Genetic Analysis of the Calcineurin Pathway Identifies Members of the EGR Gene Family, Specifically EGR3, As Potential Susceptibility Candidates in Schizophrenia

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Analysis of the Calcineurin Pathway Identifies Members of the EGR Gene Family, Specifically EGR3, As Potential Susceptibility Candidates in Schizophrenia Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia Kazuo Yamada*, David J. Gerber†, Yoshimi Iwayama*, Tetsuo Ohnishi*, Hisako Ohba*, Tomoko Toyota*, Jun Aruga‡, Yoshio Minabe*§, Susumu Tonegawa†¶, and Takeo Yoshikawa*ʈ** Laboratories for *Molecular Psychiatry and ‡Comparative Neural Development, RIKEN Brain Science Institute, Saitama 351-0198, Japan; †Howard Hughes Medical Institute and RIKEN–MIT Neuroscience Research Center, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139; §Department of Psychiatry and Neurology, Kanazawa University School of Medicine, Ishikawa 920-8641, Japan; and ʈCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan Contributed by Susumu Tonegawa, December 7, 2006 (sent for review September 22, 2006) The calcineurin cascade is central to neuronal signal transduction, cineurin is particularly enriched in the CNS, where it plays a critical and genes in this network are intriguing candidate schizophrenia role in the regulation of a diverse array of neuronal functions (5, 6). susceptibility genes. To replicate and extend our previously re- Interestingly, calcineurin is positioned downstream of dopaminer- ported association between the PPP3CC gene, encoding the cal- gic signaling (7) and is involved in NMDA receptor-mediated cineurin catalytic ␥-subunit, and schizophrenia, we examined 84 synaptic plasticity (8) and could therefore provide an important SNPs from 14 calcineurin-related candidate genes for genetic as- functional link between these two neurotransmitter systems. To sociation by using 124 Japanese schizophrenic pedigrees. Four of further explore the involvement of calcineurin dysfunction in these genes (PPP3CC, EGR2, EGR3, and EGR4) showed nominally schizophrenia, we have tested for genetic association of a subset of significant association with schizophrenia. In a postmortem brain calcineurin-related candidate genes with schizophrenia in Japanese study, EGR1, EGR2, and EGR3 transcripts were shown to be down- population samples as an extension of the prior study (4). Our regulated in the prefrontal cortex of schizophrenic, but not bipolar, results support the association of PPP3CC with schizophrenia and patients. These findings raise a potentially important role for EGR provide genetic and biological evidence for the involvement of genes in schizophrenia pathogenesis. Because EGR3 is an attractive altered early growth response (EGR) transcription factor signaling candidate gene based on its chromosomal location close to PPP3CC in schizophrenia pathogenesis. within 8p21.3 and its functional link to dopamine, glutamate, and neuregulin signaling, we extended our analysis by resequencing Results the entire EGR3 genomic interval and detected 15 SNPs. One of Family-Based Association Screening. In this study, we examined the ,these, IVS1 ؉ 607A3G SNP, displayed the strongest evidence for following 14 calcineurin-related genes: PPP3CA, PPP3CB disease association, which was confirmed in 1,140 independent PPP3CC, PPP3R1, PPP3R2, RYR3 (ryanodine receptor 3), EGR1, case-control samples. An in vitro promoter assay detected a pos- EGR2, EGR3, EGR4, FKBP5 (FK506 binding protein 5), FKBP1A sible expression-regulatory effect of this SNP. These findings sup- (FK506 binding protein 1A), CDK5 (cyclin-dependent kinase 5), port the previous genetic association of altered calcineurin signal- and PPP1R1B (DARPP32). We analyzed a total of 84 SNPs in 124 ing with schizophrenia pathogenesis and identify EGR3 as a Japanese schizophrenia pedigrees consisting of 374 individuals. The compelling susceptibility gene. potential functional interactions of these genes are illustrated in supporting information (SI) Fig. 4. The results of the genetic ͉ ͉ ͉ genetic association immediate early gene postmortem brain enhancer analyses are shown in SI Table 3 along with the SNP information. We detected nominally significant transmission disequilibrium for chizophrenia is a devastating psychiatric disease with a complex PPP3CC (8p21.3), EGR2 (10q21.3), EGR3 (8p21.3), and EGR4 Sgenetic etiology. Despite a high heritability of Ϸ80%, the major (2p13.2), providing confirmatory evidence for the previously re- genetic components underlying disease susceptibility and pathology ported genetic association of PPP3CC and schizophrenia in patient have remained elusive, although significant progress in this area has samples from the United States and South Africa (4) (Table 1). The been made in recent years (1). Along with genetic studies, a large adjacent SNPs in the gene might be in linkage disequilibrium (LD), body of pharmacological evidence suggests that alterations in the so applying a Bonferroni correction for the multiple markers would regulation of or interactions between the dopamine and glutamate be overly conservative (Bonferroni-corrected P ϭ 0.0756). Apply- GENETICS neurotransmitter systems may comprise important contributing ing a permutation procedure for multiple test correction yielded a factors in the pathophysiology of schizophrenia (2). Recently, we globally significant P value for the multiple markers tested in the have provided evidence suggesting that variation in the PPP3CC gene, encoding the calcineurin A ␥-subunit, contributes to schizo- phrenia susceptibility based on behavioral characterization of Author contributions: K.Y., D.J.G., S.T., and T.Y. designed research; K.Y., Y.I., T.O., H.O., T.T., CNB1 knockout mice (3) and collaborative human genetic associ- J.A., and Y.M. performed research; K.Y. and Y.I. analyzed data; K.Y. and T.Y. wrote the ation studies (4). These studies provided support for the idea that paper; D.J.G. revised the manuscript; and T.T. and Y.M. collected human samples. alterations in calcineurin function contribute to schizophrenia The authors declare no conflict of interest. pathogenesis. Abbreviations: LD, linkage disequilibrium; PDT, pedigree disequilibrium test; DLPFC, dor- solateral prefrontal cortex; EGR, early growth response; NFAT, nuclear factor of activated Calcineurin (protein phosphatase 2B) is a member of the serine/ T cells. threonine protein phosphatase family and the only known phos- ¶To whom correspondence may be addressed at: The Picower Institute for Learning and 2ϩ phatase that can be activated by Ca and calmodulin. Calcineurin Memory, Massachusetts Institute of Technology, 46-5285, 77 Massachusetts Avenue, functions as a heterodimer consisting of a catalytic subunit, cal- Cambridge, MA 02139. E-mail: [email protected]. cineurin A (CNA), and regulatory subunit, calcineurin B (CNB). **To whom correspondence may be addressed. E-mail: [email protected]. Three mammalian isoforms of CNA [CNA␣ (PPP3CA), CNA␤ This article contains supporting information online at www.pnas.org/cgi/content/full/ (PPP3CB) and CNA␥] and two of CNB [CNB1 (PPP3R1) and 0610765104/DC1. CNB2 (PPP3R2)] have been identified. The expression of cal- © 2007 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0610765104 PNAS ͉ February 20, 2007 ͉ vol. 104 ͉ no. 8 ͉ 2815–2820 Downloaded by guest on September 25, 2021 Table 1. Family-based association analysis of SNPs in calcineurin-related genes PDT Gene (chromosomal location) rs ID Our SNP ID Distance, kb SUM AVE Over-/undertransmitted allele Under PDT, SUM gives more weight to larger families, whereas AVE places equal weight on all families. NA, not applicable. *These results are consistent with those of our prior study (4). first screening (adjusted P ϭ 0.0353). In addition to the support for EGR3 are located in separate LD islands on the genome (Fig. 1). PPP3CC association, this study provides evidence for the role of In addition, the association signal appears to be divided into two EGR family genes as potential predisposing factors to schizophre- major peaks roughly corresponding to the two gene regions (Fig. 1). nia. Of the three nominally associated EGR genes, EGR3 lies close Therefore, the two genes at 8p21.3, PPP3CC and EGR3, are likely to PPP3CC on the short arm of chromosome 8 within a 252-kb to confer independent risk for schizophrenia. genomic interval, which raises the question of whether these two genes contribute to schizophrenia onset independently. We ad- Transcript Expression in Postmortem Brains. To examine whether dressed this issue by dividing the families into two groups according altered expression of PPP3CC or EGR genes could be associated to the transmission status of the PPP3CC risk allele in probands and with schizophrenia pathophysiology, we performed quantitative reanalyzing the data. The results supported independent roles for RT-PCR assays for mRNA levels of the five genes in the the two genes, because the significance of association between dorsolateral prefrontal cortex (DLPFC; Brodmann’s area 46) of EGR3 and schizophrenia increased in families in which the PPP3CC schizophrenia, bipolar disorder, and control brains. The DLPFC risk allele was not transmitted [the most significant P ϭ 0.0004 for has been implicated in the pathology of schizophrenia by a SNP M228 with pedigree disequilibrium test (PDT) software number of studies. Interestingly, the expression of EGR1, EGR2, (PDT-AVE)]. Next, we scrutinized the 564-kb genomic region of and EGR3 was down-regulated in a schizophrenia-specific man- 8p21.3 that encompasses both genes by genotyping 49 SNP markers ner, whereas PPP3CC mRNA levels
Recommended publications
  • SPATA33 Localizes Calcineurin to the Mitochondria and Regulates Sperm Motility in Mice
    SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice Haruhiko Miyataa, Seiya Ouraa,b, Akane Morohoshia,c, Keisuke Shimadaa, Daisuke Mashikoa,1, Yuki Oyamaa,b, Yuki Kanedaa,b, Takafumi Matsumuraa,2, Ferheen Abbasia,3, and Masahito Ikawaa,b,c,d,4 aResearch Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, Osaka 5650871, Japan; cGraduate School of Medicine, Osaka University, Osaka 5650871, Japan; and dThe Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan Edited by Mariana F. Wolfner, Cornell University, Ithaca, NY, and approved July 27, 2021 (received for review April 8, 2021) Calcineurin is a calcium-dependent phosphatase that plays roles in calcineurin can be a target for reversible and rapidly acting male a variety of biological processes including immune responses. In sper- contraceptives (5). However, it is challenging to develop molecules matozoa, there is a testis-enriched calcineurin composed of PPP3CC and that specifically inhibit sperm calcineurin and not somatic calci- PPP3R2 (sperm calcineurin) that is essential for sperm motility and male neurin because of sequence similarities (82% amino acid identity fertility. Because sperm calcineurin has been proposed as a target for between human PPP3CA and PPP3CC and 85% amino acid reversible male contraceptives, identifying proteins that interact with identity between human PPP3R1 and PPP3R2). Therefore, identi- sperm calcineurin widens the choice for developing specific inhibitors. fying proteins that interact with sperm calcineurin widens the choice Here, by screening the calcineurin-interacting PxIxIT consensus motif of inhibitors that target the sperm calcineurin pathway. in silico and analyzing the function of candidate proteins through the The PxIxIT motif is a conserved sequence found in generation of gene-modified mice, we discovered that SPATA33 inter- calcineurin-binding proteins (8, 9).
    [Show full text]
  • Egr-1 Induces DARPP-32 Expression in Striatal Medium Spiny Neurons Via a Conserved Intragenic Element
    6808 • The Journal of Neuroscience, May 16, 2012 • 32(20):6808–6818 Cellular/Molecular Egr-1 Induces DARPP-32 Expression in Striatal Medium Spiny Neurons via a Conserved Intragenic Element Serene Keilani,1 Samira Chandwani,1 Georgia Dolios,2 Alexey Bogush,3 Heike Beck,4 Antonis K. Hatzopoulos,5 Gadiparthi N. Rao,6 Elizabeth A. Thomas,7 Rong Wang,2 and Michelle E. Ehrlich1,2 Departments of 1Neurology and Pediatrics and 2Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, 3Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, 4Walter Brendel Center of Experimental Medicine, Ludwig Maximilians University, D-81377 Munich, Germany, 5Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37240, 6Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and 7Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 DARPP-32 (dopamine and adenosine 3Ј,5Ј-cyclic monophosphate cAMP-regulated phosphoprotein, 32 kDa) is a striatal-enriched protein that mediates signaling by dopamine and other first messengers in the medium spiny neurons. The transcriptional mechanisms that regulate striatal DARPP-32 expression remain enigmatic and are a subject of much interest in the efforts to induce a striatal phenotype in stem cells. We report the identification and characterization of a conserved region, also known as H10, in intron IV of the gene that codes for DARPP-32 (Ppp1r1b). This DNA sequence forms multiunit complexes with nuclear proteins from adult and embry- onic striata of mice and rats.
    [Show full text]
  • Psychostimulant-Regulated Plasticity in Interneurons of the Nucleus Accumbens
    Psychostimulant-Regulated Plasticity in Interneurons of the Nucleus Accumbens by David A. Gallegos Department of Neurobiology Duke University Date:_______________________ Approved: ___________________________ Anne E. West, Supervisor ___________________________ Jorg Grandl ___________________________ Debra Silver ___________________________ Gregory Crawford ___________________________ Hiro Matsunami Psychostimulant-Regulated Epigenetic Plasticity in Interneurons of the Nucleus Accumbens submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Neurobiology in the Graduate School of Duke University 2019 ABSTRACT Psychostimulant-Regulated Epigenetic Plasticity in Interneurons of the Nucleus Accumbens by David A. Gallegos Department of Neurobiology Duke University Date:_______________________ Approved: ___________________________ Anne E. West, Supervisor ___________________________ Jorg Grandl ___________________________ Debra Silver ___________________________ Gregory Crawford ___________________________ Hiro Matsunami An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Neurobiology in the Graduate School of Duke University 2019 Copyright by David Andres Gallegos 2019 Abstract Exposure to psychostimulant drugs of abuse exerts lasting influences on brain function via the regulation of immediate and persistent gene transcription. These changes in gene transcription drive the development of addictive-like
    [Show full text]
  • DRD2 and PPP1R1B (DARPP-32)
    Hettinger et al. Behavioral and Brain Functions 2012, 8:19 http://www.behavioralandbrainfunctions.com/8/1/19 RESEARCH Open Access DRD2 and PPP1R1B (DARPP-32) polymorphisms independently confer increased risk for autism spectrum disorders and additively predict affected status in male-only affected sib-pair families Joe A Hettinger1, Xudong Liu2,3, Melissa L Hudson2,3,4, Alana Lee2,3,4, Ira L Cohen4,5, Ron C Michaelis6, Charles E Schwartz7, Suzanne ME Lewis4,8,9 and Jeanette JA Holden1,2,3,4,10,11* Abstract Background: The neurotransmitter dopamine (DA) modulates executive functions, learning, and emotional processing, all of which are impaired in individuals with autism spectrum disorders (ASDs). Our previous findings suggest a role for dopamine-related genes in families with only affected males. Methods: We examined two additional genes which affect DA function, the DRD2 and PPP1R1B (DARPP-32) genes, in a cohort of 112 male-only affected sib-pair families. Selected polymorphisms spanning these genes were genotyped and both family-based and population-based tests were carried out for association analysis. General discriminant analysis was used to examine the gene-gene interactions in predicting autism susceptibility. Results: There was a significantly increased frequency of the DRD2 rs1800498TT genotype (P = 0.007) in affected males compared to the comparison group, apparently due to over-transmission of the T allele (P = 0.0003). The frequency of the PPP1R1B rs1495099CC genotype in affected males was also higher than that in the comparison group (P = 0.002) due to preferential transmission of the C allele from parents to affected children (P = 0.0009).
    [Show full text]
  • Effects of PPP1R1B (DARPP-32) Polymorphism on Feedback-Related Brain Potentials Across the Life Span
    ORIGINAL RESEARCH ARTICLE published: 04 March 2013 doi: 10.3389/fpsyg.2013.00089 Effects of PPP1R1B (DARPP-32) polymorphism on feedback-related brain potentials across the life span Dorothea Hämmerer 1,2*†, Gudio Biele 3,4,Viktor Müller 1, HolgerThiele 5, Peter Nürnberg 5,6,7, Hauke R. Heekeren1,3 and Shu-Chen Li 1,2*† 1 Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany 2 Department of Psychology, Technische Universität Dresden, Dresden, Germany 3 Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany 4 Institute of Psychology, University of Oslo, Oslo, Norway 5 Cologne Center for Genomics, University of Cologne, Cologne, Germany 6 Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany 7 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany Edited by: Maximizing gains during probabilistic reinforcement learning requires the updating of Alain Dagher, Montreal Neurological choice – outcome expectations at the time when the feedback about a specific choice Institute and Hospital, Canada or action is given. Extant theories and evidence suggest that dopaminergic modulation Reviewed by: Meghana Bhatt, City of Hope, USA plays a crucial role in reinforcement learning and the updating of choice – outcome expec- James F.Cavanagh, Brown University, tations. Furthermore, recently a positive component of the event-related potential about USA 200 ms (P2) after feedback has been suggested to reflect such updating. The efficacy of *Correspondence: dopaminergic modulation changes across the life span. However, to date investigations Dorothea Hämmerer and Shu-Chen of age-related differences in feedback-related P2 during reinforcement learning are still Li, Department of Psychology, Technische Universität Dresden, scarce.
    [Show full text]
  • An Integrated Genomic Analysis of Gene-Function Correlation on Schizophrenia Susceptibility Genes
    Journal of Human Genetics (2010) 55, 285–292 & 2010 The Japan Society of Human Genetics All rights reserved 1434-5161/10 $32.00 www.nature.com/jhg ORIGINAL ARTICLE An integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes Tearina T Chu and Ying Liu Schizophrenia is a highly complex inheritable disease characterized by numerous genetic susceptibility elements, each contributing a modest increase in risk for the disease. Although numerous linkage or association studies have identified a large set of schizophrenia-associated loci, many are controversial. In addition, only a small portion of these loci overlaps with the large cumulative pool of genes that have shown changes of expression in schizophrenia. Here, we applied a genomic gene-function approach to identify susceptibility loci that show direct effect on gene expression, leading to functional abnormalities in schizophrenia. We carried out an integrated analysis by cross-examination of the literature-based susceptibility loci with the schizophrenia-associated expression gene list obtained from our previous microarray study (Journal of Human Genetics (2009) 54: 665–75) using bioinformatic tools, followed by confirmation of gene expression changes using qPCR. We found nine genes (CHGB, SLC18A2, SLC25A27, ESD, C4A/C4B, TCP1, CHL1 and CTNNA2) demonstrate gene-function correlation involving: synapse and neurotransmission; energy metabolism and defense mechanisms; and molecular chaperone and cytoskeleton. Our findings further support the roles of these genes in genetic influence and functional consequences on the development of schizophrenia. It is interesting to note that four of the nine genes are located on chromosome 6, suggesting a special chromosomal vulnerability in schizophrenia.
    [Show full text]
  • Thejournalofcellb Io Logy
    Supplemental material JCB Puustinen et al., http://www.jcb.org/cgi/content/full/jcb.201304012/DC1 Figure S1. Scoring system for the siRNA screen. MCF7-EGFP-LC3 cells were transfected with indicated siRNAs (8 nM), fixed 56 h later, and analyzed for EGFP-LC3 puncta formation. When indicated, 5 µM siramesine was added for the last 3 h. Shown are representative images of the cells (top; bar, 10 µm) and quantification of the number of puncta from a representative experiment (bottom). The values are represented as a mean number of puncta/10 cells ± SDs from four randomly chosen areas of 10 cells. The shown treatments were included as controls to each siRNA screen plate, and they served as the stan- dards for the scoring scale as represented on the bottom figure with a help of three arbitrary values. Ctr, control. **, P < 0.01; ***, P < 0.001. THE JOURNAL OF CELL BIOLOGY CIP2A regulates mTORC1, cell growth, and autophagy • Puustinen et al. S1 Figure S2. A cartoon highlighting the positions of the candidate autophagy-regulating genes in the insulin receptor signaling network. The cartoon was prepared by Ingenuity Pathway Analysis. software. CP, carbohydrate phosphatase; ERK, extracellular signal–regulated kinase; FSH, follicle-stimulating hor- mone; EG, epidermal growth factor. S2 JCB Figure S3. The effect of siRNAs targeting the autophagy-regulating PP2 subunits on target gene expression, cell density, and mTORC1 pathway. (A) Total RNA was isolated from MCF7 cells treated with indicated siRNAs (20 nM) for 54 h and analyzed for target gene expression by qPCR using primers de- signed to specifically amplify the indicated PP2A-related mRNAs andACTB mRNA (internal control).
    [Show full text]
  • Dopamine Response Gene Pathways in Dorsal Striatum Msns from a Gene
    bioRxiv preprint doi: https://doi.org/10.1101/757500; this version posted September 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Dopamine response gene pathways in dorsal striatum MSNs from a gene 2 expression viewpoint: cAMP-mediated gene networks 3 Vladimir Babenko, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 630090, Novosibirsk 4 State University, Novosibirsk, Russia 630090; Anna Galyamina, Institute of Cytology and Genetics SB RAS, 5 Novosibirsk, Russia 630090; Igor Rogozin, National Institutes of Health, Rockville Pike, Bethesda, Maryland, 6 USA 20892; Dmitry Smagin, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 630090; 7 Natalia Kudryavtseva, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia 630090 8 9 *Corresponding author e-mail address: [email protected] (Vladimir Babenko) 10 Abstract 11 A mouse model of chronic social conflicts was used to analyze dorsal striatum neurons implicated in 12 cAMP-mediated phosphorylation activation pathways specific for Medium Spiny Neurons (MSNs). Based on 13 expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 14 and D2, correspondingly) gene pathways. We also found that D1 neurons feature previously reported two 15 states, passive and active ones, represented in our analysis by distinct, negatively correlated gene clusters. 16 The correlation based gene pathways strongly corroborate the phosphorylation cascades highlighted 17 in the previous studies, implying that the expression-based viewpoint corresponds to phosphorylation/ 18 dephosphorylation interplay in each type of neurons. Notably, D2 neurons showed the largest Ppp1r1b 19 (encoding DARPP-32) expression modulation impact, implying that Ppp1r1b expression dynamics is mostly 20 associated with neuroendocrine response mediated by Penk/Pdyn genes expression in D2 neurons.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Genome-Wide Identification of Brain Mirnas in Response to High
    Zhao et al. BMC Molecular Biol (2019) 20:3 https://doi.org/10.1186/s12867-019-0120-4 BMC Molecular Biology RESEARCH ARTICLE Open Access Genome‑wide identifcation of brain miRNAs in response to high‑intensity intermittent swimming training in Rattus norvegicus by deep sequencing Yanhong Zhao1*†, Anmin Zhang2,3*†, Yanfang Wang4, Shuping Hu3, Ruiping Zhang2 and Shuaiwei Qian2 Abstract Background: Physical exercise can improve brain function by altering brain gene expression. The expression mecha- nisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expres- sion may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. Results: We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swim- ming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identifed 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identifed as signifcantly diferentially expressed in response to HIST, 16 were up- regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up- regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identifed from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Epigenetic Control of Medial Habenula Function in Cocaine-Associated Behaviors DISSERTATION
    UNIVERSITY OF CALIFORNIA, IRVINE Epigenetic control of medial habenula function in cocaine-associated behaviors DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Alberto J. López Dissertation Committee: Professor Marcelo A. Wood, Chair Assistant Professor Christie D. Fowler Assistant Professor Stephen V. Mahler 2018 © 2018 Alberto J. López Portion of Chapters 1 & 3 © 2018 John Wiley & Sons, Inc. Portion of Chapter 2 © 2016 The Journal of Neuroscience Dedicatoria A mi Abuelita Ethel quien me mostró lo que es ser fuerte, valiente, e inteligente To my wife Christina López of whom I am completely undeserving. Your love and support are the only reasons I’ve made it this far and I’m so incredibly lucky to have a true equal with whom to share this adventure. One sky, one destiny. To my family, Lorna, Jaime, Jaime Salvador, Cecilia, Elena, and the Burgarts who have all helped provide me with opportunities they never had. To the friends I’ve made along the way (including Drs. Andre White, Janine Kwapis, and Thekla Hemstedt, & Matt Saucedo, Rianne Campbell, Amni Al-Kachak, Matt Kwapis, Sarah Cross, and the Maddi) who have always provided incredible, and often thankless, support. To my various sources of caffeine throughout the Southland that have stimulated my life and work. “Simple, maybe, but not easy. There’s nothing easy about two men sharing one life...You see, sacrifice - that’s the price of a good trick.” Alfred Borden, The Prestige 1 ii Contents List of Figures ................................................................................................................................ iv Acknowledgments........................................................................................................................... v Curriculum Vitae ..........................................................................................................................
    [Show full text]
  • Anti-PPP3CC Monoclonal Antibody, Clone FQS21712 (DCABH-4425) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-PPP3CC monoclonal antibody, clone FQS21712 (DCABH-4425) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to PPP3CC Antigen Description Calcium-dependent, calmodulin-stimulated protein phosphatase. This subunit may have a role in the calmodulin activation of calcineurin. Immunogen Synthetic peptide corresponding to residues within Human PPP3CC (Uniprot ID P48454). Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Rat, Human Clone FQS21712 Purity Tissue culture supernatant Conjugate Unconjugated Applications WB Positive Control Jurkat cell lysate; Human fetal brain tissue lysate Format Liquid Size 100 μl Buffer Preservative: 0.01% Sodium azide; Constituents: 50% Glycerol, 0.05% BSA Preservative 0.01% Sodium Azide Storage store at -20°C. Avoid repeated freeze / thaw cycles. Ship Shipped at 4°C. GENE INFORMATION Gene Name PPP3CC protein phosphatase 3, catalytic subunit, gamma isozyme [ Homo sapiens ] Official Symbol PPP3CC 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Synonyms PPP3CC; protein phosphatase 3, catalytic subunit, gamma isozyme; protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform , protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform (calcineurin A gamma); serine/threonine-protein Entrez Gene ID 5533 Protein Refseq NP_001230903 UniProt ID P48454 Chromosome Location 8p21.3 Pathway Activation of BAD and translocation to mitochondria, organism-specific biosystem; Activation of BH3-only proteins, organism-specific biosystem; Alzheimers disease, organism-specific biosystem; Alzheimers disease, conserved biosystem; Amphetamine addiction, organism- specific biosystem; Amphetamine addiction, conserved biosystem; Amyotrophic lateral sclerosis (ALS), organism-specific biosystem.
    [Show full text]