Evaluation of the in Vitro Biological Activities and Phytochemical Profiling of Eight Ficus Species Collected in Zambia

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of the in Vitro Biological Activities and Phytochemical Profiling of Eight Ficus Species Collected in Zambia t UCL SCHOOL OF PHARMACY EVALUATION OF THE IN VITRO BIOLOGICAL ACTIVITIES AND PHYTOCHEMICAL PROFILING OF EIGHT FICUS SPECIES COLLECTED IN ZAMBIA 2014 By: Mrs Angela Gono Bwalya 1st Supervisor: Dr Jose M Prieto-Garcia 2nd Supervisor: Dr Sudax Murdan Former 1st Supervisor: Dr Deniz Tasdemir 1 DECLARATION I, Angela Gono Bwalya declare that this dissertation is my own work. It is being submitted for the degree of Doctor of Philosophy (Ph. D) in the School of Pharmacy, University College London, United Kingdom. It has not been submitted before for any degree or examination in any other University. Signed:..........................................this day................................................2014 2 To my sons Nkandu, Kudakwashe and Luse Bwalya 3 ABSTRACT Infectious diseases are responsible for an overwhelming number of deaths and morbidity worldwide. In tropical regions of the world, in particular, developing countries like Zambia, poor health is prevalent and diseases such as malaria, meningitis, pneumonia, tuberculosis and gastrointestinal infections strongly persist. Folkloric medicines are still actively used against some of these infections as primary care before seeking conventional treatment at hospitals. Members of the genus Ficus (Moraceae) are traditionally used in Zambia against many diseases caused by bacterial, fungal and protozoal infections. Thus according to the plant parts used traditionally for herbal preparations, aerial and root parts of eight Ficus species namely; F. ingens, F. lutea, F. natalensis, F. ovata, F. sansibarica subsp. macrosperma, F. sycomorus subsp. gnaphalocarpa, F. sycomorus subsp. sycomorus and F. wakefieldii were collected from different parts of Zambia. The main aim of this thesis was to evaluate the medicinal potential of members of the genus Ficus. This was achieved by three objectives, which involved the phytochemical profiling of the crude extracts and subextracts of the Ficus for their constituents using chromatographic methods such as thin layer chromatography (TLC), proton Nuclear Magnetic Resonance (1H NMR) and high performance liquid chromatography (HPLC). Secondly, the extracts were screened for various biological activities after which they were evaluated against recombinant FAS-II elongation enzymes, FabG, FabI and FabZ as potential targets in liver stage malaria parasites. In this case, finely ground dried plant material was extracted with methanol (MeOH) to yield the crude methanol extracts (CR-MeOH) which, were further partitioned to provide a coarse separation of the crude extracts according to polarity. The three subextracts obtained included n-hexane, chloroform (CHCl3) and aqueous methanol (aq-MeOH). The obtained extracts and subextracts were screened for biological activities such as: antifungal and antibacterial activities using the broth dilution and agar disc diffusion assays, antitubercular activity using the MTT assay, antischistosomal activity using the microscopic in vitro assay. In addition, antiprotozoal activitites which included antileshmanial activity using an assay against amastigotes of L. donovani strain 4 MHOM/ET/67/L82, trypanocidal activity against T. cruzi and T. brucei rhodesiense STIB 900 strain, and antiplasmodial activity by modified [3H]-hypoxanthine incorporation assay, using the chloroquine/pyrimethamine resistant K1 strain were performed. Cytotoxity activity was also performed using rat skeletal myoblasts L6-cells. The chemical profiling was done by TLC, NMR and RP-HPLC. Meanwhile the chemical compound isolation for F. sansibarica was attempted by different chromatographic techniques and characterization by spectroscopic methods. The phytochemical profiling revealed the presence of closely related polyphenolic compounds to which some of the biological activities were attributed to. For instance, the antibacterial and the FAS-II enzyme inhibition activities were mostly retained in the aq- MeOH subextracts, which were composed of very polar metabolites including flavonoids. Antiplasmodial activity was observed mostly in the less polar metabolites which were retained in the hexane and CHCl3 subextracts of the stem barks. This pattern was similar with antitrypanosomal and antileishmanial activities, though with lesser sensitivity. The same subextracts including those of the root barks showed the most activity against M. tuberculosis with MIC values of 256 and 128 μg/ml, and against Schistosoma, for both larval and adult worms. The extracts did not exert any antifungal activity by the agar disc diffusion method we used. Detailed phytochemical investigation of the leaves of F. sansibarica was performed, and led to the isolation of two compounds; epicatechin and apigenin-6-C-glucoside from the chloroform and aq. MeOH subextracts respectively. The predominant constituent of the CR-MeOH extract of F. sansibarica was identified as having a molecular weight of 432 g/mol by LC-MS analysis which could be set as an identification chemical marker for F. sansibarica. The results highlight the potential that Ficus species could have as a valuable source for potent compounds which can be identified as scaffolds for the development of novel liver stage antimalarial drugs. Our results support previous research on the antimicrobial activity of Ficus species and they also provide an in vitro scientific basis supporting the use of Ficus species in traditional herbal preparations against some bacterial and parasitic infections. 5 ACKNOWLEDGEMENTS Firstly, I would like to sincerely thank my supervisor Dr Jose Prieto-Garcia for his supervision, support and the time he devoted towards my progress and final completion of my PhD, having taken over from Professor Dr Deniz Tasdemir. His encouragement and patience was enormous. I also thank Professor Dr Deniz Tasdemir for her supervision and knowledge she has impacted on me. Her interest towards this research encouraged me so much, and the time she devoted towards my progress. Her expertise in the area of natural products is very invaluable and I thank her for letting me tap into her wealth of knowledge. I thank Professor Patrick Phiri, the taxonomist who greatly helped me with the collection and identification of the plant materials. To my family, words fail me as I sincerely thank my husband Gregory for supporting me to pursue this PhD, while he devoted himself to raising our sons. I thank him for his encouragement, prayers, moral and financial support. I thank my sons Nkandu, Kudakwashe and Luse for their support. They understood that I couldn’t always be available for them. I also thank my wonderful brother and sisters for the support, the list are endless. In this research work, there are a number of institutions we collaborated with, which I would like to appreciate for their facilities and expert staff who generously rendered support to my work. These include; 1.The Department of Medical Parasitology and Infection Biology, Basel, Switzerland for performing the in vitro antiplasmodial activity assay. 2. Tuberculosis Research Unit, Department of Respiratory Medicine, National Heart and Lung Institute, Imperial College London. 3. St. John's Institute of Dermatology, GSTS Pathology, London under Dr Susan Howel’s supervision, for the antifungal assays. 4. The Department of Infectious and Tropical Diseases of the London School of Hygiene and Tropical Medicine. I say thank you in particular to, Dr Nuha Mansour, for helping with the antischistosomal assays. 6 Lastly, but not the least, I thank the support of the UK Commonwealth Scholarship Commission for financial support rendered to me to undertake this research. I also thank the Rick-Cannell Travel Fund of the School of Pharmacy, University of London, for funding my field work. 7 TABLE OF CONTENTS DECLARATION ............................................................................................................ 2 ABSTRACT ................................................................................................................... 4 ACKNOWLEDGEMENTS ............................................................................................ 6 TABLE OF CONTENTS ................................................................................................ 8 TABLE OF FIGURES .................................................................................................. 14 CONTENT OF TABLES .............................................................................................. 17 ABBREVIATIONS ...................................................................................................... 19 1. INTRODUCTION ................................................................................................. 24 1.1 Fungal Infections .............................................................................................25 1.1.1 Dermatophytes ......................................................................................... 26 1.1.1.1 Treatment ......................................................................................... 26 1.1.2 Yeasts (Candidiasis) ................................................................................ 28 1.1.2.1 Treatment ......................................................................................... 28 1.1.3 Moulds (Aspergillosis)............................................................................. 29 1.1.3.1 Treatment ......................................................................................... 29 1.2 Bacterial infections ..........................................................................................30
Recommended publications
  • Comparative Anatomy of the Fig Wall (Ficus, Moraceae)
    Botany Comparative anatomy of the fig wall (Ficus, Moraceae) Journal: Botany Manuscript ID cjb-2018-0192.R2 Manuscript Type: Article Date Submitted by the 12-Mar-2019 Author: Complete List of Authors: Fan, Kang-Yu; National Taiwan University, Institute of Ecology and Evolutionary Biology Bain, Anthony; national Sun yat-sen university, Department of biological sciences; National Taiwan University, Institute of Ecology and Evolutionary Biology Tzeng, Hsy-Yu; National Chung Hsing University, Department of Forestry Chiang, Yun-Peng;Draft National Taiwan University, Institute of Ecology and Evolutionary Biology Chou, Lien-Siang; National Taiwan University, Institute of Ecology and Evolutionary Biology Kuo-Huang, Ling-Long; National Taiwan University, Institute of Ecology and Evolutionary Biology Keyword: Comparative Anatomy, Ficus, Histology, Inflorescence Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 29 Botany Comparative anatomy of the fig wall (Ficus, Moraceae) Kang-Yu Fana, Anthony Baina,b *, Hsy-Yu Tzengc, Yun-Peng Chianga, Lien-Siang Choua, Ling-Long Kuo-Huanga a Institute of Ecology and Evolutionary Biology, College of Life Sciences, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan b current address: Department of Biological Sciences, National Sun Yat-sen University, 70 Lien-Hai road, Kaohsiung, Taiwan.Draft c Department of Forestry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 402, Taiwan. * Corresponding author: [email protected]; Tel: +886-75252000-3617; Fax: +886-75253609. 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 29 Abstract The genus Ficus is unique by its closed inflorescence (fig) holding all flowers inside its cavity, which is isolated from the outside world by a fleshy barrier: the fig wall.
    [Show full text]
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Impacts of Global Climate Change on the Phenology of African Tropical Ecosystems
    IMPACTS OF GLOBAL CLIMATE CHANGE ON THE PHENOLOGY OF AFRICAN TROPICAL ECOSYSTEMS GABRIELA S. ADAMESCU MSc by Research UNIVERSITY OF YORK Biology October 2016 1 Abstract The climate has been changing at an unprecedented rate, affecting natural systems around the globe. Its impact has been mostly reflected through changes in species’ phenology, which has received extensive attention in the current global-change research, mainly in temperate regions. However, little is known about phenology in African tropical forests. Africa is known to be vulnerable to climate change and filling the gaps is an urgent matter. In this study we assess plant phenology at the individual, site and continental level. We first compare flowering and fruiting events of species shared between multiple sites, accounting for three quantitative indicators, such as frequency, fidelity for conserving a certain frequency and seasonal phase. We complement this analysis by assessing interannual trends of flowering and fruiting frequency and fidelity to their dominant frequency at 11 sites. We complete the bigger picture by analysing flowering and fruiting frequency of African tropical trees at the site and community level. Next, we correlate three climatic indices (ENSO, IOD and NAO) with flowering and fruiting events at the canopy level, at 16 sites. Our results suggest that 30 % of the studied species show plasticity or adaptability to different environments and will most likely be resilient to moderate future climate change. At both site and continental level, we found that annual flowering cycles are dominant, indicating strong seasonality in the case of more than 50% of African tropical species under investigation.
    [Show full text]
  • Developmental Anatomy of Ficus Ingens Syconia in Relation to Its Wasp Faunula
    S.Afr.J. Bot. , 1989, SS( 4): 409- 421 409 Developmental anatomy of Ficus ingens syconia in relation to its wasp faunula H. Baijnath* and S. Naicker Department of Botany, University of Durban-Westville, Private Bag X54001, Durban, 4000 Republic of South Africa Accepted 6 February 1989 Syconial development in Ficus ingens (Miq.) Miq., extends over a period of 70-80 days and displays the same basic pattern reported by earlier workers. Developmental anatomical observations of the different components of the syconium are presented. Following pollination, structural changes of gall and seed flowers differ and the implications of some of these are considered. Since hairs occur at different stages of develop­ ment, speculations are presented on their role. In most instances, the anatomical changes could be related to wasp development and behaviour, thus highlighting the close mutualistic relationship that exists between figs and wasps. Die ontwikkeling van die sikonium van Ficus ingens (Miq.) Miq. duur vir 'n peri ode van 70-80 dae en vertoon dieselfde basiese patroon soos reeds vroeer deur ander werkers aangetoon. Waarnemings betreffende die ontwikkelingsanatomie van die verskillende dele van die sikonium word aangebied. Die strukturele verander­ ings in die gal- en saadvormende blomme nadat bestuiwing plaasgevind het verskil en die implikasies van sommige hiervan word bespreek. Weens die feit dat hare op verskeie stadiums van ontwikkeling ontstaan, word daar oor hulle rol gespekuleer. Die anatomiese veranderings hou in die meeste gevalle verband met die ontwikkeling en gedrag van wespe waardeur die noue mutualistiese verwantskap tussen vye en wespe beklemtoon word. Keywords: Anatomy, Ficus ingens, syconium 'To whom correspondence should be addressed Introduction Ficus ingens (Mig .) Mig., is a medium-sized spreading dse tree which belongs to the subgenus Urostigma and is fairly widespread in Africa.
    [Show full text]
  • Revision of the Genus Ficus L. (Moraceae) in Ethiopia (Primitiae Africanae Xi)
    582.635.34(63) MEDEDELINGEN LANDBOUWHOGESCHOOL WAGENINGEN • NEDERLAND • 79-3 (1979) REVISION OF THE GENUS FICUS L. (MORACEAE) IN ETHIOPIA (PRIMITIAE AFRICANAE XI) G. AWEKE Laboratory of Plant Taxonomy and Plant Geography, Agricultural University, Wageningen, The Netherlands Received l-IX-1978 Date of publication 27-4-1979 H. VEENMAN & ZONEN B.V.-WAGENINGEN-1979 BIBLIOTHEEK T)V'. CONTENTS page INTRODUCTION 1 General remarks 1 Uses, actual andpossible , of Ficus 1 Method andarrangemen t ofth e revision 2 FICUS L 4 KEY TOTH E FICUS SPECIES IN ETHIOPIA 6 ALPHABETICAL TREATMENT OFETHIOPIA N FICUS SPECIES 9 Ficus abutilifolia (MIQUEL)MIQUEL 9 capreaefolia DELILE 11 carica LINNAEUS 15 dicranostyla MILDBRAED ' 18 exasperata VAHL 21 glumosu DELILE 25 gnaphalocarpa (MIQUEL) A. RICHARD 29 hochstetteri (MIQUEL) A. RICHARD 33 lutea VAHL 37 mallotocarpa WARBURG 41 ovata VAHL 45 palmata FORSKÀL 48 platyphylla DELILE 54 populifolia VAHL 56 ruspolii WARBURG 60 salicifolia VAHL 62 sur FORSKÂL 66 sycomorus LINNAEUS 72 thonningi BLUME 78 vallis-choudae DELILE 84 vasta FORSKÂL 88 vogelii (MIQ.) MIQ 93 SOME NOTES ON FIGS AND FIG-WASPS IN ETHIOPIA 97 Infrageneric classification of Hewsaccordin gt o HUTCHINSON, related to wasp-genera ... 99 Fig-wasp species collected from Ethiopian figs (Agaonid associations known from extra- limitalsample sadde d inparentheses ) 99 REJECTED NAMES ORTAX A 103 SUMMARY 105 ACKNOWLEDGEMENTS 106 LITERATURE REFERENCES 108 INDEX 112 INTRODUCTION GENERAL REMARKS Ethiopia is as regards its wild and cultivated plants, a recognized centre of genetically important taxa. Among its economic resources, agriculture takes first place. For this reason, a thorough knowledge of the Ethiopian plant cover - its constituent taxa, their morphology, life-cycle, cytogenetics etc.
    [Show full text]
  • Mt Mabu, Mozambique: Biodiversity and Conservation
    Darwin Initiative Award 15/036: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems MT MABU, MOZAMBIQUE: BIODIVERSITY AND CONSERVATION November 2012 Jonathan Timberlake, Julian Bayliss, Françoise Dowsett-Lemaire, Colin Congdon, Bill Branch, Steve Collins, Michael Curran, Robert J. Dowsett, Lincoln Fishpool, Jorge Francisco, Tim Harris, Mirjam Kopp & Camila de Sousa ABRI african butterfly research in Forestry Research Institute of Malawi Biodiversity of Mt Mabu, Mozambique, page 2 Front cover: Main camp in lower forest area on Mt Mabu (JB). Frontispiece: View over Mabu forest to north (TT, top); Hermenegildo Matimele plant collecting (TT, middle L); view of Mt Mabu from abandoned tea estate (JT, middle R); butterflies (Lachnoptera ayresii) mating (JB, bottom L); Atheris mabuensis (JB, bottom R). Photo credits: JB – Julian Bayliss CS ‒ Camila de Sousa JT – Jonathan Timberlake TT – Tom Timberlake TH – Tim Harris Suggested citation: Timberlake, J.R., Bayliss, J., Dowsett-Lemaire, F., Congdon, C., Branch, W.R., Collins, S., Curran, M., Dowsett, R.J., Fishpool, L., Francisco, J., Harris, T., Kopp, M. & de Sousa, C. (2012). Mt Mabu, Mozambique: Biodiversity and Conservation. Report produced under the Darwin Initiative Award 15/036. Royal Botanic Gardens, Kew, London. 94 pp. Biodiversity of Mt Mabu, Mozambique, page 3 LIST OF CONTENTS List of Contents .......................................................................................................................... 3 List of Tables .............................................................................................................................
    [Show full text]
  • An Evaluation of the Extent and Threat of Bark Harvesting of Medicinal Plant Species in the Venda Region, Limpopo Province, South Africa
    REVISTA INTERNACIONAL DE BOTÁNICA EXPERIMENTAL INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY FUNDACION ROMULO RAGGIO Gaspar Campos 861, 1638 Vicente López (BA), Argentina www.revistaphyton.fund-romuloraggio.org.ar An evaluation of the extent and threat of bark harvesting of medicinal plant species in the Venda Region, Limpopo Province, South Africa Evaluación de la magnitud y peligro de la cosecha de corteza de especies vegetales medicinales en la región de Venda, Provincia de Limpopo, Sudáfrica Tshisikhawe MP1, 2*, MW van Rooyen1, RB Bhat2 Abstract. The medicinal flora of the Venda region consists of a Resumen. La flora medicinal de la región de Venda consta de variety of species, which may potentially provide therapeutic agents una variedad de especies, que potencialmente pueden proporcionar to treat different diseases. Bark use for medicinal purposes has been agentes terapéuticos para tratar diferentes enfermedades. El uso de reported for approximately 30% of the woody species (153 species) la corteza con propósitos medicinales se ha informado para aproxi- in the Venda region in southern Africa. However, only 58 plant spe- madamente 30% de las especies leñosas (153 especies) en el sur de cies are commonly harvested for the medicinal properties in their África, en la región de Venda. Sin embargo, sólo 58 especies vegetales bark and found in muthi shops in the region. These 58 species were son cosechadas por las propiedades medicinales en su corteza, y ven- scored for the possible threat of bark harvesting to the plant survival. didas en tiendas muthi en la región. Estas 58 especies se clasificaron Ethnobotanical studies indicate that the growing trade in indigenous por la posible amenaza de cosecha de su corteza, relacionado con medicinal plants in South Africa is posing a threat to the conserva- la supervivencia de las plantas.
    [Show full text]
  • Phylogenetic Relationships, Historical Biogeography and Character Evolution of Ž G-Pollinating Wasps Carlos A
    doi 10.1098/rspb.2000.1418 Phylogenetic relationships, historical biogeography and character evolution of g-pollinating wasps Carlos A. Machado1*, Emmanuelle Jousselin2, Finn Kjellberg2, Stephen G. Compton3 and Edward Allen Herre1 1SmithsonianTropical Research Institute, Apartado 2072, Balboa, Republic of Panama 2CNRS-CEFE, 1919 Route de Mende, 34293 Montpellier Ce¨ dex 5, France 3Centre for Ecology and Evolution, School of Biology, University of Leeds, Leeds LS2 9JT, UK Nucleotide sequences from the cytochrome oxidase I (COI) gene were used to reconstruct phylogenetic relationships among 15 genera of ¢g-pollinating wasps. We present evidence supporting broad-level co- cladogenesis with respect to most but not all of the corresponding groups of ¢gs. Using fossil evidence for calibrating a molecular clock for these data, we estimated the origin of the ¢g^wasp mutualism to have occurred ca. 90 million years ago. The estimated divergence times among the pollinator genera and their current geographical distributions corresponded well with several features of the break-up of the southern continents during the Late Cretaceous period. We then explored the evolutionary trajectories of two char- acteristics that hold profound consequences for both partners in the mutualism: the breeding system of the host (monoecious or dioecious) and pollination behaviour of the wasp (passive or active). The ¢g^ wasp mutualism exhibits extraordinarily long-term evolutionary stability despite clearly identi¢able con£icts of interest between the interactors, which are re£ected by the very distinct variations found on the basic mutualistic theme. Keywords: ¢g wasp ; pollination; biogeography; coevolution; Gondwana; mutualism species, some individuals produce only seed-bearing fruit 1.
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Tanzania Wildlife Research Institute (Tawiri)
    TANZANIA WILDLIFE RESEARCH INSTITUTE (TAWIRI) PROCEEDINGS OF THE ELEVENTH TAWIRI SCIENTIFIC CONFERENCE, 6TH – 8TH DECEMBER 2017, ARUSHA INTERNATIONAL CONFERENCE CENTER, TANZANIA 1 EDITORS Dr. Robert Fyumagwa Dr. Janemary Ntalwila Dr. Angela Mwakatobe Dr. Victor Kakengi Dr. Alex Lobora Dr. Richard Lymuya Dr. Asanterabi Lowassa Dr. Emmanuel Mmasy Dr. Emmanuel Masenga Dr. Ernest Mjingo Dr. Dennis Ikanda Mr. Pius Kavana Published by: Tanzania Wildlife Research Institute P.O.Box 661 Arusha, Tanzania Email: [email protected] Website: www.tawiri.or.tz Copyright – TAWIRI 2017 All rights reserved. No part of this publication may be reproduced in any form without permission in writing from Tanzania Wildlife Research Institute. 2 CONFERENCE THEME "People, Livestock and Climate change: Challenges for Sustainable Biodiversity Conservation” 3 MESSAGE FROM THE ORGANIZING COMMITTEE The Tanzania Wildlife Research Institute (TAWIRI) scientific conferences are biennial events. This year's gathering marks the 11th scientific conference under the Theme: "People, Livestock and Climate change: Challenges for sustainable biodiversity conservation”. The theme primarily aims at contributing to global efforts towards sustainable wildlife conservation. The platform brings together a wide range of scientists, policy markers, conservationists, NGOs representatives and Civil Society representatives from various parts of the world to present their research findings so that management of wildlife resources and natural resources can be based on sound scientific information
    [Show full text]
  • 408 Genus Myrina Fabricius
    AFROTROPICAL BUTTERFLIES 17th edition (2018). MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Genus Myrina Fabricius, 1807 In: Illiger, K., Magazin für Insektenkunde 6: 286 (277-289). Type-species: Papilio alcides Cramer, by subsequent designation (Kirby, 1870. Journal of the Linnean Society of London (Zoology) 10: 500 (494-503).). The genus Myrina belongs to the Family Lycaenidae Leach, 1815; Subfamily Theclinae Swainson, 1831; Tribe Amblypodiini Doherty, 1886. There are no other genera in the Tribe Amblpodiini in the Afrotropical Region. Myrina (Fig-tree Blues) is a purely Afrotropical genus containing three species. Commonly known as ‘Fig-tree Blues’ because the larvae use species of figs (Ficus – Moraceae) as larval host plants. One species is confined to primary forest, one species occurs in savanna habitats and the widespread Myrina silenus is found in habitats varying from forest to subdesert. The genitalia are characteristic for the genus but there are few differences between the species. The hindwing possesses a single long, thick, often furled tail at vein 1b, which reminds one of a miniature dried tobacco leaf. *Myrina dermaptera (Wallengren, 1857)# Lesser Fig-tree Blue Males of the Lesser Fig-tree Blue (Myrina dermaptera). Images courtesy Steve Woodhall. Loxura dermaptera Wallengren, 1857. Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar. Stockholm annis 1838- 1845. Collecta (n.s.) 2 (4): 34 (55 pp.). Loxura dermaptera Wallengren. Trimen, 1866a. Myrina dermaptera (Wallengren, 1857). Trimen & Bowker, 1887b. Myrina dermaptera Wallengren. Swanepoel, 1953a. Myrina dermaptera (Wallengren, 1857). Dickson & Kroon, 1978. Myrina dermaptera (Wallengren, 1857). Pringle et al., 1994: 168. Myrina dermaptera Wallengren, 1857. d’Abrera, 2009: 696.
    [Show full text]
  • Coupled Human-Natural Regeneration of Indigenous Coastal Dry Forest in Kenya ⇑ David W
    Forest Ecology and Management xxx (2015) xxx–xxx Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Coupled human-natural regeneration of indigenous coastal dry forest in Kenya ⇑ David W. MacFarlane a, , Andrew T. Kinzer b, John E. Banks c,d a Department of Forestry, Michigan State University, East Lansing, MI 48840, USA b A Rocha Kenya, Watamu, Kenya c University of Washington-Tacoma, Tacoma, WA 98402, USA d Department of Zoology, National Museums of Kenya, Nairobi, Kenya article info abstract Article history: Remaining fragments of East African coastal dry forests contain very high levels of endemic species and Received 1 April 2015 are in critical need of conservation and restoration. Little is known about natural regeneration dynamics Received in revised form 16 June 2015 of these forests, or the potential for human action to aid recovery of lost structures and functions after Accepted 18 June 2015 deforestation/degradation. Here, data and analyses are presented from long-term monitoring plots in a Available online xxxx 20 year-old forest restoration project in Gede, Kenya, in a fragment of Zanzibar-Inhambane (ZI) regional forest mosaic. Study results provided previously unavailable indigenous tree species growth rates and Keywords: human-assisted forest regeneration rates for ZI forests and highlighted issues relevant to conserving East Africa and regenerating remnants of coastal dry forest throughout East Africa. Enrichment plantings accelerated Zanzibar-Inhambane Tropical dry forest recovery of indigenous tree species diversity and increased species density above natural levels. A strat- Restoration egy of inter-planting within existing natural regeneration, including leaving large relic trees, accelerated Azadirachta indica regrowth of the forest, but the main beneficiary of the strategy was exotic Azadirachta indica, which came to dominate significant areas.
    [Show full text]