Temporal Trends in Incidence of Rolandic Epilepsy, Prevalence Of

Total Page:16

File Type:pdf, Size:1020Kb

Temporal Trends in Incidence of Rolandic Epilepsy, Prevalence Of Original research Arch Dis Child: first published as 10.1136/archdischild-2019-318212 on 14 January 2020. Downloaded from Temporal trends in incidence of Rolandic epilepsy, prevalence of comorbidities and prescribing trends: birth cohort study Jacqueline Stephen,1 Christopher J Weir,1,2 Richard FM Chin 2,3 ► Additional material is ABSTRACT What is already known on this topic? published online only. To view, Objective To examine temporal trends in incidence of please visit the journal online Rolandic epilepsy (RE), prevalence of comorbidities and (http:// dx. doi. org/ 10. 1136/ Annual incidence of Rolandic epilepsy (RE) in antiepileptic drug (AED) prescribing patterns. ► archdischild- 2019- 318212). a Swedish hospital- based study in 1974 was Design Retrospective cohort study. 1Edinburgh Clinical Trials Unit, 21/100 000 and 5/100 000 in an Icelandic Setting The UK. Usher Institute, The University of population- based study in the 1990s. Edinburgh, Edinburgh, UK Patients Children aged 0–16 years born 1994–2012 ► Attention deficit hyperactivity disorder has been 2Muir Maxwell Epilepsy Centre, were followed from birth until September 2017, transfer reported in 31% of children with RE, cognitive Centre for Clinical Brain to another general practitioner practice or death or problems in 22% and behavioural problems Sciences and MRC Centre practice withdrawal from The Health Improvement for Reproductive Health, including pervasive developmental disorder in Network (THIN), whichever occurred first. The University of Edinburgh, 12%. Edinburgh, UK Main outcome measures Incidence of RE, prevalence 3 There is debate whether drug treatment Neurosciences, Royal Hospital of comorbidity and AED prescribing patterns. Read codes ► should be given; in the UK, carbamazepine and for Sick Children, Edinburgh, UK for comorbidities and AEDs were adapted from other UK lamotrigine are recommended first- line, and population-based epilepsy studies. sulthiame or valproate in other countries. Correspondence to Results There were 379 children with first RE event Dr Richard FM Chin, Muir Maxwell Epilepsy Centre, Centre recorded between 2000 and 2014 from active THIN for Clinical Brain Sciences and practices with available mid-year population counts. MRC Centre for Reproductive Crude annual incidence across all years was 5.31/100 What this study adds? Health, The University of 000 (95% CI 4.81 to 5.88). There was no significant Edinburgh, Edinburgh EH8 9YL, UK; r. chin@ ed. ac. uk time trend in adjusted incidence rate ratios (aIRR) (0.99/ ► The incidence of RE in the UK has remained year, 95% CI 0.96 to 1.02). Males had higher aIRR (1.48, virtually unchanged since 2000; crude incidence Received 9 September 2019 95% CI 1.20 to 1.82) as did children aged 6–8 and 9–11 in 2014 was 5/100 000/year and age, gender- Revised 22 November 2019 years compared with 4–5 years (aIRR 2.43, 95% CI 1.73 adjusted incidence was 3.2/100 000/year. Accepted 30 November 2019 to 3.40; aIRR 2.77, 95% CI 1.97 to 3.90, respectively). ► Population- based data confirmation that There was recorded comorbidity in 12% with 6% with a comorbidities occur in a proportion of children recorded diagnosis of pervasive developmental disorder. with RE; 12% were coded with any co- existing http://adc.bmj.com/ Half of children with RE had a record of being prescribed disorder and 6% with pervasive developmental AEDs. disorder. Conclusions UK incidence of RE has remained stable ► Half of children with RE were prescribed with crude incidence of 5/100 000/year. Carers and anti- epileptic drugs with carbamazepine and clinicians need to be aware that comorbidities may valproate remaining the most frequently exist, particularly pervasive developmental disorders. prescribed over the study period. Carbamazepine is consistently the most commonly on September 25, 2021 by guest. Protected copyright. prescribed AED for RE in the UK. studies. There are no contemporary UK studies on incidence of RE. A retrospective, chart review, hospital- based study INTRODUCTION of 196 children with RE found high prevalence of Information on frequency, cause and natural comorbid cognitive and behavioural problems. history of Rolandic epilepsy (RE) is necessary to Attention deficit hyperactivity disorder (ADHD) develop optimal treatment strategies. There are few was found in 31%, 22% had specific cognitive © Author(s) (or their published studies on the incidence of RE.1–4 problems and 11.7% had behavioural problems employer(s)) 2020. Re- use Several factors influence incidence of epilepsy including anxiety, depression and pervasive devel- permitted under CC BY- NC. No including socioeconomic status, gender, ethnicity, opmental disorder (PDD).8 Other hospital- based commercial re- use. See rights and permissions. Published adaptation of regional or international guidelines studies have reported a higher prevalence of cogni- 9 10 by BMJ. in classification and management of epilepsy, avail- tive problems in RE compared with control data. ability of experts in epilepsy.5–7 As the presence A case- control study of 89 children with RE found To cite: Stephen J, Weir CJ, and distribution of such factors can vary between they had higher anxiety and depression scores to Chin RFM. Arch Dis Child 11 Epub ahead of print: [please countries, country- specific data on incidence of controls. Hospital-based studies compared with include Day Month Year]. RE are most appropriate for resource allocation. population- based studies are more likely to produce doi:10.1136/ Furthermore, country-specific incidence would best biassed results. There are no population-based archdischild-2019-318212 inform feasibility of recruitment targets for research studies on comorbidities in RE. Stephen J, et al. Arch Dis Child 2020;0:1–6. doi:10.1136/archdischild-2019-318212 1 Original research Arch Dis Child: first published as 10.1136/archdischild-2019-318212 on 14 January 2020. Downloaded from There has been a long-standing view RE does not need treat- 2000–2017 who were epilepsy-free at entry into the subco- ment with antiepileptic drugs (AEDs).12 13 However, recent hort, to estimate the annual incidence of RE. However, there data suggesting positive treatment effects on cognitive and/ was a substantial increase in withdrawn/merged GP practices or behavioural comorbidities14 15 may influence whether to from 2015 onwards (online supplemental table 1). We therefore treat RE with AEDs. The potential negative cognitive and/or restricted analysis of annual incidence up to December 2014. behavioural effects of AEDs are well recognised, with newer The age range was chosen to cover the lower age RE usually AEDs theoretically having fewer effects.16 In the UK, for chil- starts, and upper age at which most would be seizure free.20 dren who are given treatment, carbamazepine and lamotrigine Codes used for identification of comorbidities and AEDs were are the recommended first- line AEDs. In Germany, Austria and adapted from population- based epilepsy studies2 5 21 22 and are Israel, it is sulthiame and in France it is valproate. The scientific provided as online supplemental material (online supplemental evidence for these recommended AEDs is poor.17 Although there tables 2 and 3). has been a UK survey on current treatment approaches,17 it is unclear whether prescribing patterns of AEDs in RE has changed over time. Given lack of evidence of optimum treatment of RE, StatisticaL ANALYSIS well-designed trials, with realistic recruitment targets based on We summarised over time number of practices contributing contemporary country-specific incidence estimates, are needed. mid- year population counts and returning data satisfying THIN The aims of this study were to investigate temporal trends quality criteria. Mid- year population counts were summarised in incidence of RE, prevalence of comorbidities and AED across practices. prescribing patterns in the UK. For denominators, we examined number of children in every THIN practice irrespective of whether they identified cases of RE (ie, the base population) at the midpoint of each study METHODS year, broken down by: (i) age group in years 4–5; 6–8; 9–11; We carried out a retrospective cohort study using The Health 12–14, 15–16 years; (ii) gender; (iii) GP practice, (iv) quintiles Improvement Network (THIN), a large UK- wide clinical data- of Townsend scores of socioeconomic deprivation. Townsend base that prospectively captures Vision software electronic scores were not updated since 2011, and 7% of contributing health record (EHR) data on prescriptions, diagnoses and symp- practices did not contribute Townsend data. Also, data provided toms in patients presenting to their general practitioner (GP).18 19 at the practice level were a mean of individual participants’ quar- THIN has been used to carry out a number of population-based tile Townsend score which lacks interpretability and is much less studies.5 18 Ninety eight per cent of the UK population are sensitive to differences between practices. Therefore, we were registered with a GP who provides primary care services, refers unable to adjust for socioeconomic status. patients for secondary care and shares care of patients seen in Gender and age at onset of RE were summarised descriptively, secondary care. In THIN, prescription data are automatically as was presence of comorbidities. The proportion and 95% CIs recorded each time a GP issues a prescription and coded using of children with a record of any AED prescription after RE diag- the UK Prescription Pricing Authority and classified according nosis were summarised over time. to the British National Formulary.18 Significant medical events Among the full cohort of children with RE who had at least are recorded by GPs and coded using the Read system. Data 10 years of follow- up from birth, the cumulative distribution of on contact with secondary care are entered from referrals and time to diagnosis of RE was estimated using Kaplan- Meier (KM) discharge letters. Demographic data on age, gender and post- curves.
Recommended publications
  • Pediatric Epilepsy Clips by Pediatric Elizabeth Medaugh, MSN, CPNP-PC , Pediatric Nurse Practitioner, Neurology
    Nursing May 2016 Pediatric Clips Pediatric Nursing Pediatric Epilepsy Clips by Pediatric Elizabeth Medaugh, MSN, CPNP-PC , Pediatric Nurse Practitioner, Neurology Advanced Practice Sophia had been exceeding down to sleep, mother heard a Nurses at Dayton Case Study the expectations of school. thump and went to check on her. Her teachers report her being Sophia’s eyes were wide open Children’s provides Sophia is a 7 year old Caucasian focused the first two quarters, and deviated left, left arm was quick reviews of female who presented to her but have found her attention to stiffened with rhythmic shaking, be somewhat off over the last Sophia’s mouth was described common pediatric primary care physician with concerns of incontinence few weeks. Teachers have asked as “sort of twisted” and Sophia conditions. in sleep. Sophia is an parents if Sophia has been was drooling. The event lasted otherwise healthy child, with getting good rest as she has 90 seconds. Following, Sophia uncomplicated birth history, been falling asleep in class. was disoriented and very sleepy. Father reports his sister Dayton Children’s appropriate developmental Sophia’s mother and father had similar events as a child. progression with regards note that she has had is the region’s Sophia’s neurological exam to early milestones, and several episodes of urinary was normal, therefore her pediatric referral previously diurnal/nocturnally incontinence each week over pediatrician made a referral toilet trained. No report of the last 3-4 weeks. Parents center for a to pediatric neurology. Given recent illness, infection or ill have limited fluids prior to bed Sophia’s presentation, what 20-county area.
    [Show full text]
  • Benign Rolandic Epilepsy
    Benign Rolandic Epilepsy What is Benign Rolandic Epilepsy (BRE)? Benign Rolandic Epilepsy is a common, mild form of childhood epilepsy characterized by brief simple partial seizures involving the face and mouth, usually occuring at night or during the early morning hours. Seizures are the result of brief disruptions in the brain’s normal neuronal activity. Who gets this form of epilepsy? Children between the ages of three and 13 years, who have no neurological or intellectual deficit.The peak age of onset is from 9-10 years of age. BRE is more common in boys than girls. What kind of seizures occur? Typically, the child experiences a sensation then a twitching at the corner of their mouth. The jerking spreads to in- volve the tongue, cheeks and face on one side, resulting in speech arrest, problems with pronunciation and drooling. Or one side of the child’s face may feel paralyzed. Consciousness is retained. On occasion, the seizure may spread and cause the arms and legs on that side to stiffen and or jerk, or it may become a generalized tonic-clonic seizure that involves the whole body and a loss of consciousness. When do the seizures occur? Seizures tend to happen when the child is waking up or during certain stages of sleep. Seizures may be infrequent, or can happen many times a day. How is Benign Rolandic Epilepsy diagnosed? A child having such seizures is given an EEG test to confirm the diagnosis, a test that graphs the pattern of electrical activity in the brain. BRE has a typical EEG spike pattern—repetitive spike activity firing predominantly from the mid-temporal or parietal areas of the brain near the rolandic (motor) strip.
    [Show full text]
  • Antiepileptic Drug Treatment of Rolandic Epilepsy and Panayiotopoulos
    ADC Online First, published on September 8, 2014 as 10.1136/archdischild-2013-304211 Arch Dis Child: first published as 10.1136/archdischild-2013-304211 on 8 September 2014. Downloaded from Review Antiepileptic drug treatment of rolandic epilepsy and Panayiotopoulos syndrome: clinical practice survey and clinical trial feasibility Louise C Mellish,1 Colin Dunkley,2 Colin D Ferrie,3 Deb K Pal1 ▸ Additional material is ABSTRACT published online only. To view Background The evidence base for management of What is already known on this topic? please visit the journal online (http://dx.doi.org/10.1136/ childhood epilepsy is poor, especially for the most common specific syndromes such as rolandic epilepsy (RE) archdischild-2013-304211). ▸ UK management of rolandic epilepsy and and Panayiotopoulos syndrome (PS). Considerable 1King’s College London, Panayiotopoulos syndrome are not well known international variation in management and controversy London, UK and there is limited scientific basis for drug 2 about non-treatment indicate the need for high quality Sherwood Forest Hospitals, treatment or non-treatment. Notts, UK randomised controlled trials (RCT). The aim of this study 3 ▸ Paediatric opinion towards clinical trial designs Department of Paediatric is, therefore, to describe current UK practice and explore is also unknown and important to assess prior Neurology, Leeds General the feasibility of different RCT designs for RE and PS. Infirmary, Leeds, UK to further planning. Methods We conducted an online survey of 590 UK Correspondence to paediatricians who treat epilepsy. Thirty-two questions Professor Deb K Pal, covered annual caseload, investigation and management Department of Basic and practice, factors influencing treatment, antiepileptic drug Clinical Neuroscience, King’s What this study adds? College London, Institute of preferences and hypothetical trial design preferences.
    [Show full text]
  • Antiepileptic Drug Treatment of Rolandic Epilepsy and Panayiotopoulos
    Review Arch Dis Child: first published as 10.1136/archdischild-2013-304211 on 8 September 2014. Downloaded from Antiepileptic drug treatment of rolandic epilepsy and Panayiotopoulos syndrome: clinical practice survey and clinical trial feasibility Louise C Mellish,1 Colin Dunkley,2 Colin D Ferrie,3 Deb K Pal1 ▸ Additional material is ABSTRACT published online only. To view Background The evidence base for management of What is already known on this topic? please visit the journal online (http://dx.doi.org/10.1136/ childhood epilepsy is poor, especially for the most common specific syndromes such as rolandic epilepsy (RE) archdischild-2013-304211). ▸ UK management of rolandic epilepsy and and Panayiotopoulos syndrome (PS). Considerable 1King’s College London, Panayiotopoulos syndrome are not well known international variation in management and controversy London, UK and there is limited scientific basis for drug 2 about non-treatment indicate the need for high quality Sherwood Forest Hospitals, treatment or non-treatment. Notts, UK randomised controlled trials (RCT). The aim of this study 3 ▸ Paediatric opinion towards clinical trial designs Department of Paediatric is, therefore, to describe current UK practice and explore is also unknown and important to assess prior Neurology, Leeds General the feasibility of different RCT designs for RE and PS. Infirmary, Leeds, UK to further planning. Methods We conducted an online survey of 590 UK Correspondence to paediatricians who treat epilepsy. Thirty-two questions Professor Deb K Pal, covered annual caseload, investigation and management Department of Basic and practice, factors influencing treatment, antiepileptic drug Clinical Neuroscience, King’s What this study adds? College London, Institute of preferences and hypothetical trial design preferences.
    [Show full text]
  • Epilepsy Syndromes E9 (1)
    EPILEPSY SYNDROMES E9 (1) Epilepsy Syndromes Last updated: September 9, 2021 CLASSIFICATION .......................................................................................................................................... 2 LOCALIZATION-RELATED (FOCAL) EPILEPSY SYNDROMES ........................................................................ 3 TEMPORAL LOBE EPILEPSY (TLE) ............................................................................................................... 3 Epidemiology ......................................................................................................................................... 3 Etiology, Pathology ................................................................................................................................ 3 Clinical Features ..................................................................................................................................... 7 Diagnosis ................................................................................................................................................ 8 Treatment ............................................................................................................................................. 15 EXTRATEMPORAL NEOCORTICAL EPILEPSY ............................................................................................... 16 Etiology ................................................................................................................................................ 16
    [Show full text]
  • ILAE Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions
    ILAE Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions N Specchio1, EC Wirrell2*, IE Scheffer3, R Nabbout4, K Riney5, P Samia6, SM Zuberi7, JM Wilmshurst8, E Yozawitz9, R Pressler10, E Hirsch11, S Wiebe12, JH Cross13, P Tinuper14, S Auvin15 1. Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu’ Children’s Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy 2. Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester MN, USA. 3. University of Melbourne, Austin Health and Royal Children’s Hospital, Florey Institute, Murdoch Children’s Research Institute, Melbourne, Australia. 4. Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker–Enfants Malades Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris, Paris, France. 5. Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia. Faculty of Medicine, University of Queensland, Queensland, Australia. 6. Department of Paediatrics and Child Health, Aga Khan University, East Africa. 7. Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Member of European Refence Network EpiCARE, Glasgow, UK. 8. Department of Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa. 9. Isabelle Rapin Division of Child Neurology of the Saul R Korey Department of Neurology, Montefiore Medical Center, Bronx, NY USA. 10. Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK 11.
    [Show full text]
  • Analysis of Serial Electroencephalographic Predictors of Seizure Recurrence in Rolandic Epilepsy
    Child's Nervous System (2019) 35:1579–1583 https://doi.org/10.1007/s00381-019-04275-0 ORIGINAL ARTICLE Analysis of serial electroencephalographic predictors of seizure recurrence in Rolandic epilepsy Hongwei Tang1 & Yanping Wang1 & Ying Hua1 & Jianbiao Wang1 & Miao Jing1 & Xiaoyue Hu1 Received: 23 February 2019 /Accepted: 25 June 2019 /Published online: 2 July 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Purpose We aimed to assess the relationship between electroencephalography (EEG) markers and seizure recurrence in cases with benign epilepsy with centrotemporal spikes (BECT) in a long-term follow-up study. Methods We analyzed the data of 52 children with BECT who were divided into 2 groups: the isolated group and recurrence group. The clinical profiles and initial/serial visual EEG recordings of both groups were evaluated. The entire follow-up period ranged from 12 to 65 months. Results None of the clinical characteristics differed between the 2 groups. Serial EEGs showed that the appearance of Rolandic spikes in the frontal region was more prevalent in the recurrence group. Moreover, a significant correlation was found between bilateral asynchronous discharges and seizure recurrence. However, on initial EEG of these patients, neither of the EEG features exhibited statistical significance. Conclusion The presence of frontal focus and bilateral asynchrony appeared to be hallmarks of BECT patients with higher risk for seizure recurrence. Keywords BECT . Rolandic epilepsy . EEG . Seizure Abbreviations Introduction EEG electroencephalography BECT Benign epilepsy with centrotemporal spikes Benign childhood epilepsy with centrotemporal spikes, also MRI Magnetic resonance imaging known as benign Rolandic epilepsy, accounts for approxi- AEDs Antiepileptic drugs mately 13–25% of cases of epilepsy in school-aged children, LEV Levetiracetam and is one of the most common epileptic syndromes in child- OXC Oxcarbazepine hood [20].
    [Show full text]
  • Frontal Lobe Growth Retardation And
    & The ics ra tr pe a u i t i d c e s Kanemura and Aihara, Pediat Therapeut 2013, 3:3 P Pediatrics & Therapeutics DOI: 10.4172/2161-0665.1000160 ISSN: 2161-0665 Research Article Open Access Frontal Lobe Growth Retardation and Dysfunctions in Children with Epilepsy: A 3-D MRI Volumetric Study Hideaki Kanemura1* and Masao Aihara2 1Department of Pediatrics, Faculty of Medicine, University of Yamanashi, 1110 Chuo, Yamanashi 409-3898, Japan 2Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan Abstract Behavioral abnormalities have been noted in specific epilepsy syndromes involving the frontal lobe. Epilepsies that involve the frontal lobe, such as frontal lobe epilepsy (FLE), atypical evolution of benign childhood epilepsy with centrotemporal spikes (BCECTS), and epilepsy with continuous spike-waves during slow sleep (CSWS), are characterized by impairment of neuropsychological abilities, frequently associated with behavioral disorders. These manifestations correlate strongly with frontal lobe dysfunction. Accordingly, epilepsies in childhood may affect the prefrontal cortex and leave residual mental and behavioral abnormalities. Brain volumetry has shown that frontal and prefrontal lobe volumes show a growth disturbance in patients with FLE, atypical evolution of BCECTS, and CSWS compared with those of normal subjects. These studies also showed that seizures and the duration of paroxysmal anomalies may be associated with prefrontal lobe growth abnormalities, which are associated with neuropsychological problems. Moreover, these studies also showed that the prefrontal lobe appears more highly vulnerable to repeated seizures than other cortical regions. The urgent suppression of these seizure and EEG abnormalities may be necessary to prevent the progression of neuropsychological impairments.
    [Show full text]
  • Childhood Epilepsy Syndromes Factsheet There Are Many Different Types of Epilepsy Syndrome
    childhood epilepsy syndromes factsheet There are many different types of epilepsy syndrome. This factsheet gives a brief overview of what childhood epilepsy syndromes are and includes details of some 26 specific syndromes. what is a syndrome? examples of childhood epilepsy syndromes A syndrome is a group of signs or symptoms that Benign rolandic epilepsy (BRE) happen together and help to identify a unique This syndrome affects 15% of children with epilepsy medical condition. and can start at any time between the ages of 3 and 10. Children may have very few seizures and most what is a ‘childhood epilepsy syndrome’? become seizure-free by the age of 16. They may have If your child is diagnosed with an epilepsy syndrome, simple focal seizures (sometimes called simple partial it means that their epilepsy has some specific signs seizures), often at night, which begin with a tingling and symptoms. These include: feeling in the mouth, gurgling or grunting noises and • the type of seizure or seizures they have; dribbling. Speech can be temporarily affected and • the age when the seizures start; and symptoms may develop into a generalised tonic clonic • a specific pattern on an electroencephalogram (EEG). (convulsive) seizure. AEDs may not be necessary but An EEG test is painless and records patterns of electrical they can be helpful to control seizures. activity in the brain. Some epilepsy syndromes have a See our leaflet seizures for more information. particular pattern so the EEG can be helpful in finding the correct diagnosis. Childhood absence epilepsy (CAE) An epilepsy syndrome can only be diagnosed by This syndrome starts between the ages of 4 and 10.
    [Show full text]
  • Language Dysfunction in Pediatric Epilepsy
    THE JOURNAL OF PEDIATRICS • www.jpeds.com MEDICAL PROGRESS Language Dysfunction in Pediatric Epilepsy Fiona M. Baumer, MD, Aaron L. Cardon, MD, MSc, and Brenda E. Porter, MD, PhD pilepsy is one of the most common and severe neu- assessment of language extremely difficult; this review will there- rologic diseases in children, affecting 0.9%-2% of the fore focus on studies of children with normal or near-normal E pediatric population.1,2 Children and adolescents with intelligence. This paper will first review studies characteriz- epilepsy and their parents indicate that quality of life is driven ing language deficits in pediatric epilepsy from the most severe as much or more by cognitive comorbidities as by seizure forms with total loss of language to the more common forms control.3-5 Surveys of these families found that cognitive prob- of language impairment found in the inappropriately termed lems were second only to medication side effects in terms of “benign” epilepsies of childhood. Next, we will describe what decreasing quality of life.6 The new International League Against is known about the structural and electrophysiologic changes Epilepsy classification considers the cognitive comorbidities seen associated with language dysfunction, reviewing the in epilepsy to be part of the condition.7 Of the cognitive prob- neuroimaging, electroencephalogram (EEG), and genetic studies lems seen in epilepsy, language disorders (Table) are particu- related to language dysfunction. Epilepsy surgery planning and larly important to identify and address, as language dysfunction resection of epileptic foci provide additional tools to under- can contribute to academic underachievement and long- stand the impact of focal epilepsy on language network de- term social, professional, and psychological problems.10 velopment and interaction with overall cognition in children The impact of epilepsy on language is relevant not only from with epilepsy.
    [Show full text]
  • Childhood Epilepsy with Centrotemporal Spikes: Clinical and Neuropsychological Outcomes 5 Years After Remission
    diagnostics Article Childhood Epilepsy with Centrotemporal Spikes: Clinical and Neuropsychological Outcomes 5 Years after Remission 1,2, , 1, , 1,2, Costanza Varesio * y , Martina Paola Zanaboni * y, Elisa Carlotta Salmin y, 1, 1,2, 3,4 1,2, Chiara Totaro y, Martina Totaro y, Elena Ballante , Ludovica Pasca y, 5,6 1, Pierangelo Veggiotti and Valentina De Giorgis y 1 Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, 27100 Pavia, Italy; [email protected] (E.C.S.); [email protected] (C.T.); [email protected] (M.T.); [email protected] (L.P.); [email protected] (V.D.G.) 2 Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy 3 BioData Science Center, IRCCS Mondino Foundation, 27100 Pavia, Italy; [email protected] 4 Department of Mathematics, University of Pavia, 27100 Pavia, Italy 5 Pediatric Neurology Unit, Vittore Buzzi Hospital, 20100 Milano, Italy; [email protected] 6 Biomedical and Clinical Sciences Department, Luigi Sacco Hospital, University of Milan, 20100 Milano, Italy * Correspondence: [email protected] (C.V.); [email protected] (M.P.Z.); Tel.: +39-0382-380289 (C.V.) Member of ERN-EpiCARE. y Received: 6 October 2020; Accepted: 6 November 2020; Published: 10 November 2020 Abstract: Although specific neuropsychological deficits have been recognized during the active phase of epilepsy with centrotemporal spikes (ECTS), the natural cognitive and neuropsychological history after remission has not been elucidated so far. We evaluated the natural cognitive and neuropsychological outcomes five years after disease remission and investigated possible predictors of long-term outcome among socio-demographic and electro-clinical variables.
    [Show full text]
  • Pediatric Epilepsy
    PEDIATRIC EPILEPSY Ø Epilepsy is one of the most common chronic neurological disorders. It is characterized by recurrent unprovoked seizures or an enduring predisposition to generate epileptic seizures. If epilepsy begins in childhood, it is often outgrown. Seizures are common in childhood and adolescence. Approximately 3% of children will experience a seizure. Ø A seizure occurs when there is a sudden change in behavior or sensation caused by abnormal and excessive electrical hypersynchronization of neuronal networks in the cerebral cortex. Normal inhibition is overcome by excessive excitatory stimuli. Ø If the cause of the seizures is known (for example: genetic, inborn errors of metabolism, metabolic (eg: low glucose, electrolyte abnormalities), structural (eg: malformations, tumours, bleeds, stroke, traumatic brain injury), infectious, inflammatory, or toxins) it is classified as symptomatic. If the cause is unknown, it is classified as idiopathic. 1. WHERE DID THE SEIZURE START? / WHAT KIND OF SEIZURE IS IT? 2. IS AWARENESS YES FOCAL ONSET GENERALIZED UNKNOWN IMPAIRED? NO Seizure that originates ONSET ONSET in a focal cortical area Seizure that involves When it is unclear YES with associated clinical both sides of the where the seizure 3. PROGRESSION TO BILATERAL? features. brain from the onset. starts. NO SEIZURE SEMIOLOGY (The terminology for seizure types is designed to be useful for communicating the key characteristics of seizures) CLONIC: sustained rhythmical TONIC: muscles stiffen or ATONIC: sudden loss of muscle tone, MYOCLONUS: sudden lighting- jerking movements. tense. lasting seconds. like jerk, may cluster. EPILEPTIC SPASM: sudden AUTONOMIC: eg: AUTOMATISMS: ABSENCE: brief (≤ 10s), OTHERS: change flexion, extension, or flexion- rising epigastric stereotyped, purposeless frequent (up to 100’s) in cognition, extension of proximal and sensations, waves of movements.
    [Show full text]