(12) United States Patent (10) Patent No.: US 7.655,677 B2 Morita Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7.655,677 B2 Morita Et Al USOO7655677B2 (12) United States Patent (10) Patent No.: US 7.655,677 B2 Morita et al. (45) Date of Patent: Feb. 2, 2010 (54) COMPOSITION AND METHOD FOR (56) References Cited CONTROLLING HOUSE INSECT PEST U.S. PATENT DOCUMENTS (75) Inventors: Masayuki Morita, Shiga (JP): Osamu 5,360,806 A 11/1994 Toki et al. Imai, Shiga (JP) 5,747,519 A * 5/1998 Kodama et al. ............. 514,407 5,921,018 A * 7/1999 Hirose et al. ............... 43,132.1 (73) Assignee: Ishihara Sangyo Kaisha, Ltd., 5.990,043 A * 1 1/1999 Kugler et al. ............... 504,150 Osaka-shi (JP) 7, 195,773 B2 3/2007 Morita et al. 2007/0142439 A1 6/2007 Morita et al. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 38 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 12/105,779 WO WO9324O11 A1 * 12/1993 (22) Filed: Apr. 18, 2008 (65) Prior Publication Data OTHER PUBLICATIONS US 2008/O2OO522 A1 Aug. 21, 2008 Taiwanese Office Action dated Mar. 4, 2008 (w/Partial Translation). Related U.S. Application Data * cited by examiner Primary Examiner John Pak (63) Continuation of application No. 10/504,158, filed as Assistant Examiner—Andriae M Holt application No. PCT/JP03/01711 on Feb. 18, 2003, (74) Attorney, Agent, or Firm Oblon, Spivak, McClelland, now abandoned. Maier & Neustadt, L.L.P. (30) Foreign Application Priority Data (57) ABSTRACT Feb. 22, 2002 (JP) ............................. 2002-045837 Aug. 2, 2002 (JP) ............................. 2002-226478 The present invention provides a composition for controlling a house insect pest, such as termites, ants or cockroaches, (51) Int. Cl. which comprises, as active ingredients, at least two com AOIN 43/40 (2006.01) pounds selected from the group consisting of (a) a certain AOIN 53/02 (2006.01) pyridine compound, (b) a benzoylurea compound, (c) a pyre AOIP 7/00 (2006.01) throid compound and (d) a certain hydrazone compound; and (52) U.S. Cl. ....................... 514/351; 514/341; 514/531; a composition for controlling a house insect pest, which com 514/594; 514/596 prises, as an active ingredient, a certain hydrazone com (58) Field of Classification Search ................. 514/351, pound. 514/341,531, 594,596 See application file for complete search history. 7 Claims, No Drawings US 7,655,677 B2 1. COMPOSITION AND METHOD FOR CONTROLLING HOUSE INSECT PEST (I) This application is a Continuation of U.S. application Ser. No. 10/504,158, filed on May 16, 2005, now abandoned, which was filed as a 371 of International Application PCT/ JPO3/01711, filed on Feb. 18, 2003. TECHNICAL FIELD 10 (O), The present invention relates to a composition for control wherein Y is a haloalkyl group, m is 0 or 1, and Q is ling a house insect pest, which comprises, as active ingredi ents, at least two compounds selected from the group consist 15 X RI ing of (a) a certain specific pyridine compound or its salt, (b) | / a benzoylurea compound, (c) a pyrethroid compound and (d) -C-N a certain specific hydrazone compound or its salt, particularly to a composition for controlling termites, ants or cock Ye roaches. Further, it relates also to a composition for control ling a house insect pest, which comprises, as an active ingre or a Substituted or unsubstituted heterocyclic group, (wherein dient, the above hydraZone compound or its salt. X is an oxygen atom or a sulfur atom, R' and R are respec tively independently a hydrogenatom, a Substituted or unsub stituted alkyl group, a Substituted or unsubstituted alkenyl 25 group, a Substituted or unsubstituted alkynyl group, a Substi BACKGROUND ART tuted or unsubstituted cycloalkyl group, a C(W)R group, a —OR group, a S(O)R group, a NHR' group, Pyridine compounds may, for example, be those described in e.g. U.S. Pat. No. 5,360,806, WO98/57969 and WO 02/34050. Hydrazone compounds may be those described in 30 S R7, U.S. Pat. No. 5,288,727 and Japanese patent 307192. As conventional agents for controlling termites, organo phosphorus compounds such as chlorpyrifos, or pyrethroids -(DN may, for example, be mentioned. Further, as agents for con 35 trolling ants, hydramethylnon, lithium sulfonate, organo a C(R)=NO R group or a substituted or unsubstituted phosphorus compounds, carbamates, or pyrethroids, may, for aryl group, or R' and R may form a =C(R')R'' group or example, be mentioned. Further, as agents for controlling may form a C-C 5-membered or 6-membered heterocyclic cockroaches, pyrethroids or organophosphorus compounds, group which may contain a nitrogenatom oran oxygenatom, may, for example, be mentioned. However, among them, 40 together with an adjacent nitrogenatom, R is a substituted or unsubstituted alkyl group, a Substituted or unsubstituted alk there are some which are feared to present toxicity against enyl group, a Substituted or unsubstituted alkynyl group, a mammals or adverse effects to environment. Under the cir Substituted or unsubstituted cycloalkyl group, a Substituted or cumstances, a new agent for controlling a house insect pest is unsubstituted aryl group, analkoxy group, an alkylthio group desired. 45 or a mono- or dialkylamino group, R is a hydrogen atom, a Substituted or unsubstituted alkyl group, a Substituted or DISCLOSURE OF THE INVENTION unsubstituted alkenyl group, a Substituted or unsubstituted alkynyl group, a Substituted or unsubstituted cycloalkyl The present inventors have conducted an extensive group, a Substituted or unsubstituted aryl group, a Substituted 50 or unsubstituted heterocyclic group ora-COR group, R is research for an agent for controlling a house insect pest. As a an alkyl group or a dialkylamino group, R is an alkyl group result, they have found specifically that by combining at least oran aryl group, Zis Nora-C R' group, R is a hydrogen two compounds selected from the group consisting of (a) atom, a halogen atom, a Substituted or unsubstituted alkyl certain specific pyridine compounds or salts thereof, (b) ben group, an alkoxy group, an alkylthio group or a nitro group. Zoylurea compounds, (c) pyrethroid compounds and (d) cer 55 Rand Rare respectively independently a hydrogenatom, a tain specific hydrazone compounds or salts thereof, as active Substituted or unsubstituted alkyl group, a Substituted or ingredients, particularly excellent effects for controlling unsubstituted alkenyl group, a Substituted or unsubstituted house insect pests can be expressed, and that certain hydra alkynyl group, a Substituted or unsubstituted aryl group or a Zone compounds or salts thereof have excellent effects for substituted or unsubstituted heterocyclic group, R'' and R' controlling house insect pests. The present invention has been 60 are respectively independently a hydrogenatom, a Substituted accomplished on the basis of this discovery. or unsubstituted alkyl group, a Substituted or unsubstituted alkenyl group, a Substituted or unsubstituted heterocyclic Namely, the present invention provides a composition for group, a N-(R')R group, a substituted or unsubstituted controlling a house insect pest, which comprises, as active alkoxy group, a Substituted or unsubstituted alkylthio group, ingredients, at least two compounds selected from the group 65 R'' and R' are respectively independently a hydrogenatom, consisting of (a) a pyridine compound of the formula (I) or its a Substituted or unsubstituted alkyl group, a Substituted or salt: unsubstituted alkenyl group, a Substituted or unsubstituted US 7,655,677 B2 3 4 alkynyl group, a Substituted or unsubstituted aryl group or a tuted with a halogen, alkyl, alkoxy, haloalkoxy, alkylthio. substituted or unsubstituted heterocyclic group, W' is an oxy phenyl (which may be further substituted with a halogen, gen atom or a Sulfur atom, and n is 1 or 2); (b) a benzoylurea alkyl, alkoxy, nitro, haloalkyl or phenoxy group), phenoxy, compound; (c) a pyrethroid compound and (d) a hydrazone phenylthio, cycloalkyl or cycloalkoxy group; a hydroxy compound of the formula (II) or its salt: group; a cyano group; a cycloalkyl group; an imino group; a —C(W)R'' group (W is an oxygen atom or a sulfur atom, R'' is a hydrogen atom; an amino group; an amino group (II) Substituted with one or two alkyl group; an alkyl group; an R5 M alkoxy group; an alkylthio group or an aryl group); a —OC N 10 (W)R group (R' is an aryl group substituted with an alkyl RSC V o orhaloalkyl group); oran alkylsulfonyl group. Also, when the :X ) is R6' y R' above Substituent is an imino group, it may form an amidino group or animidate group, together withanamino group oran / CH-V 5. alkoxy group. 15 Also, other examples of a substituent of a substituted or unsubstituted alkyl group defined as R' or R included in the wherein each of R', R and R", which are independent of Q' group in the formula (I), include a 4-haloalkyl-3-pyridin one another, is a hydrogen atom, a halogen atom, an alkyl ecarboxyamide group, a N-methyl-4-haloalkyl-3-pyridin group which may be substituted by halogen, or an alkoxy ecarboxyamide group, a 4-haloalkyl-3-pyridinecarboxya group which may be substituted by halogen, R is a halogen mide-N-alkylenoxy group, and the like. atom, an alkyl group which may be substituted by halogen, or Thus, the above compound is a dimer of a compound of the an alkoxy group which may be substituted by halogen, R is formula (I) connected by way of an alkylene chain. In the a hydrogenatom, or an alkyl group, R is X"CO (wherein same manner as above, the active ingredient of the composi X7 is a hydrogen atom, or an alkyl group), or XOCO tion for controlling a house insect pest of the present invention (wherein X is an alkyl group), or RandR" together form 25 includes a trimer.
Recommended publications
  • New Aspects About Supella Longipalpa (Blattaria: Blattellidae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Asian Pac J Trop Biomed 2016; 6(12): 1065–1075 1065 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Biomedicine journal homepage: www.elsevier.com/locate/apjtb Review article http://dx.doi.org/10.1016/j.apjtb.2016.08.017 New aspects about Supella longipalpa (Blattaria: Blattellidae) Hassan Nasirian* Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Article history: The brown-banded cockroach, Supella longipalpa (Blattaria: Blattellidae) (S. longipalpa), Received 16 Jun 2015 recently has infested the buildings and hospitals in wide areas of Iran, and this review was Received in revised form 3 Jul 2015, prepared to identify current knowledge and knowledge gaps about the brown-banded 2nd revised form 7 Jun, 3rd revised cockroach. Scientific reports and peer-reviewed papers concerning S. longipalpa and form 18 Jul 2016 relevant topics were collected and synthesized with the objective of learning more about Accepted 10 Aug 2016 health-related impacts and possible management of S. longipalpa in Iran. Like the Available online 15 Oct 2016 German cockroach, the brown-banded cockroach is a known vector for food-borne dis- eases and drug resistant bacteria, contaminated by infectious disease agents, involved in human intestinal parasites and is the intermediate host of Trichospirura leptostoma and Keywords: Moniliformis moniliformis. Because its habitat is widespread, distributed throughout Brown-banded cockroach different areas of homes and buildings, it is difficult to control.
    [Show full text]
  • Feared Than Revered: Insects and Their Impact on Human Societies (With Some Specific Data on the Importance of Entomophagy in a Laotian Setting)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomologie heute Jahr/Year: 2008 Band/Volume: 20 Autor(en)/Author(s): Meyer-Rochow Victor Benno, Nonaka Kenichi, Boulidam Somkhit Artikel/Article: More Feared than Revered: Insects and their Impact on Human Societies (with some Specific Data on the Importance of Entomophagy in a Laotian Setting). Mehr verabscheut als geschätzt: Insekten und ihr Einfluss auf die menschliche Gesellschaft (mit spezifischen Daten zur Rolle der Entomophagie in einem Teil von Laos) 3-25 Insects and their Impact on Human Societies 3 Entomologie heute 20 (2008): 3-25 More Feared than Revered: Insects and their Impact on Human Societies (with some Specific Data on the Importance of Entomophagy in a Laotian Setting) Mehr verabscheut als geschätzt: Insekten und ihr Einfluss auf die menschliche Gesellschaft (mit spezifischen Daten zur Rolle der Entomophagie in einem Teil von Laos) VICTOR BENNO MEYER-ROCHOW, KENICHI NONAKA & SOMKHIT BOULIDAM Summary: The general public does not hold insects in high regard and sees them mainly as a nuisance and transmitters of disease. Yet, the services insects render to us humans as pollinators, entomophages, producers of honey, wax, silk, shellac, dyes, etc. have been estimated to be worth 20 billion dollars annually to the USA alone. The role holy scarabs played to ancient Egyptians is legendary, but other religions, too, appreciated insects: the Bible mentions honey 55 times. Insects as ornaments and decoration have been common throughout the ages and nowadays adorn stamps, postcards, T-shirts, and even the human skin as tattoos.
    [Show full text]
  • Cockroach Marion Copeland
    Cockroach Marion Copeland Animal series Cockroach Animal Series editor: Jonathan Burt Already published Crow Boria Sax Tortoise Peter Young Ant Charlotte Sleigh Forthcoming Wolf Falcon Garry Marvin Helen Macdonald Bear Parrot Robert E. Bieder Paul Carter Horse Whale Sarah Wintle Joseph Roman Spider Rat Leslie Dick Jonathan Burt Dog Hare Susan McHugh Simon Carnell Snake Bee Drake Stutesman Claire Preston Oyster Rebecca Stott Cockroach Marion Copeland reaktion books Published by reaktion books ltd 79 Farringdon Road London ec1m 3ju, uk www.reaktionbooks.co.uk First published 2003 Copyright © Marion Copeland All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publishers. Printed and bound in Hong Kong British Library Cataloguing in Publication Data Copeland, Marion Cockroach. – (Animal) 1. Cockroaches 2. Animals and civilization I. Title 595.7’28 isbn 1 86189 192 x Contents Introduction 7 1 A Living Fossil 15 2 What’s in a Name? 44 3 Fellow Traveller 60 4 In the Mind of Man: Myth, Folklore and the Arts 79 5 Tales from the Underside 107 6 Robo-roach 130 7 The Golden Cockroach 148 Timeline 170 Appendix: ‘La Cucaracha’ 172 References 174 Bibliography 186 Associations 189 Websites 190 Acknowledgements 191 Photo Acknowledgements 193 Index 196 Two types of cockroach, from the first major work of American natural history, published in 1747. Introduction The cockroach could not have scuttled along, almost unchanged, for over three hundred million years – some two hundred and ninety-nine million before man evolved – unless it was doing something right.
    [Show full text]
  • Isoptera) in New Guinea 55 Doi: 10.3897/Zookeys.148.1826 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 148: 55–103Revision (2011) of the termite family Rhinotermitidae (Isoptera) in New Guinea 55 doi: 10.3897/zookeys.148.1826 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea Thomas Bourguignon1,2,†, Yves Roisin1,‡ 1 Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium 2 Present address: Graduate School of Environmental Science, Hokkaido Uni- versity, Sapporo 060–0810, Japan † urn:lsid:zoobank.org:author:E269AB62-AC42-4CE9-8E8B-198459078781 ‡ urn:lsid:zoobank.org:author:73DD15F4-6D52-43CD-8E1A-08AB8DDB15FC Corresponding author: Yves Roisin ([email protected]) Academic editor: M. Engel | Received 19 July 2011 | Accepted 28 September 2011 | Published 21 November 2011 urn:lsid:zoobank.org:pub:27B381D6-96F5-482D-B82C-2DFA98DA6814 Citation: Bourguignon T, Roisin Y (2011) Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea. In: Engel MS (Ed) Contributions Celebrating Kumar Krishna. ZooKeys 148: 55–103. doi: 10.3897/zookeys.148.1826 Abstract Recently, we completed a revision of the Termitidae from New Guinea and neighboring islands, record- ing a total of 45 species. Here, we revise a second family, the Rhinotermitidae, to progress towards a full picture of the termite diversity in New Guinea. Altogether, 6 genera and 15 species are recorded, among which two species, Coptotermes gambrinus and Parrhinotermes barbatus, are new to science. The genus Heterotermes is reported from New Guinea for the first time, with two species restricted to the southern part of the island.
    [Show full text]
  • Isoptera Book Chapter
    Isoptera 535 See Also the Following Articles Biodiversity ■ Biogeographical Patterns ■ Cave Insects ■ Introduced Insects Further Reading Carlquist , S. ( 1974 ) . “ Island Biology . ” Columbia University Press , New York and London . Gillespie , R. G. , and Roderick , G. K. ( 2002 ) . Arthropods on islands: Colonization, speciation, and conservation . Annu. Rev. Entomol. 47 , 595 – 632 . Gillespie , R. G. , and Clague , D. A. (eds.) (2009 ) . “ Encyclopedia of Islands. ” University of California Press , Berkeley, CA . Howarth , F. G. , and Mull , W. P. ( 1992 ) . “ Hawaiian Insects and Their Kin . ” University of Hawaii Press , Honolulu, HI . MacArthur , R. H. , and Wilson , E. O. ( 1967 ) . “ The Theory of Island Biogeography . ” Princeton University Press , Princeton, NJ . Wagner , W. L. , and Funk , V. (eds.) ( 1995 ) . “ Hawaiian Biogeography Evolution on a Hot Spot Archipelago. ” Smithsonian Institution Press , Washington, DC . Whittaker , R. J. , and Fern á ndez-Palacios , J. M. ( 2007 ) . “ Island Biogeography: Ecology, Evolution, and Conservation , ” 2nd ed. Oxford University Press , Oxford, U.K . I Isoptera (Termites) Vernard R. Lewis FIGURE 1 Castes for Isoptera. A lower termite group, University of California, Berkeley Reticulitermes, is represented. A large queen is depicted in the center. A king is to the left of the queen. A worker and soldier are he ordinal name Isoptera is of Greek origin and refers to below. (Adapted, with permission from Aventis Environmental the two pairs of straight and very similar wings that termites Science, from The Mallis Handbook of Pest Control, 1997.) Thave as reproductive adults. Termites are small and white to tan or sometimes black. They are sometimes called “ white ants ” and can be confused with true ants (Hymenoptera).
    [Show full text]
  • Termite Biology and Research Techniques
    Termite Biology and Control 2017 ENY 4221 / ENY 6248 2 credit hours Ft. Lauderdale Research and Education Center University of Florida 3205 College Ave. Ft. Lauderdale, FL 33314 Dates: Registration Deadline is Friday May 5, 2017 for Summer C Lectures and Laboratory Activities June 19-23, 2017 in FLREC Teaching Lab Rm 121 Exam and Term Papers due Friday July 28, 2017 Instructors: Dr. Rudolf Scheffrahn (954) 577-6312 [email protected] Dr. Nan-Yao Su (954) 577-6339 [email protected] Dr. William Kern, Jr. (954) 577-6329 [email protected] Dr. Thomas Chouvenc (954) 577-6320 [email protected] Teaching Assistant: Aaron Mullins (954) 577-6395 [email protected] Course Objectives: • Students will learn about the natural history, ecology, behavior, and distribution of all seven major termite families. • Students will be able to recognize three major termite families and 16 important genera. • Six primary invasive pest species must be recognized to species. • Students will produce a reference collection of termites for their future use. • Student will learn and gain field experience in a range of techniques for the collection and control of subterranean and drywood termites. Topics to be covered Monday 8:00 Introduction to the Isoptera Anatomy and Terminology – Chouvenc Higher Taxonomy - Scheffrahn Evolution – Chouvenc Ecological Significance – Su/Scheffrahn 12:00 Lunch 1:00 Biology and ecology of Kalotermitidae – Scheffrahn 2:00 Biology and ecology of Rhinotermitidae – Chouvenc 3:00 Principles of IPM and the Use of Bait and Alternative Technologies for Control of Subterranean Termites – Mullins 4:00 Biology and ecology of Termitidae - Scheffrahn 5:00 Biology and ecology of “minor” families (Hodotermitidae, Serritermitidae, Mastotermitidae, Termopsidae) – Scheffrahn 5:30 Welcome Dinner Tuesday 8:00 – 12:00 Termite collection field trip to FLL property or Secret Woods Park – Scheffrahn/Kern 1:00 – 5:00 ID Laboratories (Rm 205) Scheffrahn Identification of Important Rhinotermitidae Laboratory: Coptotermes, Heterotermes, and Reticulitermes, Prorhinotermes.
    [Show full text]
  • A Nondichotomous Key to Protist Species Identification of Reticulitermes
    SYSTEMATICS A Nondichotomous Key to Protist Species Identification of Reticulitermes (Isoptera: Rhinotermitidae) 1 J. L. LEWIS AND B. T. FORSCHLER Department of Entomology, 413 Biological Sciences Building, University of Georgia, Athens, GA 30602 Ann. Entomol. Soc. Am. 99(6): 1028Ð1033 (2006) ABSTRACT A key was developed using morphological and behavioral characters to identify nine genera and 13 species of protists found in the hindgut of three Reticulitermes speciesÑ Reticulitermes flavipes (Kollar), Reticulitermes virginicus (Banks), and Reticulitermes hageni BanksÑby using the online IDnature guides by Discover Life. There are seven characters and 13 taxa, each attached to species descriptions, digital stills, or movies to aid in protist species identiÞcation. We chose characters for protist species identiÞcation that were easy to observe with live samples and a light microscope at 400ϫ magniÞcation. All 11 protists from R. flavipes and nine each in R. virginicus and R. hageni were recognized using original and revised species descriptions. This was the Þrst report of the protist genera Trichomitus from both R. virginicus and R. hageni. KEY WORDS symbiotic protists, termite identiÞcation, anaerobic protists identiÞcation, Parabasa- lia, Oxymonadida The anaerobic symbiotic protist orders found in the (workers have Ϸ57 Ϯ 11%), because it is not found in hindgut of lower termites (Isoptera) include Tricho- R. virginicus and R. hageni (Lewis and Forschler monadida Kirby, Oxymonadida Grasse´, and Hyper- 2004b). Trichonympha agilis Leidy (1877) is Ϸ19 Ϯ 5% mastigida Grassi & Foa` (Yamin 1979). None of these of the protist population in R. virginicus compared protist species are found outside of the insect host with 4 Ϯ 3% in R.
    [Show full text]
  • Blattodea: Hodotermitidae) and Its Role As a Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia
    Article Characterization of the 12S rRNA Gene Sequences of the Harvester Termite Anacanthotermes ochraceus (Blattodea: Hodotermitidae) and Its Role as A Bioindicator of Heavy Metal Accumulation Risks in Saudi Arabia Reem Alajmi 1,*, Rewaida Abdel-Gaber 1,2,* and Noura AlOtaibi 3 1 Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia 2 Zoology Department, Faculty of Science, Cairo University, Cairo 12613, Egypt 3 Department of Biology, Faculty of Science, Taif University, Taif 21974, Saudi Arabia; [email protected] * Correspondence: [email protected] (R.A.), [email protected] (R.A.-G.) Received: 28 December 2018; Accepted: 3 February 2019; Published: 8 February 2019 Abstract: Termites are social insects of economic importance that have a worldwide distribution. Identifying termite species has traditionally relied on morphometric characters. Recently, several mitochondrial genes have been used as genetic markers to determine the correlation between different species. Heavy metal accumulation causes serious health problems in humans and animals. Being involved in the food chain, insects are used as bioindicators of heavy metals. In the present study, 100 termite individuals of Anacanthotermes ochraceus were collected from two Saudi Arabian localities with different geoclimatic conditions (Riyadh and Taif). These individuals were subjected to morphological identification followed by molecular analysis using mitochondrial 12S rRNA gene sequence, thus confirming the morphological identification of A. ochraceus. Furthermore, a phylogenetic analysis was conducted to determine the genetic relationship between the acquired species and other termite species with sequences previously submitted in the GenBank database. Several heavy metals including Ca, Al, Mg, Zn, Fe, Cu, Mn, Ba, Cr, Co, Be, Ni, V, Pb, Cd, and Mo were measured in both collected termites and soil samples from both study sites.
    [Show full text]
  • The Phylogeny of Termites
    Molecular Phylogenetics and Evolution 48 (2008) 615–627 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors Frédéric Legendre a,*, Michael F. Whiting b, Christian Bordereau c, Eliana M. Cancello d, Theodore A. Evans e, Philippe Grandcolas a a Muséum national d’Histoire naturelle, Département Systématique et Évolution, UMR 5202, CNRS, CP 50 (Entomologie), 45 rue Buffon, 75005 Paris, France b Department of Integrative Biology, 693 Widtsoe Building, Brigham Young University, Provo, UT 84602, USA c UMR 5548, Développement—Communication chimique, Université de Bourgogne, 6, Bd Gabriel 21000 Dijon, France d Muzeu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, 04263-000 São Paulo, SP, Brazil e CSIRO Entomology, Ecosystem Management: Functional Biodiversity, Canberra, Australia article info abstract Article history: A phylogenetic hypothesis of termite relationships was inferred from DNA sequence data. Seven gene Received 31 October 2007 fragments (12S rDNA, 16S rDNA, 18S rDNA, 28S rDNA, cytochrome oxidase I, cytochrome oxidase II Revised 25 March 2008 and cytochrome b) were sequenced for 40 termite exemplars, representing all termite families and 14 Accepted 9 April 2008 outgroups. Termites were found to be monophyletic with Mastotermes darwiniensis (Mastotermitidae) Available online 27 May 2008 as sister group to the remainder of the termites. In this remainder, the family Kalotermitidae was sister group to other families. The families Kalotermitidae, Hodotermitidae and Termitidae were retrieved as Keywords: monophyletic whereas the Termopsidae and Rhinotermitidae appeared paraphyletic.
    [Show full text]
  • Structure, Function and Evolution of the Labral and Frontal Glands in Termites Valeria Danae Palma Onetto
    Structure, function and evolution of the labral and frontal glands in termites Valeria Danae Palma Onetto To cite this version: Valeria Danae Palma Onetto. Structure, function and evolution of the labral and frontal glands in termites. Populations and Evolution [q-bio.PE]. Université Sorbonne Paris Cité, 2019. English. NNT : 2019USPCD027. tel-03033808 HAL Id: tel-03033808 https://tel.archives-ouvertes.fr/tel-03033808 Submitted on 1 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS 13, SORBONNE PARIS CITÉ ECOLE DOCTORALE GALILEÉ THESE présentée pour l’obtention du grade de DOCTEUR DE L’UNIVERSITE PARIS 13 Spécialité: Ethologie Structure, function and evolution Defensiveof the labral exocrine and glandsfrontal glandsin termites in termites Présentée par Valeria Palma–Onetto Sous la direction de: David Sillam–Dussès et Jan Šobotník Soutenue publiquement le 28 janvier 2019 JURY Maria Cristina Lorenzi Professeur, Université Paris 13 Présidente du jury Renate Radek Professeur, Université Libre de Berlin Rapporteur Yves Roisin Professeur,
    [Show full text]
  • The Nature of Alarm Communication in Constrictotermes Cyphergaster (Blattodea: Termitoidea: Termitidae): the Integration of Chemical and Vibroacoustic Signals Paulo F
    © 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 1649-1659 doi:10.1242/bio.014084 RESEARCH ARTICLE The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals Paulo F. Cristaldo1,*, Vojtĕch Jandák2, Kateřina Kutalová3,4,5, Vinıciuś B. Rodrigues6, Marek Brothánek2, Ondřej Jiřıć̌ek2, Og DeSouza6 and Jan Šobotnıḱ3 ABSTRACT INTRODUCTION Predation and competition have long been considered major ecological Alarm signalling is of paramount importance to communication in all factors structuring biotic communities (e.g. Shurin and Allen, 2001). In social insects. In termites, vibroacoustic and chemical alarm signalling many taxa, a wide range of defensive strategies have evolved helping are bound to operate synergistically but have never been studied organisms to deal with costs imposed by such interactions. Strategies simultaneously in a single species. Here, we inspected the functional consist in combining mechanical (biting, kicking, fleeing) and/or significance of both communication channels in Constrictotermes chemical (toxic or repellent compounds) arsenal with an effective cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis alarm communication. The ability to give and perceive conspecific that these are not exclusive, but rather complementary processes. In signalling about imminent threats has attained maximum complexity natural situations, the alarm predominantly attracts soldiers, which in social groups, such as vertebrates (Manser, 2001, 2013) and insects actively search for the source of a disturbance. Laboratory testing (Blum, 1985; Hölldobler, 1999; Hölldobler and Wilson, 2009). revealed that the frontal gland of soldiers produces a rich mixture of In termites, one facet of such complexity is represented by the terpenoid compounds including an alarm pheromone.
    [Show full text]
  • Phylogeny and Life History Evolution of Blaberoidea (Blattodea)
    78 (1): 29 – 67 2020 © Senckenberg Gesellschaft für Naturforschung, 2020. Phylogeny and life history evolution of Blaberoidea (Blattodea) Marie Djernæs *, 1, 2, Zuzana K otyková Varadínov á 3, 4, Michael K otyk 3, Ute Eulitz 5, Kla us-Dieter Klass 5 1 Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom — 2 Natural History Museum Aarhus, Wilhelm Meyers Allé 10, 8000 Aarhus C, Denmark; Marie Djernæs * [[email protected]] — 3 Department of Zoology, Faculty of Sci- ence, Charles University, Prague, 12844, Czech Republic; Zuzana Kotyková Varadínová [[email protected]]; Michael Kotyk [[email protected]] — 4 Department of Zoology, National Museum, Prague, 11579, Czech Republic — 5 Senckenberg Natural History Collections Dresden, Königsbrücker Landstrasse 159, 01109 Dresden, Germany; Klaus-Dieter Klass [[email protected]] — * Corresponding author Accepted on February 19, 2020. Published online at www.senckenberg.de/arthropod-systematics on May 26, 2020. Editor in charge: Gavin Svenson Abstract. Blaberoidea, comprised of Ectobiidae and Blaberidae, is the most speciose cockroach clade and exhibits immense variation in life history strategies. We analysed the phylogeny of Blaberoidea using four mitochondrial and three nuclear genes from 99 blaberoid taxa. Blaberoidea (excl. Anaplectidae) and Blaberidae were recovered as monophyletic, but Ectobiidae was not; Attaphilinae is deeply subordinate in Blattellinae and herein abandoned. Our results, together with those from other recent phylogenetic studies, show that the structuring of Blaberoidea in Blaberidae, Pseudophyllodromiidae stat. rev., Ectobiidae stat. rev., Blattellidae stat. rev., and Nyctiboridae stat. rev. (with “ectobiid” subfamilies raised to family rank) represents a sound basis for further development of Blaberoidea systematics.
    [Show full text]