Accepted Article
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patterns of Evolution in Gobies (Teleostei: Gobiidae): a Multi-Scale Phylogenetic Investigation
PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE BS, Hofstra University, 2007 MS, Texas A&M University-Corpus Christi, 2010 Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY Texas A&M University-Corpus Christi Corpus Christi, Texas December 2014 © Luke Michael Tornabene All Rights Reserved December 2014 PATTERNS OF EVOLUTION IN GOBIES (TELEOSTEI: GOBIIDAE): A MULTI-SCALE PHYLOGENETIC INVESTIGATION A Dissertation by LUKE MICHAEL TORNABENE This dissertation meets the standards for scope and quality of Texas A&M University-Corpus Christi and is hereby approved. Frank L. Pezold, PhD Chris Bird, PhD Chair Committee Member Kevin W. Conway, PhD James D. Hogan, PhD Committee Member Committee Member Lea-Der Chen, PhD Graduate Faculty Representative December 2014 ABSTRACT The family of fishes commonly known as gobies (Teleostei: Gobiidae) is one of the most diverse lineages of vertebrates in the world. With more than 1700 species of gobies spread among more than 200 genera, gobies are the most species-rich family of marine fishes. Gobies can be found in nearly every aquatic habitat on earth, and are often the most diverse and numerically abundant fishes in tropical and subtropical habitats, especially coral reefs. Their remarkable taxonomic, morphological and ecological diversity make them an ideal model group for studying the processes driving taxonomic and phenotypic diversification in aquatic vertebrates. Unfortunately the phylogenetic relationships of many groups of gobies are poorly resolved, obscuring our understanding of the evolution of their ecological diversity. This dissertation is a multi-scale phylogenetic study that aims to clarify phylogenetic relationships across the Gobiidae and demonstrate the utility of this family for studies of macroevolution and speciation at multiple evolutionary timescales. -
Suborder GOBIOIDEI ELEOTRIDAE Sleepers by E.O
click for previous page 1778 Bony Fishes Suborder GOBIOIDEI ELEOTRIDAE Sleepers by E.O. Murdy, National Science Foundation, Virginia, USA and D.F. Hoese, Australian Museum, Sydney, Australia iagnostic characters: Small to medium-sized (most do not exceed 20 cm, although Gobiomorus from Dthis area may reach 60 cm). Typically, body stout; head short and broad; snout blunt; gill membranes broadly joined to isthmus. Teeth usually small, conical and in several rows in jaws. Six branchiostegal rays. Two separate dorsal fins, first dorsal fin with 6 or 7 weak spines, second dorsal fin with 1 weak spine followed by 6 to 12 soft rays; second dorsal fin and anal fin relatively short-based; origin of anal fin just posterior to vertical with origin of second dorsal fin; terminal ray of second dorsal and anal fins divided to its base (but counted as a single element);anal fin with 1 weak spine followed by 6 to 12 soft rays;caudal fin broad and rounded, compris- ing 15 or 17 segmented rays; pectoral fin broad with 14 to 25 soft rays; pelvic fin long with 1 spine and 5 soft rays.Pelvic fins separate and not connected by a membrane.Scales large and either cycloid or ctenoid.No lateral line on body. Head typically scaled, scales being either cycloid or ctenoid with a series of sensory ca- nals and pores as well as cutaneous papillae. Colour: not brightly coloured, most are light or dark brown or olive with some metallic glints. Habitat, biology, and fisheries: Typically occur in fresh or brackish waters, although some species are truly marine. -
Species and Shape Diversification Are Inversely Correlated Among Gobies and Cardinalfishes (Teleostei: Gobiiformes)
Org Divers Evol (2014) 14:419–436 DOI 10.1007/s13127-014-0175-5 ORIGINAL ARTICLE Species and shape diversification are inversely correlated among gobies and cardinalfishes (Teleostei: Gobiiformes) Christine E. Thacker Received: 7 November 2013 /Accepted: 11 May 2014 /Published online: 23 May 2014 # Gesellschaft für Biologische Systematik 2014 Abstract Gobies and their relatives are significant compo- radiation of acanthomorph fishes in which a decrease in nents of nearshore marine, estuarine, and freshwater fish species diversification is associated with an increase in mor- faunas in both tropical and temperate habitats worldwide. phological disparity. They are remarkable for their ability to adapt to and diversify in a wide range of environments. Among gobiiform clades, Keywords Gobiidae . Gobionellidae . Eleotridae . species diversities vary widely, ranging from two species in Apogonidae . Phylogeny . Morphospace Kurtidae to more than 1,000 species in Gobiidae. There is also great variation in head and body shape and in environmental preferences (fresh, brackish, or marine habitats). In this study, Introduction I used a time-calibrated molecular phylogeny, coupled with morphometric and comparative analyses, to examine evolu- Rates of both phenotypic and species diversification vary tionary rates of both speciation and morphological diversifi- widely among animal clades, and a primary goal of compar- cation among gobiiform lineages. Projection of the phylogeny ative biology is to identify and investigate the evolutionary onto a shape-derived morphospace shows that Gobioidei is and ecological correlates of these rate differences. Speciation morphometrically distinct from its sister taxon Apogonoidei, and phenotypic diversification rates may be related to factors but that families within Gobioidei overlap in morphospace. -
AN ANNOTATED CHECKLIST of GOBIOID FISHES from the MANGROVE ESTUARY of MATANG, MALAY PENINSULA, with COMMENTS on a NEW Pseudogobius (TELEOSTEI: GOBIIDAE) SPECIES
106 Journal of Marine Science and Technology, Vol. 21, Suppl., pp. 106-116 (2013) DOI: 10.6119/JMST-013-1219-8 AN ANNOTATED CHECKLIST OF GOBIOID FISHES FROM THE MANGROVE ESTUARY OF MATANG, MALAY PENINSULA, WITH COMMENTS ON A NEW Pseudogobius (TELEOSTEI: GOBIIDAE) SPECIES Shih-Pin Huang1, Kwang-Tsao Shao1, 2, Hao-Ming Huang1, Ving-Ching Chong3, and I-Shiung Chen1 Key words: Malaysia, Gobiidae, Eleotridae, mangrove. around the Strait. Larson et al. [47] released a comprehen- sive faunistic list of gobioid fishes collected from the marine habitat of Singapore, which provided useful fish data for the ABSTRACT southern tip of the Malay Peninsula. A series of field collections of fishes were made in the However, except for the research work mentioned above, Matang mangrove, Malay Peninsula in April 2011. At least few field survey data have been published for the small-sized 23 genera and 27 species of gobioid fishes including a new mangrove gobies, especially in the Indian Ocean side of the Pseudogobius species were collected and recorded in this Strait of Malacca. The mangrove of Matang is the largest region during the expedition. The checklist of gobioid fauna mangrove forest of the Malay Peninsula. Situated at the and available materials are provided herein, and the formal northern region of the Peninsula, with over forty thousand description of a new goby species, Pseudogobius fulvicaudus hectares of coverage, this productive area is the subject of our Huang, Shao & Chen, new species will be provided and dis- 2011 fish collecting expedition. Despite the difficulty in cussed in this paper. reaching the muddy habitats around the mangrove of Matang in the northern region of the Strait of Malacca, our research team employed local fishing boats to go further into small I. -
Dotsugobius, a New Genus for Lophogobius Bleekeri Popta, 1921 (Actinopterygii, Gobioidei, Gobiidae), with Re-Description of the Species
Bull. Natl. Mus. Nat. Sci., Ser. A, 40(3), pp. 141–160, August 22, 2014 Dotsugobius, a New Genus for Lophogobius bleekeri Popta, 1921 (Actinopterygii, Gobioidei, Gobiidae), with Re-description of the Species Koichi Shibukawa1, Toshiyuki Suzuki2 and Hiroshi Senou3 1 Nagao Natural Environment Foundation, 3–3–7 Kotobashi, Sumida-ku, Tokyo 130–0022, Japan E-mail: [email protected] 2 Kawanishi-midoridai Senior High School, 1–18 Koyodai, Kawanishi, Hyogo 666–0125, Japan E-mail: [email protected] 3 Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara-shi, Kanagawa 250–0031, Japan E-mail: [email protected] (Received 6 June 2014; accepted 25 June 2014) Abstract A new gobiid genus Dotsugobius is described for Lophogobius bleekeri Popta, 1921. Dotsugobius belongs to the gobiid subfamily Gobiinae, and differs from the other gobiine genera in having the following combination of characters: head and body deep and compressed; no crest- like dermal ridge along predorsal midline; no free pectoral-fin rays; head and predorsal midline naked; single transverse sensory-papillae row p at interorbital area over sensory canal between pores C and D; seven distinct, long transverse rows of sensory papillae (rows 1–7) below eye; row b long, extending from transverse row 3 to posterior margin of cheek; row 5 divided into two parts (viz., rows 5s and 5i) by longitudinal row b, and not extending beyond row d ventrally; row n (divided into two parts by anterior part of longitudinal row x1) transverse and very long, extending ventrally beyond a horizontal line through pore F; row f comprising a pair of short longitudinal rows of papillae; well-developed sensory canals on head, with pores B′, C(S), D(S), E, F, G, H′, K′, L′, M′, N and O′; typical “Bathygobius Group” type of axial skeletal features, e.g., P-V 3/II II I I 0/9, 10+17=27 vertebrae, two anal pterygiophores anterior to first haemal arch, and single epural. -
Fishes of the Charlotte Harbor Estuarine System, Florida Gregg R
Gulf of Mexico Science Volume 22 Article 1 Number 2 Number 2 2004 Fishes of the Charlotte Harbor Estuarine System, Florida Gregg R. Poulakis Florida Fish and Wildlife Conservation Commission Richard E. Matheson Jr. Florida Fish and Wildlife Conservation Commission Michael E. Mitchell Florida Fish and Wildlife Conservation Commission David A. Blewett Florida Fish and Wildlife Conservation Commission Charles F. Idelberger Florida Fish and Wildlife Conservation Commission DOI: 10.18785/goms.2202.01 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Poulakis, G. R., R. E. Matheson Jr., M. E. Mitchell, D. A. Blewett nda C. F. Idelberger. 2004. Fishes of the Charlotte Harbor Estuarine System, Florida. Gulf of Mexico Science 22 (2). Retrieved from https://aquila.usm.edu/goms/vol22/iss2/1 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Poulakis et al.: Fishes of the Charlotte Harbor Estuarine System, Florida Gulf of Mexico Science, 2004(2), pp. 117-150 Fishes of the Charlotte Harbor Estuarine System, Florida GREGG R. POULAIUS, RICHARD E. MATHESON JR., MICHAEL E. MITCHELL, DAVID A. BLEWETT, AND CHARLES F. lDELBERGER To date, 255 fish species in 95 families have been reliably reported from the Charlotte Harbor estuarine system in southwest Florida. The species list was com piled from recent fishery-independent collections, a review of reports and peer reviewed literature, and examination of cataloged specimens at the Florida Mu seum of Natural History. -
A HIGH-RESOLUTION MOLECULAR METHOD for IDENTIFICATION of SMALLTOOTH SAWFISH PREY a Thesis Presented to the Faculty of the Colleg
A HIGH-RESOLUTION MOLECULAR METHOD FOR IDENTIFICATION OF SMALLTOOTH SAWFISH PREY A Thesis Presented to The Faculty of the College of Arts and Sciences Florida Gulf Coast University In Partial Fulfillment of the Requirement for the Degree of Master of Science By Taylor L. Hancock 2019 APPROVAL SHEET This thesis is submitted in partial fulfillment for the requirement for the degree of Master of Science ______________________________ Taylor L. Hancock Approved: Month, Day, 2019 _____________________________ Hidetoshi Urakawa, Ph.D. Committee Chair / Advisor ______________________________ S. Gregory Tolley, Ph.D. ______________________________ Gregg R. Poulakis, Ph.D. Florida Fish and Wildlife Conservation Commission The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above- mentioned discipline P a g e | i Acknowledgments I thank my family and friends for their constant support throughout my graduate career. Without this ever-present support network, I would not have been able to accomplish this research with such speed and dedication. Thank you to my wife Felicia for her compassion and for always being there for me. Thank you to my son Leo for being an inspiration and motivation to keep diligently working towards a better future for him, in sense of our own lives, but also the state of the environment we dwell within. Music also played a large part in accomplishing long nights of work, allowing me to push through long monotonous tasks to the songs of Modest Mouse, Alice in Chains, Jim Croce, TWRP, Led Zeppelin, and many others—to them I say thank you for your art. -
Download Vol. 19, No. 3
BULLETIN of the FLORIDA STATE MUSEUM Biological Sciences Volume 19 1975 Number 3 THE OSTEOLOGY OF MICROGOBIUS SIGNATUS POEY (PISCES: GOBIIDAE), WITH COMMENTS ON OTHER GOBIID FISHES Ray S. Birdsong e UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM. BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes con- tain about 300 pages and are not necessarily completed in any one cal- endar year. CARTER R. GILBERT, Editor RHODA J. RYBAK, Managing Editor Consultants for this issue: ERNEST LACHNER STANLEY H. WEI'IZMAN Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to the Managing Editor of the Bulletin, Florida State Museum, Museum Road, University of Florida, Gainesville, Florida 32611. This public document was promulgated at an annual cost of $1,629.50 or $1.630 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the Circum-Caribbean region. Publication date: 28 March 1975 Price: $1.70 THE OSTEOLOGY OF MICAOGOBIUS SIGNATUS POEY ( PISCES: GOBIIDAE), WITH COMMENTS ON OTHER GOBIID FISHES RAY S. BIRDSONGl SYNOPSIS: The osteology of Microgobius signatus is described in detail and com- pared with other species of Microgobius and with representatives from selected re- lated genera. Osteological evidence supporting the concept of the American seven- spined gobies as a natural assemblage is presented, and the group is formally recognized as the Tribe Gobiosomini of the Family Gobiidae. Osteological character- istics and trends within the gobioids are discussed, and Miller's classification of the group is commented upon. -
An Annotated Checklist of the Inland Fishes of Sulawesi 77-106 © Biodiversity Heritage Library
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 2015 Band/Volume: 64 Autor(en)/Author(s): Miesen Friedrich Wilhelm, Droppelmann Fabian, Hüllen Sebastian, Hadiaty Renny Kurnia, Herder Fabian Artikel/Article: An annotated checklist of the inland fishes of Sulawesi 77-106 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Bonn zoological Bulletin 64 (2): 77–106 March 2016 An annotated checklist of the inland fishes of Sulawesi Friedrich Wilhelm Miesen1*, Fabian droppelmann1, Sebastian Hüllen1, renny Kurnia Hadiaty2 & Fabian Herder1 1Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany 2Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia; E-mail: [email protected]; +49 (0)228 9122 431 Abstract. Sulawesi is the largest island of the Wallacea. Here, we present an annotated checklist of fish species record- ed in Sulawesi’s inland waters. We recognize a total of 226 species from 112 genera and 56 families. Gobiidae (41 species), Adrianichthyidae (20 species) and Telmatherinidae (19 species) are most species-rich, making up a total of 43% of the total species diversity. 65 species are endemic to Sulawesi’s freshwaters, including 19 Tematherinidae, 17 Adrianichthyi- dae, and 17 Zenarchopteridae. 44% of the inland fish fauna are obligate freshwater fishes, followed by euryhaline (38%) and amphi-, ana- or diadromous (29%) taxa. 65 species have been recorded from lacustrine environments. However, we stress that the data available are not representative for the island’s freshwater habitats. The fish species diversity of the spectacular lakes is largely explored, but the riverine ichthyofaunas are in clear need of further systematic exploration. -
Redescription of Coryphopterus Tortugae (Jordan) and a New Allied Species Coryphopterus Bol (Perciformes: Gobiidae: Gobiinae) from the Tropical Western Atlantic Ocean
Redescription of Coryphopterus tortugae (Jordan) and a new allied species Coryphopterus bol (Perciformes: Gobiidae: Gobiinae) from the tropical western Atlantic Ocean. BENJAMIN C. VICTOR Ocean Science Foundation, 4051 Glenwood, Irvine, CA 92604 and Guy Harvey Research Institute, Oceanographic Center, Nova Southeastern University, 8000 North Ocean Drive, Dania Beach, FL 33004. E-mail: [email protected] Abstract A re-examination of the holotype and mtDNA barcoding confirms Garzon-Ferreira and Acero’s separation of Coryphopterus tortugae from C. glaucofraenum. However, specimens matching the markings of their Santa Marta variant of C. tortugae comprise a distinct clade about 10% sequence divergent from true C. tortugae and C. glaucofraenum. The variant is described here as a new species, the sand-canyon goby Coryphopterus bol, from specimens collected in Puerto Rico, the US Virgin Islands, and the Atlantic coast of Panama. The new species is abundant and widespread in the region and has not been recognized as distinct from the bridled goby, C. glaucofraenum. C. bol can be distinguished from C. tortugae by markings: a dark oval spot on the lower third of the pectoral-fin base, a chain-link pattern of melanophores on the top of the head, and a thick C-shaped basicaudal mark and scale-edges outlined in lines of tiny melanophores on well-marked individuals. Putative bridled gobies from three different reef types were sampled: a wide and clearly-zoned shelf in the Greater Antilles (off La Parguera, Puerto Rico), a narrower mixed-zone island of the Lesser Antilles (St. Thomas, US Virgin Islands), and narrow fringing continental reefs in the Southern Caribbean (the Atlantic coast of Panama near Portobelo). -
Systematics of Callogobius (Teleostei: Gobiidae)
Systematics of Callogobius (Teleostei: Gobiidae) by Naomi Rachel Delventhal A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree of DOCTOR OF PHILOSOPHY Department of Biological Sciences University of Manitoba Winnipeg Copyright © 2018 by Naomi R Delventhal i Abstract Callogobius is a large genus of gobies characterized by fleshy ridges of papillae on the head in both horizontal and vertical rows. The taxonomy and phylogenetics of the genus are difficult and poorly understood. The purpose of my research is to better categorize the diversity within Callogobius by identifying and describing morphological characters and using them to aid species identification and discovery of monophyletic sub-groups within the genus. In this thesis, I construct separate phylogenetic hypothesizes for the intrarelationships of Callogobius using morphological and molecular data, respectively. Parsimony analysis using morphological characters (external anatomy and osteology) supports the presence of three monophyletic groups within Callogobius, the hasseltii, sclateri and maculipinnis groups. A fourth group, the tutuilae group, contains several species, at least some of which share some characters with members of the sclateri group. A molecular phylogenetic approach using four genes (zic1, a partial fragment containing 12S, tRNAVal and 16S, rag1 and sreb2) and analyzed using maximum parsimony, maximum likelihood and Bayesian inference supports the monophyly of Callogobius, the hasseltii, sclateri and maculipinnis groups; the tutuilae group is resolved as paraphyletic with respect to the sclateri group. Reductive traits, such as small size and loss of head pores appear to have evolved multiple times independently. In addition to phylogenetic analyses, I address some of the taxonomic issues within Callogobius through the descriptions of two new species, C. -
Using Edna to Biomonitor the Fish Community in a Tropical Oligotrophic Lake
bioRxiv preprint doi: https://doi.org/10.1101/375089; this version posted July 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Using eDNA to biomonitor the fish community in a tropical oligotrophic lake 4 5 6 Martha Valdez-Moreno1¶, Natalia V. Ivanova2*¶, Manuel Elías-Gutiérrez1, Stephanie L. 7 Pedersen2, Kyrylo Bessonov2, Paul D.N. Hebert2 8 9 1 – El Colegio de la Frontera Sur, Unidad Chetumal, Av. Centenario Km 5.5, Chetumal, 10 Quintana Roo, Mexico 11 2 – Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 12 Guelph, ON N1G 2W1, Canada 13 14 *Corresponding author: 15 E-mail: [email protected] (NVI) 16 17 ¶These authors contributed equally to this work. 18 1 bioRxiv preprint doi: https://doi.org/10.1101/375089; this version posted July 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 Abstract 20 Environmental DNA (eDNA) is an effective approach for detecting vertebrates and plants, 21 especially in aquatic ecosystems, but prior studies have largely examined eDNA in cool 22 temperate settings. By contrast, this study employs eDNA to survey the fish fauna in tropical 23 Lake Bacalar (Mexico) with the additional goal of assessing the possible presence of invasive 24 fishes, such as Amazon sailfin catfish.