Two New Ants from Java
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
Download PDF File
ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 30: 27-52 doi: 10.25849/myrmecol.news_030:027 16 January 2020 Original Article Unveiling the morphology of the Oriental rare monotypic ant genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera: Formicidae: Leptanillinae) and its evolutionary implications, with first descriptions of the male, larva, tentorium, and sting apparatus Aiki Yamada, Dai D. Nguyen, & Katsuyuki Eguchi Abstract The monotypic genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera, Formicidae, Leptanillinae) is an ex- tremely rare relictual lineage of apparently subterranean ants, so far known only from a few specimens of the worker and queen from Ha Tinh in Vietnam and Hainan in China. The phylogenetic position of the genus had been uncertain until recent molecular phylogenetic studies strongly supported the genus to be the most basal lineage in the cryptic subterranean subfamily Leptanillinae. In the present study, we examine the morphology of the worker, queen, male, and larva of the only species in the genus, Opamyrma hungvuong Yamane, Bui & Eguchi, 2008, based on colonies newly collected from Guangxi in China and Son La in Vietnam, and provide descriptions and illustrations of the male, larva, and some body parts of the worker and queen (including mouthparts, tentorium, and sting apparatus) for the first time. The novel morphological data, particularly from the male, larva, and sting apparatus, support the current phylogenetic position of the genus as the most basal leptanilline lineage. Moreover, we suggest that the loss of lancet valves in the fully functional sting apparatus with accompanying shift of the venom ejecting mechanism may be a non-homoplastic synapomorphy for the Leptanillinae within the Formicidae. -
Synonymization of the Male-Based Ant Genus Phaulomyrma (Hymenoptera, Formicidae)
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.272799; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogeny of the Male-Based Ant Genus Phaulomyrma 1 Synonymization of the male-based ant genus Phaulomyrma (Hymenoptera, Formicidae) 2 with Leptanilla based upon Bayesian total-evidence phylogenetic inference 3 Zachary H. Griebenow 4 Abstract 5 Although molecular data have proven indispensable in confidently resolving the phylogeny of 6 many clades across the tree of life, these data may be inaccessible for certain taxa. The resolution 7 of taxonomy in the ant subfamily Leptanillinae is made problematic by the absence of DNA 8 sequence data for leptanilline taxa that are known only from male specimens, including the 9 monotypic genus Phaulomyrma Wheeler & Wheeler. Focusing upon the considerable diversity 10 of undescribed male leptanilline morphospecies, the phylogeny of 38 putative morphospecies 11 sampled from across the Leptanillinae, plus an outgroup, is inferred from 11 nuclear loci and 41 12 discrete male morphological characters using a Bayesian total-evidence framework, with 13 Phaulomyrma represented by morphological data only. Based upon the results of this analysis 14 Phaulomyrma is synonymized with Leptanilla Emery, and male-based diagnoses for Leptanilla 15 that are grounded in phylogeny are provided, under both broad and narrow circumscriptions of 16 that genus. This demonstrates the potential utility of a total-evidence approach in inferring the 17 phylogeny of rare extant taxa for which molecular data are unavailable and begins a long- 18 overdue systematic revision of the Leptanillinae that is focused on male material. -
Zach Griebenow
Zachary Griebenow PhD Candidate, Ward Laboratory, Dept. of Entomology & Nematology One Shields Avenue, Davis, CA 95616 502-902-7290, [email protected] EDUCATION Doctor of Philosophy, Entomology, the University of California-Davis, September 2017-present • Qualifying Exam passed December 2, 2019 B.S. Agriculture, Major: Entomology, The Ohio State University, August 2013-May 2017, magna cum laude • Minor: Music Homeschooled PROFESSIONAL EXPERIENCE Graduate Research Ward Lab, the University of California-Davis, September 2017-present • Advisor: Philip Ward o Thesis: systematic revision of the Leptanillinae (Hymenoptera: Formicidae) jointly based upon 1) phylogenomic and 2) male morphological data . Phylogenomic inference: • Acquired genome-scale data from leptanilline morphospecies using the ultra-conserved element (UCE) probe set hym-v2 (Branstetter et al. 2017) and inferred phylogeny of all UCE-enriched taxa using IQ-Tree ver. 1.6.10 or ExaBayes ver. 1.5 • Inferred partition schemes for phylogenomic data using SWSC algorithm of PartitionUCE (Tagliacollo & Lanfear 2018) and the best-fitting substitution models thereof with PartitionFinder2 (PF2) ver. 2.1.1 or ModelFinder • Using RevBayes ver. 1.0.9-10, inferred phylogeny of male leptanilline morphotaxa jointly from 11 nuclear loci (partitioned using PF2 v. 2.1.1) and de novo matrices of binary morphological characters o Nuclear loci recovered from UCE-based dataset and aligned on a by-locus basis using online MAFFT interface o Modelled morphological substitution using Mk/v+Γ models with accommodation of asymmetrical state frequencies . Morphological techniques: 1 Zachary Griebenow, C.V. • Imaged external morphological characters of select leptanilline males with Hitachi desktop scanning electron microscope, non-coating • Acquired morphometric data and imaged specimens for upload to AntWeb using AutoMontage program • Segmented micro-computed tomographic (μ-CT) scans of male leptanilline genitalia using ITK-SNAP ver. -
Synonymisation of the Male-Based Ant Genus Phaulomyrma (Hymenoptera : Formicidae) with Leptanilla Based Upon Bayesian Total-Evidence Phylogenetic Inference
Invertebrate Systematics © The Authors 2021 doi:10.1071/IS20059 Supplementary material Synonymisation of the male-based ant genus Phaulomyrma (Hymenoptera : Formicidae) with Leptanilla based upon Bayesian total-evidence phylogenetic inference Zachary H. Griebenow Department of Entomology & Nematology, University of California, Davis, CA 95616, USA. Present address: 381 Briggs Hall, One Shields Avenue, Davis, CA 95616, USA. Email: [email protected] Page 1 of 5 Table S1. Summary statistics for ultra-conserved element (UCE) assemblies, computed with BBMap (ver. 38.87, see https://sourceforge.net/projects/bbmap/files/, accessed 13 November 2020) Name Designation in Number Summed length N50 N90 L50 L90 Average σ of GC Borowiec et al. (2019) of contigs of assembly (bp) GC content content Anomalomyrma boltoni Anomalomyrma boltoni 51209 16550563 16526 43480 305 213 0.37721 0.08768 Leptanilla GR01 Leptanilla GR01 134293 34974462 34397 91485 297 189 0.36889 0.0945 Leptanilla GR02 Leptanilla GR02 439863 119479855 146272 342814 277 213 0.38114 0.09382 Leptanilla GR03 N/A 47378 16187945 13779 39988 315 213 0.38152 0.08524 Leptanilla revelierii N/A 332453 159087760 65854 225701 684 248 0.34938 0.09345 Leptanilla TH01 Leptanilla TH01 143170 49328952 41219 114791 345 223 0.37709 0.08697 Leptanilla zhg-au02 N/A 37696 11230899 13346 32560 278 210 0.36712 0.08169 Leptanilla zhg-bt01 N/A 24036 8209365 6797 20199 325 211 0.51253 0.15305 Leptanilla zhg-my02 N/A 29083 8093471 10637 25349 253 207 0.45969 0.15313 Leptanilla zhg-my03 N/A 135840 40596888 49744 -
Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests. -
Hymenoptera, Formicidae)
九州大学学術情報リポジトリ Kyushu University Institutional Repository THE OCCURRENCE OF THE SUBFAMILY LEPTANILLINAEIN JAPAN*(Hymenoptera, Formicidae) Yasumatsu, Keizo http://hdl.handle.net/2324/2340 出版情報:ESAKIA. 1, pp.17-20, 1960-01-20. 九州大学農学部附属彦山生物学研究所 バージョン: 権利関係: ESAKIA No. 1 J ANUARY 20,196O THE OCCURRENCE OF THE SUBFAMILY LEPTANILLINAE IN JAPAN* (Hymenoptera, Formicidae) Keiz6 Yasumatsu The subfamily Leptanillinae has been represented by three genera (Leptanilla, Leptomesites and Phaulomyrma) and sixteen species, and its range of geographical distribution is peculiar. It is found in two islands in the Mediterranean Sea, North Africa, India, Ceylon, Malaya, Java and in the southwest of Australia. Not a single species of the subfamily has hitherto been discovered in China or Japan. To my surprise one species of the genus Leptanilla was recently found on Mt. Hiko, Kyushu, Japan, by Messrs. K. Morimoto and R. Morimoto. This species represents a new, and the thirteenth, species of the genus, very different from any other known member of the group. The occurrence of the subfamily in Japan suggests that the ants of this group originated in Tropical India and from this original center long ago dispersed in three directions. Before going further I gratefully acknowledge Dr. William L. Brown, Jr., of the Museum of Comparative Zoiilogy at Harvard College for his kind help in the preparation of this paper. I appreciate very much the help of Mr. R. Ishikawa, who has been cooperative in copying the original descriptions of Forel’s LeptaniZZa species. I also wish to thank Messrs. R. Morimoto and K. Morimoto for their efforts in finding such a rare and interesting species of LeptaniZZa in Japan. -
Biodec09 3(2)
© Prof. T.C. Narenderan Trust for Animal Taxonomy Biosystematica http://www.tcntrust.org/journal.php ISSN: 0973-7871(online) ISSN: 0973-9955 (print) A Review of Extant Subfamilies, Tribes and Ant Genera in India THRESIAMMA VARGHESE Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India. ABSTRACT. More than a century old monograph” Fauna of British India, including Ceylon and Burma – Hymenoptera – 2. Ants and Cuckoo-Wasps” by Bingham is still the guiding source for anybody who initiates taxonomic studies of Indian ants. However, over a century period, there are lots of changes in the status of many names, at the subfamily, tribe, genus and species levels, largely owing to several revision studies in many groups of the family Formicidae. In the recent past, across the world there are several remarkable endeavours in identifying the major clades of ants and to understand the relationships among them. In this review, the author has looked at some of those changes, which are pertaining to Indian fauna and the results are summarised below. Out of 5 subfamilies of the family Formicidae, mentioned in Bingham, 4 of them have valid status, while one of them is now known under a different name. Of the 79 genera mentioned, 53 of them are currently known to be present in India and retains the same name and valid status. Further, as per a recent approximation of ant species in India estimates 633 species of ants coming under 82 genera distributed across 13 subfamilies. KEYWORDS. Ants, Formicidae, subfamily, tribe, genera, and species. Introduction More than a century old, the precious book “Fauna of provided an extensive review on the current status of British India” on ant taxonomy by C.T. -
Lach Et Al 2009 Ant Ecology.Pdf
Ant Ecology This page intentionally left blank Ant Ecology EDITED BY Lori Lach, Catherine L. Parr, and Kirsti L. Abbott 1 3 Great Clarendon Street, Oxford OX26DP Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York # Oxford University Press 2010 The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2010 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this book in any other binding or cover and you must impose the same condition on any acquirer British Library Cataloguing in Publication Data Data available Library of Congress Cataloging in Publication Data Data available Typeset by SPI Publisher Services, Pondicherry, India Printed in Great Britain on acid-free paper by CPI Antony Rowe, Chippenham, Wiltshire ISBN 978–0–19–954463–9 13579108642 Contents Foreword, Edward O. -
The Internal Phylogeny of Ants (Hymenoptera: Formicidae)
Systemutic Entomology (1992) 17, 301-329 The internal phylogeny of ants (Hymenoptera: Formicidae) CESARE BARON1 URBANI, BARRY BOLTON” and PH 1 LIP s . WA RDt Zoological Institute of the University, Rheinsprung 9, CH-4051 Basel, Switzerland, *Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and ‘Department of Entomology, University of California, Davis, California 95616, U.S.A. Abstract. The higher phylogeny of the Formicidae was analysed using 68 characters and 19 taxa: the 14 currently recognized ant subfamilies plus 5 po- tentially critical infrasubfamilial taxa. The results justified the recognition of 3 additional subfamilies: Aenictogitoninae Ashmead (new status), Apomyrminae Dlussky & Fedoseeva (new status), and Leptanilloidinae Bolton (new subfamily). A second analysis on these better delimited 17 subfamilies resulted in 24 equally most parsimonious trees. All trees showed a basal division of extant Formicidae into two groups, the first containing (Myrmicinae, Pseudomyrmecinae, Notho- mynneciinae, Myrmeciinae, Formicinae, Dolichoderinae, Aneuretinae) and the second the remaining subfamilies. Clades appearing within these groups included the Cerapachyinae plus ‘army ants’, the Nothomyrmeciinae plus Myrmeciinae, the ‘formicoid’ subfamilies (Aneuretinae + Dolichoderinae + Formicinae), and the Old World army ants (Aenictinae + Aenictogitoninae + Doryline), but relationships within the last two groups were not resolved, and the relative positions of the Apomyrminae, Leptanillinae and Ponennae re- mained ambiguous. Moreover, a bootstrap analysis produced a consensus tree in which all branches were represented in proportions much lower than 95%. A reconstruction of the ground plan of the Formicidae indicated that the most specialized of all recent ants are the members of the subfamily Dorylinae and the least specialized ones are the monotypic Apomyrminae. -
Biology Department Radford University Radford, VA 24142
STINGS OF ANTS OF THE LEPTANILLINAE (HYMENOPTERA: FORMICIDAE) BY CHARLES KUGLER Biology Department Radford University Radford, VA 24142 INTRODUCTION Leptanilla is a rarely collected genus of tiny, subterranean ants that probably specialize on geophilomorpti centipedes (Masuko 1990). Because queens are dichthadiiform as in army ants of the Ecitoninae and Dorylinae, the Leptanillinae (Leptanilla plus some male-based genera) have often been considered relatives of those subfamilies (taxonomic history in Wheeler and Wheeler 1965). Masuko (1990) has shown that Leptanilla japonica has some legionary behaviors. Now, however, the subfamily is not uniformly legionary after Bolton (1990a) added the new genera Anom- alomyrma, Protanilla, and transferred in Apomyrma from the ponerine tribe Amblyoponini. With those additions, Bolton (1990a) initially proposed that leptanillines are the sister-group of the ponerines, but subsequent analysis made him revive the hypothesis that leptanillines are the sister-group of the doryline section (Bolton, 1990b). In this paper I test these alternative hypotheses using a previ- ously unexplored character system, the sting apparatus. The sting apparatus, pygidium and hypopygium were dissected from repre- sentatives of the three leptanilline tribes: Leptanillini (Leptanilla), Apomyrmini (Apomyrma) and Anomalomyrmini (Protanilla). Workers and queen of Leptanilla are compared. Phylogenetic 1This paper is dedicated to William L. Brown, Jr., to whom owe a great debt of gratitude for serving as my thesis advisor and mentor. Working in his lab was a pleasure and always interesting. deeply appreciate his support and encouragement throughout my career. Bill is a generous soul--always providing what he can with- out question, including room and board at Chez Brown when needed. -
Ant Functional Group Succession Dynamics
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarBank@NUS ANT FUNCTIONAL GROUP SUCCESSION DYNAMICS CORRELATES WITH THE AGE OF VEGETATION SUCCESSION: DATA ANALYSIS OF WORLDWIDE STUDIES AND A CASE STUDY OF A SECONDARY TROPICAL RAIN FOREST IN SINGAPORE THAM KOON HUNG, ANDREW (B.Sc. (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2006 a 0 ACKNOWLEDGEMENTS My deepest gratitude to Associate Professor Li Daiqin, who not only guided me and kept me focused on this project but also allowed me the freedom to think and play with ideas. I will look back many years from now and wonder where I would have gone without him. My heartfelt thanks to members of the Spider Lab, whose friendship kept me young-at-heart, especially Jeremy Woon for all the “lunge” sessions, Matthew Lim for the “tech support”, Olivia Tan for evaluating the standards of my jokes, Seah Wee Khee for actually laughing at them, Chris Koh for the entertaining CDs. I thank Reuben Clements and Kelvin Peh for their patience and enormous help with data analysis, Darren Yeo for his initial advice on being an ant taxonomist, the National Parks Board, Chew Ping Ting and Benjamin Lee for approving the research permit, supplying the GIS data and guidance when I was lost in the jungle. To Faith, my precious daughter, for giving me the impetus to finish this thesis. To my ever-lovely, then-girlfriend and now wife, Geraldine, without whom I may never have had the belief in myself to do anything meaningful in life.