The Internal Phylogeny of Ants (Hymenoptera: Formicidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Internal Phylogeny of Ants (Hymenoptera: Formicidae) Systemutic Entomology (1992) 17, 301-329 The internal phylogeny of ants (Hymenoptera: Formicidae) CESARE BARON1 URBANI, BARRY BOLTON” and PH 1 LIP s . WA RDt Zoological Institute of the University, Rheinsprung 9, CH-4051 Basel, Switzerland, *Department of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K., and ‘Department of Entomology, University of California, Davis, California 95616, U.S.A. Abstract. The higher phylogeny of the Formicidae was analysed using 68 characters and 19 taxa: the 14 currently recognized ant subfamilies plus 5 po- tentially critical infrasubfamilial taxa. The results justified the recognition of 3 additional subfamilies: Aenictogitoninae Ashmead (new status), Apomyrminae Dlussky & Fedoseeva (new status), and Leptanilloidinae Bolton (new subfamily). A second analysis on these better delimited 17 subfamilies resulted in 24 equally most parsimonious trees. All trees showed a basal division of extant Formicidae into two groups, the first containing (Myrmicinae, Pseudomyrmecinae, Notho- mynneciinae, Myrmeciinae, Formicinae, Dolichoderinae, Aneuretinae) and the second the remaining subfamilies. Clades appearing within these groups included the Cerapachyinae plus ‘army ants’, the Nothomyrmeciinae plus Myrmeciinae, the ‘formicoid’ subfamilies (Aneuretinae + Dolichoderinae + Formicinae), and the Old World army ants (Aenictinae + Aenictogitoninae + Doryline), but relationships within the last two groups were not resolved, and the relative positions of the Apomyrminae, Leptanillinae and Ponennae re- mained ambiguous. Moreover, a bootstrap analysis produced a consensus tree in which all branches were represented in proportions much lower than 95%. A reconstruction of the ground plan of the Formicidae indicated that the most specialized of all recent ants are the members of the subfamily Dorylinae and the least specialized ones are the monotypic Apomyrminae. Introduction the ant phylogenies presented by Dlussky & Fedoseeva (1988) and Holldobler & Wilson (1990). Modern work on the higher phylogeny of ants dates Baroni Urbani (1989) camed out the first explicit cladis- from Brown’s (1954) division of the Formicidae into two tic analysis of the ant subfamilies, using a larger set of groups of subfamilies - the poneroid complex (containing characters than in any previous study. He presented a Ponerinae, Cerapachyinae, Myrmicinae, Dorylinae and fully resolved cladogram, and gave one or more synapo- Leptanillinae) and the myrmecioid complex (comprising morphies for all branchings but one. However, his data Myrmeciinae, Pseudomyrmecinae, Dolichoderinae and set yielded a large number of other equally parsimonious Formicinae). A similar scheme was followed by Wilson trees, some differing considerably in topology (Baroni et at. (1967) and by Wilson (1971). Taylor (1978) proposed Urbani, 1990; Carpenter, 1990b; Ward, 1990). Bolton an arrangement in which two members of the myrmecioid (1990~)offered a Hennigian-style phylogeny of the ant complex (Myrmeciinae and Pseudomyrmecinae) were subfamilies, derived from his morphological studies of the transferred to the poneroid complex, the latter being army ants, cerapachyines and leptanillines. His results explicitly diagnosed by two derived features of abdominal were partly congruent with those of Ward (1990), who morphology. Unfortunately no synapomorphy was ident- focused on the position of the Pseudomyrmecinae in the ified for the remaining subfamilies, renamed the formicoid poneroid complex, but there was disagreement on the complex. A lack of apomorphic characters also characterizes placement of the genus Nothomyrmecia. Finally, relation- ships within the formicoid complex of subfamilies have Correspondence: Dr C. Baroni Urbani, Zoologisches Institut been examined by Lutz (1986) and Shattuck (1992), with der Universitat, Rheinsprung 9, CH-4051 Basel, Switzerland. conflicting results. 30 1 302 C. Barotii Urban;. B. Bolton arid P. S. Ward Thus there is continuing ambiguity over the relationships to the Dorylinae by Borgmeier (1955: 54). Recent progress of the major ant clades, nothwithstanding a considerable in our understanding of ponerine morphology and sub- explosion of new character information. In this paper we familial limits make attribution to the Ponerinae untenable. attempt a cladistic analysis of the Formicidae by compiling For this reason Aenictogiton has been treated as a separate and synthesizing information on a large suite of characters, taxon in the analysis. including new data on abdominal morphology. These Aneuretinae: Aneuretus simoni. characters have been examined in a wide variety of species Anomalomyrmini: Protanilla sp. (Pakistan), Protanilla and castes. Although the analysis is basically at the level of sp. (E. Malaysia), Protanilla sp. (Nepal). See note under subfamilies, it became clear to us that in order to prevent Leptanillini. the inadvertent inclusion of non-monophyletic groups it Apomyrmini: Apomyrma stygia (worker, gyne). See was desirable to expand the set of terminal taxa to include note under Leptanillini. certain genera and tribes. Cerapachyinae: Acanthostichus sp. (Brasil), Acan- thostichus sp. (Colombia), Acanthostichus sp. (male), Cerapachys biroi, Cerapachys centurio, Cerapachys dumb- Taxa included in the analysis letoni, Cerapachys edentatus, Cerapachys foreli (worker, male), Cerapachys fragosus, Cerapachys longitarsus (male), The 14 currently recognized subfamilies of the Formicidae Cerapachys rtitidulus, Cerapachys nkomoensis (worker, have been considered in the present study. These are male), Cerapachys sulcinodis, Cerapachys turneri (s.I.), all rhose recognized by Baroni Urbani (1989) plus the Cerapachys wroughtoni, Cerapachys sp. (E. Malaysia), Cerapachyinae, Aenictinae and Aneuretinae raised or Cerapachys sp. (Sulawesi), Cerapachys sp. (Nigeria), reinstated to subfamily status later (Bolton, 1990a, c). Cerapachys sp. (Zaire), Cerapachys sp. (Cameroun), In addition we have treated certain anomalous taxa, Cerapachys sp. (Madagascar, male), Cerapachys sp. whose morphological features suggest that they may not (Mexico, male), Simopone conciliatrix, Simopone grandis, be cladistic members of the subfamilies to which they are Simopone marleyi, Simopone sp. (Nigeria), Simopone currently assigned, as independent terminal taxa, as noted sp. (Madagascar, male), Sphinctomyrmex imbecilis, in the list below. Sphinctomyrmex occidentalis, Sphinctomyrmex steinheili, The majority of the characters employed in this paper Sphinctomyrmex rufiventris (worker, male), Sphinctomyr- have already been mentioned in recent literature, e.g. mex turneri, Sphinctomyrmex sp. (Australia, male). Lutz (1986), Baroni Urbani (1989), Bolton (1990a, b, c), Dolichoderinae: Azteca xanthochroa, Bothriomyrmex Ward (1990). Sources are indicated in the paragraph cor- pubens, Dorymyrmex nigriventris, Dolichoderus atte- responding to each character description. Whenever laboides, Dolichoderus bispinosus, Dolichoderus cuspida- possible the characters have been verified by ourselves, tus, Dolichoderus doriae, Dolichoderus mariae (male), by examining material in the collections of the Department Dolichoderus taschenbergi, Forelius rufus, Iridomyrmex of Entomology, The Natural History Museum (London), detectus (male), Leptomyrmex nigriventris, Leptomyrmex the Department of Entomology, University of California. pullens, Liometopum microcephalum, Papyrius nitidus, Davis, and the Santschi collection, Natural History Museum Philidris cordatus, Tapinoma erraticum, Technomyrmex of Basel. Cryptic anatomical characters, like the con- albipes, Technomyrmex taylori. dition of the metacoxal cavities, the configuration of Dorylinae: Dorylus afinis, Dorylus fimbriatus (worker, the presclerites of abdominal segments I11 and IV, and male), Dorylus fulvus (worker, male), Dorylus gribodoi tergosternal fusion of abdominal segments 11-IV, have (male), Dorylus labiatus, Dorylus laevigatus (worker, been checked by dissecting a sub-sample of specimens as male), Dorylus opacus, Dorylus nigricans (worker, gyne, listed below. These specimens, with the dissected sclerites male), Dorylus sp. (Angola), Dorylus sp. (Cameroun), either mounted in Euparal on microscope slides or glued Dorylus sp. (South Africa), Dorylus sp. (Kenya, worker, to card points, have been deposited in the original collection male), Dorylus sp. (Nigeria), Dorylus sp. (Uganda, male), from which the material was extracted. When not stated Dorylus sp. (Liberia, male), Dorylus spp. (Zambia, males). otherwise the specimens dissected were always workers. Ecitoninae: Cheliomyrmex andicola, Cheliomyrmex megalonyx (male), Cheliomyrmex morosus (worker, FORMICIDAE male), Eciton burchelli (worker, male), Eciton hamatum Aenictinae: Aerticfus aratus, Aenictus dentatus, Aenictus (worker, male), Labidus coecus (male), Labidus pruedator, binghami, Aenictus eugenii, Aenictus fergusoni, Aenictus Neivamyrmex andrei (male), Neivamyrmex californicus, moebii (male), Aenictus sp. (Bhutan, male), Aenictus sp. Neivamyrmex harrisii (male), Neivamyrmex nigrescens, (Cameroon), Aeriictus sp. (Sri Lanka, male), Aenictus sp. Neivamyrmex opacithorax, Neivamyrmex pertyi (male), (Ghana. male), Aenictus sp. (Ghana, male), Aenictus sp. Neivamyrmex swainsoni (male), Nomamyrmex esenbecki, (Zambia, male). Nomamyrmex hartigi (worker, male). Aenictogitoti sp. (Angola, male), Aenictogiton sp. Formicinae: Acropyga acutiventris, Anoplolepis fallax (Zambia, male), Aenictogiton sp. (Zambia, male). Known (male), Anoplolepis tenella, Bregmatomyrma carnosa
Recommended publications
  • Appreciably Modified
    VI1.-KEYS TO THE GESER.1 AND SUBGEKERA OF ASTS BY WM. 31. WHEELER KEYTO THE SUBFAMILIES~ 8, 0 1. Cloacal orifice round, tefminal, surrounded by a fringe of hairs; sting transformed into a sustentacular apparatus for the orifice of the poison vesicle, which has a peculiar structure called by Fore1 '' pulviniferous vesicle" (vessie 2 coussinet) . Abdominal pedicel consisting of a single segment; no constriction between the second and third segments. Male genitalia not retractile. Nymphs rarely naked, most frequently enclosed in a cocoon. FORMICINA3. Cloacal orifice in the shape of a slit. ........................ .2. 2. Sting rudimentary (except Aneuretus) ; abdominal pedicel con- sisting of a single segment; no constriction between the second and third segments of the abdomen; the poison glands are often vestigial and there are anal glands which secrete an aromatic product of characteristic odor (Tapinoma-odor). Nymphs without a cocoon. ..........DOLICHODERINAE. Sting developed, though sometimes very small, but capable never- theless of being exserted from the abdomen. The first two segments of the abdomen usually modified, either forming together a two-jointed pedicel, or the first alone (petiole) forming the pedicel, the second (postpetiole) being merely constricted posteriorly and articulating with a spheroidal surface of the third segment, which is usually transversely striated (stridulatory organ) ; rarely the second segment is not appreciably modified. .................................... .3. 3. Pedicel of two segments, the petiole and the postpetiole; rarely (in Melissotarsus, e. 9.) the postpetiole is attached to the follow- ing segment over its whole extent. Frontal carin= usually separated from each other (except in the Melissotarsini and certain Attini). In the male the copulatory organs are almost always exserted (being entirely retractile in certain genera of the Solenopsidini only) ; cerci nearly always present (except Anergates) .
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • IS-292 Settlement
    Insectes soc. 44 (1997) 323 – 336 0020-1812/97/040323-14 $ 1.50+0.20/0 © Birkhäuser Verlag, Basel, 1997 Insectes Sociaux Research article Settlement and distribution of colony-founding queens of the arboreal ant, Crematogaster ashmeadi, in a longleaf pine forest D. A. Hahn 1 and W. R. Tschinkel * Department of Biological Science, Florida State University, Tallahassee, FL 32306-3050, USA, e-mail: [email protected] 1 Current address: Interdisciplinary Program in Insect Science, University of Arizona, Tucson, AZ 85721, USA Key words: Ecology, life history, Formicidae, Picioides borealis, red-cockaded woodpecker. Abstract Crematogaster ashmeadi is the dominant arboreal ant occurring on longleaf pines in the Apalachi- cola National Forest of northern Florida. Newly-mated C. ashmeadi queens preferentially founded colonies in abandoned beetle galleries in the dead branches of longleaf pine saplings. There was a positive association between the frequency of queens in trees, several size-related tree character- istics and the amount of insect boring activity in dead branches. The dispersion of newly-mated queens among trees was clumped, suggesting that these queens selected founding sites according to their suitability for colony founding, and that these favorable characteristics were clumped among saplings. The occurrence of founding nests was not related to the prior presence of other ants on the tree. Survival of incipient colonies during the first year was low (7.6%), and their dispersion was not different from random. One possible explanation for this change in dispersion over the year is aggressive interference competition between incipient colonies, although random mortality cannot be discounted. Overall, the distribution of young C.
    [Show full text]
  • THE TRUE ARMY ANTS of the INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae)
    Pacific Insects 6 (3) : 427483 November 10, 1964 THE TRUE ARMY ANTS OF THE INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae) By Edward O. Wilson BIOLOGICAL LABORATORIES, HARVARD UNIVERSITY, CAMBRIDGE, MASS., U. S. A. Abstract: All of the known Indo-Australian species of Dorylinae, 4 in Dorylus and 34 in Aenictus, are included in this revision. Eight of the Aenictus species are described as new: artipus, chapmani, doryloides, exilis, huonicus, nganduensis, philiporum and schneirlai. Phylo­ genetic and numerical analyses resulted in the discarding of two extant subgenera of Aenictus (Typhlatta and Paraenictus) and the loose clustering of the species into 5 informal " groups" within the unified genus Aenictus. A consistency test for phylogenetic characters is discussed. The African and Indo-Australian doryline species are compared, and available information in the biology of the Indo-Australian species is summarized. The " true " army ants are defined here as equivalent to the subfamily Dorylinae. Not included are species of Ponerinae which have developed legionary behavior independently (see Wilson, E. O., 1958, Evolution 12: 24-31) or the subfamily Leptanillinae, which is very distinct and may be independent in origin. The Dorylinae are not as well developed in the Indo-Australian area as in Africa and the New World tropics. Dorylus itself, which includes the famous driver ants, is centered in Africa and sends only four species into tropical Asia. Of these, the most widespread reaches only to Java and the Celebes. Aenictus, on the other hand, is at least as strongly developed in tropical Asia and New Guinea as it is in Africa, with 34 species being known from the former regions and only about 15 from Africa.
    [Show full text]
  • Borowiec Et Al-2020 Ants – Phylogeny and Classification
    A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.
    [Show full text]
  • Download PDF File
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 30: 27-52 doi: 10.25849/myrmecol.news_030:027 16 January 2020 Original Article Unveiling the morphology of the Oriental rare monotypic ant genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera: Formicidae: Leptanillinae) and its evolutionary implications, with first descriptions of the male, larva, tentorium, and sting apparatus Aiki Yamada, Dai D. Nguyen, & Katsuyuki Eguchi Abstract The monotypic genus Opamyrma Yamane, Bui & Eguchi, 2008 (Hymeno ptera, Formicidae, Leptanillinae) is an ex- tremely rare relictual lineage of apparently subterranean ants, so far known only from a few specimens of the worker and queen from Ha Tinh in Vietnam and Hainan in China. The phylogenetic position of the genus had been uncertain until recent molecular phylogenetic studies strongly supported the genus to be the most basal lineage in the cryptic subterranean subfamily Leptanillinae. In the present study, we examine the morphology of the worker, queen, male, and larva of the only species in the genus, Opamyrma hungvuong Yamane, Bui & Eguchi, 2008, based on colonies newly collected from Guangxi in China and Son La in Vietnam, and provide descriptions and illustrations of the male, larva, and some body parts of the worker and queen (including mouthparts, tentorium, and sting apparatus) for the first time. The novel morphological data, particularly from the male, larva, and sting apparatus, support the current phylogenetic position of the genus as the most basal leptanilline lineage. Moreover, we suggest that the loss of lancet valves in the fully functional sting apparatus with accompanying shift of the venom ejecting mechanism may be a non-homoplastic synapomorphy for the Leptanillinae within the Formicidae.
    [Show full text]
  • Hymenoptera: Formicidae)
    ASIAN MYRMECOLOGY Volume 8, 17 – 48, 2016 ISSN 1985-1944 © Weeyawat Jaitrong, Benoit Guénard, Evan P. Economo, DOI: 10.20362/am.008019 Nopparat Buddhakala and Seiki Yamane A checklist of known ant species of Laos (Hymenoptera: Formicidae) Weeyawat Jaitrong1, Benoit Guénard2, Evan P. Economo3, Nopparat Buddhakala4 and Seiki Yamane5* 1 Thailand Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120 Thailand E-mail: [email protected] 2 School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China 3 Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan 4 Biology Divisions, Faculty of Science and Technology, Rajamangala Univer- sity of Technology Tanyaburi, Pathum Thani 12120 Thailand E-mail: [email protected] 5 Kagoshima University Museum, Korimoto 1-21-30, Kagoshima-shi, 890-0065 Japan *Corresponding author’s email: [email protected] ABSTRACT. Laos is one of the most undersampled areas for ant biodiversity. We begin to address this knowledge gap by presenting the first checklist of Laotian ants. The list is based on a literature review and on specimens col- lected from several localities in Laos. In total, 123 species with three additional subspecies in 47 genera belonging to nine subfamilies are listed, including 62 species recorded for the first time in the country. Comparisons with neighboring countries suggest that this list is still very incomplete. The provincial distribu- tion of ants within Laos also show that most species recorded are from Vien- tiane Province, the central part of Laos while the majority of other provinces have received very little, if any, ant sampling.
    [Show full text]
  • Bulletin of the British Museum (Natural History) Entomology
    Bulletin of the British Museum (Natural History) A review of the Solenopsis genus-group and revision of Afrotropical Monomorium Mayr (Hymenoptera: Formicidae) Barry Bolton Entomology series Vol 54 No 3 25 June 1987 The Bulletin of the British Museum (Natural History), instituted in 1949, is issued in four scientific series, Botany, Entomology, Geology (incorporating Mineralogy) and Zoology, and an Historical series. Papers in the Bulletin are primarily the results of research carried out on the unique and ever-growing collections of the Museum, both by the scientific staff of the Museum and by specialists from elsewhere who make use of the Museum's resources. Many of the papers are works of reference that will remain indispensable for years to come. Parts are published at irregular intervals as they become ready, each is complete in itself, available separately, and individually priced. Volumes contain about 300 pages and several volumes may appear within a calendar year. Subscriptions may be placed for one or more of the series on either an Annual or Per Volume basis. Prices vary according to the contents of the individual parts. Orders and enquiries should be sent to: Publications Sales, British Museum (Natural History), Cromwell Road, London SW7 5BD, England. World List abbreviation: Bull. Br. Mus. nat. Hist. (Ent.) ©British Museum (Natural History), 1987 The Entomology series is produced under the general editorship of the Keeper of Entomology: Laurence A. Mound Assistant Editor: W. Gerald Tremewan ISBN 565 06026 ISSN 0524-6431 Entomology
    [Show full text]
  • Spatial and Temporal Occurrence of Beet Armyworm (Lepidoptera: Noctuidae) Moths in Mississippi
    Armyworm Symposium 2002: Adamczyk et al. 229 SPATIAL AND TEMPORAL OCCURRENCE OF BEET ARMYWORM (LEPIDOPTERA: NOCTUIDAE) MOTHS IN MISSISSIPPI J. J. ADAMCZYK, JR.1, M. R. WILLIAMS2, J. T. REED2, D. W. HUBBARD1 AND D. D. HARDEE1 1USDA, ARS, Southern Insect Management Research Unit P.O. Box 346, Stoneville, MS 38776 2Mississippi State University, Department of Entomology and Plant Pathology Clay Lyle Building, Mississippi State, MS 39762 ABSTRACT Throughout 1994-2000, adult beet armyworm, Spodoptera exigua (Hübner) populations were monitored in the delta and hill regions of Mississippi using pheromone traps. Signifi- cant differences in the mean number of moths trapped were found among different geo- graphical areas of the state. A trend was observed where the greatest number of moths was found in the Mississippi Delta, located in the western region of the state. The lowest number of moths was found in the hills located in the eastern region of the state. An annual profile of beet armyworm populations in the western section of the Mississippi Delta also revealed that wide-scale immigration of this pest typically begins at 200 Julian days (mid-July). This date could be used as a benchmark to determine when and if population levels are high enough to have the potential to cause economic damage to crops in the Mississippi Delta. Key Words: Spodoptera, migration, movement RESUMEN A travéz de los años 1994 a 2000, se realizaron un monitoreo de las poblaciones de adultos del gusano trozador de la remolacha, Spodoptera exigua (Hübner) en las regiones de la Delta y las colinas del Estado de Mississippi usando trampas de feronomas.
    [Show full text]
  • Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics
    bioRxiv preprint doi: https://doi.org/10.1101/134064; this version posted May 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Convergent evolution of the army ant syndrome and congruence in big-data phylogenetics Marek L. Borowiec Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, California, 95616, USA Current address: School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, Arizona, 85287, USA E-mail: [email protected] Abstract The evolution of the suite of morphological and behavioral adaptations underlying the eco- logical success of army ants has been the subject of considerable debate. This ”army ant syn- drome” has been argued to have arisen once or multiple times within the ant subfamily Do- rylinae. To address this question I generated data from 2,166 loci and a comprehensive taxon sampling for a phylogenetic investigation. Most analyses show strong support for convergent evolution of the army ant syndrome in the Old and New World but certain relationships are sensitive to analytics. I examine the signal present in this data set and find that conflict is di- minished when only loci less likely to violate common phylogenetic model assumptions are considered. I also provide a temporal and spatial context for doryline evolution with time- calibrated, biogeographic, and diversification rate shift analyses. This study underscores the need for cautious analysis of phylogenomic data and calls for more efficient algorithms em- ploying better-fitting models of molecular evolution.
    [Show full text]
  • Fossil Ants (Hymenoptera: Formicidae): Ancient Diversity and the Rise of Modern Lineages
    Myrmecological News 24 1-30 Vienna, March 2017 Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages Phillip BARDEN Abstract The ant fossil record is summarized with special reference to the earliest ants, first occurrences of modern lineages, and the utility of paleontological data in reconstructing evolutionary history. During the Cretaceous, from approximately 100 to 78 million years ago, only two species are definitively assignable to extant subfamilies – all putative crown group ants from this period are discussed. Among the earliest ants known are unexpectedly diverse and highly social stem- group lineages, however these stem ants do not persist into the Cenozoic. Following the Cretaceous-Paleogene boun- dary, all well preserved ants are assignable to crown Formicidae; the appearance of crown ants in the fossil record is summarized at the subfamilial and generic level. Generally, the taxonomic composition of Cenozoic ant fossil communi- ties mirrors Recent ecosystems with the "big four" subfamilies Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae comprising most faunal abundance. As reviewed by other authors, ants increase in abundance dramatically from the Eocene through the Miocene. Proximate drivers relating to the "rise of the ants" are discussed, as the majority of this increase is due to a handful of highly dominant species. In addition, instances of congruence and conflict with molecular- based divergence estimates are noted, and distinct "ghost" lineages are interpreted. The ant fossil record is a valuable resource comparable to other groups with extensive fossil species: There are approximately as many described fossil ant species as there are fossil dinosaurs. The incorporation of paleontological data into neontological inquiries can only seek to improve the accuracy and scale of generated hypotheses.
    [Show full text]