Warwick, 2009 These notes and other information about the course are available on http://www.warwick.ac.uk/˜masgav/teaching/ma4h3.html Contents Introduction 2 1 Basic theory3 1.1 Continuous time Markov chains and graphical representations..........3 1.2 Two basic IPS....................................6 1.3 Semigroups and generators.............................9 1.4 Stationary measures and reversibility........................ 13 2 The asymmetric simple exclusion process 18 2.1 Stationary measures and conserved quantities................... 18 2.2 Currents and conservation laws........................... 23 2.3 Hydrodynamics and the dynamic phase transition................. 26 2.4 Open boundaries and matrix product ansatz.................... 30 3 Zero-range processes 34 3.1 From ASEP to ZRPs................................ 34 3.2 Stationary measures................................. 36 3.3 Equivalence of ensembles and relative entropy................... 39 3.4 Phase separation and condensation......................... 43 4 The contact process 46 4.1 Mean field rate equations.............................. 46 4.2 Stochastic monotonicity and coupling....................... 48 4.3 Invariant measures and critical values....................... 51 d 4.4 Results for Λ = Z ................................. 54 1 Introduction Interacting particle systems (IPS) are models for complex phenomena involving a large number of interrelated components. Examples exist within all areas of natural and social sciences, such as traffic flow on highways, pedestrians or constituents of a cell, opinion dynamics, spread of epi- demics or fires, reaction diffusion systems, crystal surface growth, chemotaxis, financial markets... Mathematically the components are modeled as particles confined to a lattice or some discrete geometry. Their motion and interaction is governed by local rules. Often microscopic influences are not accesible in full detail and are modeled as effective noise with some postulated distribution.
    [Show full text]
  • Lecture 1: Stationary Time Series∗
    Lecture 1: Stationary Time Series∗ 1 Introduction If a random variable X is indexed to time, usually denoted by t, the observations {Xt, t ∈ T} is called a time series, where T is a time index set (for example, T = Z, the integer set). Time series data are very common in empirical economic studies. Figure 1 plots some frequently used variables. The upper left figure plots the quarterly GDP from 1947 to 2001; the upper right figure plots the the residuals after linear-detrending the logarithm of GDP; the lower left figure plots the monthly S&P 500 index data from 1990 to 2001; and the lower right figure plots the log difference of the monthly S&P. As you could see, these four series display quite different patterns over time. Investigating and modeling these different patterns is an important part of this course. In this course, you will find that many of the techniques (estimation methods, inference proce- dures, etc) you have learned in your general econometrics course are still applicable in time series analysis. However, there are something special of time series data compared to cross sectional data. For example, when working with cross-sectional data, it usually makes sense to assume that the observations are independent from each other, however, time series data are very likely to display some degree of dependence over time. More importantly, for time series data, we could observe only one history of the realizations of this variable. For example, suppose you obtain a series of US weekly stock index data for the last 50 years.
    [Show full text]