Overview of Sea Cucumber Aquaculture and Sea-Ranching Research in the South-East Asian Region

Total Page:16

File Type:pdf, Size:1020Kb

Overview of Sea Cucumber Aquaculture and Sea-Ranching Research in the South-East Asian Region Overview of sea cucumber aquaculture and sea-ranching research in the South-East Asian region David J. Mills 1, Nguyen D.Q. Duy 2, Marie Antonette Juinio-Meñez 3, Christina M. Raison 4 and Jacques M. Zarate 5 Abstract South-East Asia has traditionally been the global centre of production of tropical sea cucumbers for Chinese markets. Early research into culture methods took place outside this region, notably in India, the Pacific region and China. However, recent investment in Holothuria scabra (sandfish) culture has led to some significant advances within this region. The Philippines and Vietnam have been at the forefront of recent efforts, with involvement from substantial national programs and local institutions as well as international donors and scientific organisations. Smaller programs are ongoing in Thailand, Malaysia and Indonesia. Recent advances and simplifications in hatchery techniques are a major step forward, having promoted the development of experimental-scale sea-ranching ventures, and given rise to a small, commercial pond-based culture industry in Vietnam. Technology developments in nursery systems are likely to provide opportunities for culture enterprises in a broader range of environments than is now possible. A major research thrust in the Philippines towards developing cooperative sea-ranching enterprises has demonstrated good potential, and institutional/ legislative arrangements to ensure adequate property rights have been tested. Rotational culture with shrimp is proving successful in Vietnam, while the possibility of proximate co-culture of sandfish and shrimp has largely been ruled out. Small-scale experiments in the Philippines raise the possibility of co-culture in ponds with a number of finfish species. Current research directions are looking at diversifying technology to increase success in a range of coastal conditions, better understanding the social and biophysical conditions required for success, and finding ways of effectively scaling-out developed systems and technology. Introduction forays into community-based culture and sea-ranching systems (e.g. see papers in these proceedings). Globally, the husbandry of tropical sea cucumbers However, most have yet to demonstrate commercial appears ‘on the cusp’ of success—we are starting to see viability, and many stakeholders are interested to see the construction of commercial-scale hatcheries and the outcomes of current pilot ventures. This situation farms and, at the other end of the spectrum, sustained is a product of both the considerable advances that have occurred over the past decade in hatchery and 1 WorldFish Center, Penang, Malaysia grow-out technology, and the resistance of bottlenecks * Corresponding author: <[email protected]> to unconstrained success. The widespread and grow- 2 Research Institute for Aquaculture No. 3, Nha Trang, ing interest in this commodity is indicative of strong Khanh Hoa province, Vietnam market-based drivers to increase production of sea 3 Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines cucumber (Brown et al. 2010). This has a dual impact 4 University of Stirling, Scotland, United Kingdom of increasing pressure on wild stocks already in crisis, 5 Aquaculture Department, South East Asian Fisheries yet also opening the door to opportunities for new Development Center, Iloilo, Philippines coastal livelihoods based on sustainable approaches to 22 culture and sea ranching. This symposium is therefore them are small-scale producers who typically have very timely, and allows researchers to take stock of cur- limited reserve capital and struggle to recover from rent benchmarks for various stages of production, and losing entire crops to disease (Mills et al. 2011). Sea gain a shared understanding of bottlenecks, constraints cucumbers show substantial promise as a sustainable and critical areas for further research. alternative species that can be grown instead of, or As the historical global centre of tropical sea with, shrimp, and should provide a more tenable risk cucumber harvest (e.g. Gamboa et al. 2004; profile. Currently, up to 12 farmers are involved in Schwerdtner Máñez and Ferse 2010), countries sandfish pond farming in Vietnam. throughout South-East Asia retain a keen interest Recent developments in sea ranching and pond in developments in culture and sustainable resource farming in the South-East Asian region are explored management, and, in many instances, sit at the fore- here, concentrating on Holothuria scabra (sandfish), front of industry and technology development. The as this is the focus of current development efforts. precipitous decline in sea cucumber stocks throughout The paper does not seek to provide a comprehensive the region (Conand 2004; Bell et al. 2008) has had review of all activities in the region, but rather is a dire implications for coastal livelihoods in some areas. ‘selective highlights’ package that may be somewhat While not well documented (but see Shiell and Knott biased towards the lead author’s experience. It is 2010; Wolkenhauer et al. 2010), it is likely that the intentionally biased towards research that does not wholesale removal of sea cucumbers has contributed appear elsewhere in this volume; much of the current to reduced resilience among coastal ecosystems. research being undertaken in the region is covered in Social impacts of this decline go beyond lost some depth by others in this symposium. The paper income. Traditionally, a significant part of the sea is organised by ontogenic staging rather than geogra- cucumber resource in South-east Asia has been phy, considering hatchery, nursery, growing-out and obtained by ‘gleaning’ in the shallows (Choo 2008). postharvest issues separately. Such fisheries provide a disproportionate social benefit, as they have no capital entry requirements Hatchery and nursery production (i.e. they are accessible to those without the means to invest) and are accessible to women and children. Simplified hatchery systems These highly vulnerable shallow resources are invariably, however, the first to disappear under The earliest reports of hatchery research on sea conditions of uncontrolled harvesting. Harvesting cucumbers date back as far as the 1930s (see Yellow deeper resources becomes more capital intensive Seas Fisheries Research Institute 1991). Today, the (requiring a boat and diving gear) and is generally culture of temperate species (notably Apostichopus the exclusive domain of men. A more insidious effect japonicus ) is in full-swing in China and Japan (Chen of overharvesting is seen as sustained pressure drives 2004), but commercial-scale hatchery production of fishers deeper in search of viable stocks; diving- tropical species is only now becoming a possibility. related accidents leading to permanent disability or Considerable research effort in India (James et al. even death are all too common in villages where sea 1994) and the Pacific region (Battaglene et al. 1999) cucumber harvesting plays an important role in liveli- laid the foundations for culture of H. scabra on a hoods. Clearly, the restoration of livelihoods based commercial scale. These techniques were further on near-shore sea cucumber harvest and improved refined through the work of the WorldFish Center and governance of the resource have great potential to partners in New Caledonia, and published in a com- benefit coastal communities throughout the region. prehensive hatchery manual for H. scabra (Agudo In addition to sea ranching or enhancing/restocking 2006). Recent advances have seen these techniques wild stocks, sea cucumber culture can play a critical further refined, simplified and customised for low- role in restoring resilient livelihoods among coastal investment systems suitable for developing countries aquaculture farmers. Shrimp production dominates (Duy 2010, 2012; Gamboa et al. 2012). Among key this sector in much of South-East Asia. The disease- modifications and simplifications that have improved related serial boom-and-bust cycle that has charac- success rates are: terised shrimp production globally (Dierberg and s a reduction in requirements for live feed produc- Kiattisimkul 1996) is strongly evident in this region. tion, to a point where a single species ( Chaetoceros Such cycles leave casualties, and prominent among muelleri ) can be used 23 s low-density culture of larvae (around 0.3 larvae/mL) response, effort has been directed at developing float- s the use of settlement plates coated with a dried ing hapa systems that can be deployed in sheltered algal ( Spirulina ) paste rather than previous marine embayments (Figure 2, right). These systems techniques of natural conditioning of plates with have great potential for community sea-ranching benthic diatoms. operations—they allow the transport of juveniles These techniques reduce the complexity of culture from hatcheries at an early stage, resulting in low systems and the incidence of infestations by parasites mortality; and engage communities in the production or copepods, and have led to substantially increased cycle at the earliest opportunity, maximising potential survival rates. Experience from Vietnam and the financial benefits (Juinio-Meñez et al. 2012a). Philippines suggests that a current ‘benchmark’ for Hapa-based nursery systems are commonly used survival from egg to 5-mm juveniles is around 2.5%. until juveniles reach a weight of 2–5 g. In previous Experience from the increasing number of pilot-scale pilot trials of both sea ranching (Juinio-Meñez et al.
Recommended publications
  • Approaches in Rebuilding Sea Urchin and Sea Cucumber Populations in the Philippines Marie Antonette J
    Approaches in Rebuilding Sea Urchin and Sea Cucumber Populations in the Philippines Marie Antonette J. Meñez Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines email: [email protected] Abstract Sea urchins and sea cucumbers are among the most valuable and overexploited fishery resources. Culture and release of juvenile Tripneustes gratilla and Holothuria scabra have been undertaken to rebuild depleted populations and provide a supplemental source of income for fishers. In both cases an integrated socio- ecological approach was used. Studies on factors affecting growth and survival of released juveniles were conducted alongside active participation of local partners in site management and regular monitoring. For T. gratilla, community-based grow-out in sea cages complemented with restocking of protected areas helped in the recovery of a collapsed fishery. Gonad biomass and quality of sea urchins fed with Sargassum were high. These increased the value of the gonads and reproductive output of cultured sea urchins. In the case of H. scabra, release of juveniles in a communal sea ranch resulted in the build-up in density and biomass. Observations of regular mass spawning in the sea ranch established that a viable spawning population was maintained through selective harvesting. Both the sea urchin cage grow-out culture and sea cucumber sea ranch function as reproductive reserves and source of larval supply to adjacent suitable habitats. In addition, wild recruits in the sea ranch and in the vicinity of the sea urchin sea cages indicate that natural recruitment may be enhanced by the high density of conspecific adults. These models have demonstrated that both ecological and economic benefits can be realized through of responsible culture-based management interventions.
    [Show full text]
  • Taxonomy of the Heavily Exploited Indo-Pacific Sandfish
    Zoological Journal of the Linnean Society, 2009, 155, 40–59. With 10 figures Taxonomy of the heavily exploited Indo-Pacific sandfish complex (Echinodermata: Holothuriidae) CLAUDE MASSIN1*, SVEN UTHICKE2, STEVEN W. PURCELL3, FRANK W. E. ROWE, FLS4† and YVES SAMYN5 1Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium 2Australian Institute of Marine Science, PMB No 3, Townsville, Qld 4810, Australia 3The WorldFish Center, c/o SPC – Secretariat of the Pacific Community, B.P. D5, 98848 Noumea Cedex, New Caledonia 4Research Associate, Australian Museum, Sydney, NSW, 2000, Australia 5Global Taxonomy Initiative, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium Received 5 September 2007; accepted for publication 18 October 2007 Two commercially valuable holothurians, the sandfish and golden sandfish, vary in colour and have a confused taxonomy, lending uncertainty to species identifications. A recent molecular study showed that the putative variety Holothuria (Metriatyla) scabra var. versicolor Conand, 1986 (‘golden sandfish’) is a distinct species from, but could hybridize with, H. (Metriatyla) scabra Jaeger, 1833 (’sandfish’). Examination of the skeletal elements and external morphology of these species corroborates these findings. The identity of H. (M.) scabra is unambiguously defined through the erection and description of a neotype, and several synonyms have been critically re-examined. The nomenclaturally rejected taxon H. (Metriatyla) timama Lesson, 1830 and H. (M.) scabra var. versicolor (a nomen nudum) are herein recognized as conspecific and are allocated to a new species, Holothuria lessoni sp. nov., for which type specimens are described. The holotype and only known specimen of H. aculeata Semper, 1867, has been found and is redescribed.
    [Show full text]
  • Identifying Sea Cucumbers
    Identifying Sea Cucumbers: Implementing and enforcing an Appendix II listing of teatfish INTRODUCTION Sea cucumbers, or bêche-de-mer (the dried product), are a luxury good classified as one of the eight culinary treasures of the sea. On the international market, sea cucumbers can be sold at prices ranging from USD $145-389 per kg, an increase of 16.6% from 2011–2016. While demand for sea cucumbers remains high, stocks of some wild populations have dropped significantly. Parties to the Convention on International Trade in Endangered Species of Wild Flora and Fau- na (CITES) have proposed the white teatfish Holothuria( fuscogilva), and the two black teatfishes (Holothuria nobilis and Holothuria whitmaei) for listing in Appendix II at the 18th CITES Conference of Parties (CoP18). With population declines from 50-90%, not only are these species in need of international trade management to ensure continued trade is sustainably sourced, but they are also easily identifiable from other sea cucumber species - meaning CITES Parties can easily and effectively implement this potential listing. Sea cucumbers are bottom dwelling species, residing along coral reefs and in association with seagrasses almost globally. Moving slowly across the ocean floor, sea cucumbers consume, among other things, fine organic matter and sand. Doing so ensures that nutrients are cycled back into the ecosystem, as well as the mixing of oxygen into the substrate - essential functions that pro- vide the backbone of healthy marine ecosystems. Out of 1,200 known sea cucumber species, only approximately 70 species are found in the international trade. Of those found in trade, H.
    [Show full text]
  • Electron Microscopy Reveals the Ultrastructure and the Chromatin Organization of Holothuria Scabra Male Germ Cells
    Songklanakarin J. Sci. Technol. 40(2), 321-328, Mar. - Apr. 2018 Original Article Electron microscopy reveals the ultrastructure and the chromatin organization of Holothuria scabra male germ cells Worawit Suphamungmee1, Nittiya Nontunha1, Supakant Chaichotranunt2, Yotsawan Tinikul3, Tanate Poomtong2, and Prasert Sobhon1, 4* 1 Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewee, Bangkok, 10400 Thailand 2The Coastal Fisheries Research and Development Center, Mueang, Prachuap Khiri Khan, 77000 Thailand 3Mahidol University, Nakhonsawan Campus, Mueang, Nakhon Sawan, 60130 Thailand 4Faculty of Allied Health Sciences, Burapha University, Mueang, Chon Buri, 20131 Thailand Received: 5 December 2016; Revised: 15 December 2016; Accepted: 21 December 2016 Abstract Holothuria scabra release their gametes into seawater where external fertilization rapidly takes place. H. scabra sperm are generated through the steps of germ cell proliferation and differentiation within the wall of the testicular tubule. The outer most layer of the tubular wall supports the developing germ cells. All germ cells are classified according to the hetero- chromatization pattern of the cell nuclei. Based on the degrees of chromatin condensation, the two spermatid stages are classified as St1 and St2. The St1 exhibits a small, round nucleus with heterochromatin clumping around the nuclear envelope which, in turn, is surrounded by the mitochondrial aggregation. In the St2, thick chromatin fibers appear. Large mitochondria fuse and the tail rudiment also starts to form at the posterior, whereas acrosome and subacrosomal structures are fully formed at the anterior region. It is speculated that a coiling of nucleosomes organized by the sperm-specific histones causes the chromatin condensation in spermatids and sperm nuclei of H.
    [Show full text]
  • High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
    Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids.
    [Show full text]
  • Feeding Sea Cucumbers in Integrated Multitrophic Aquaculture
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Reviews in Aquaculture (2016) 0, 1–18 doi: 10.1111/raq.12147 Role of deposit-feeding sea cucumbers in integrated multitrophic aquaculture: progress, problems, potential and future challenges Leonardo Nicolas Zamora1, Xiutang Yuan2, Alexander Guy Carton3 and Matthew James Slater4 1 Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New Zealand 2 State Oceanic Administration, National Marine Environmental Monitoring Center, Dalian, China 3 Division of Tropical Environments and Societies, College of Marine and Environmental Sciences, Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Australia 4 Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany Correspondence Abstract Leonardo Nicolas Zamora, Leigh Marine Laboratory, Institute of Marine Science, There is significant commercial and research interest in the application of sea University of Auckland, PO Box 349, cucumbers as nutrient recyclers and processors of particulate waste in polyculture Warkworth, New Zealand. E-mail: or integrated multitrophic aquaculture (IMTA) systems. The following article [email protected] reviews examples of existing IMTA systems operating with sea cucumbers, and details the role and effect of several sea cucumber species in experimental and Received 12 August 2015; accepted 1 February pilot IMTA systems worldwide. Historical observations and quantification of 2016. impacts of sea cucumber deposit-feeding and locomotion are examined, as is the development and testing of concepts for the application of sea cucumbers in sedi- ment remediation and site recovery. The extension of applied IMTA systems is reported, from basic piloting through to economically viable farming systems operating at commercial scales.
    [Show full text]
  • Growth and Survival Rate of Holothuria
    Growth and survival rate of Holothuria (Metriatyla) scabra with feed from chicken waste in Menia Waters, Sabu Raijua District, East Nusa Tenggara, Indonesia 1Marcelien D. R. Oedjoe, 2Suseno, 3Yulianus Linggi, 4Franchy C. Liufeto 1,3,4 Faculty of Marine and Fisheries, Nusa Cendana University, Kupang NTT, Indonesia; 2 Marine and Fisheries Polytechnic of Kupang, Indonesia. Corresponding author: M. D. R. Oedjoe, [email protected] Abstract. Fisheries resources are common property rights, so their management has open access, which means anyone can get involved. The fishery products obtained become uncertain and overfished, therefore to overcome the problem of overfishing the Holothuria scabra (sea cucumber) resources, this study experiments on pen culture techniques development. Cultivation of H. scabra in confined imprisonment, in addition to maintaining the sustainability of its resources, is also a new employment field for coastal communities that can provide added value in improving welfare. The objectives of the study were to determine: (a) the growth, (b) the survival rate, (c) the pattern of length versus weight increase, for the H. scabra found in the Menia waters. The method used is an experimental method of cultivation (pen culture). The results obtained from this study are: increase in the length with 1.5-6.35 cm and in the weight with 4-10.07 g weekly, for 60 days (8 weeks). The growth rate of H. scabra day-1 for 30 days was between 0.15-0.93% and the average daily growth rate was 0.66±0.68%. Length relationship to weight (growth pattern) had an allometric coefficient b>3.
    [Show full text]
  • Spawning and Larval Rearing of Sea Cucumber Holothuria (Theelothuria) Spiniferatheel P.S.Asha1 and P
    SPC Beche-de-mer Information Bulletin #16 – April 2002 11 Kerr, A.M., E.M. Stoffel and R.L. Yoon. 1993. SPC. 1994. Sea cucumbers and beche-de-mer of the Abundance distribution of holothuroids tropical Pacific: a handbook for fishers. South (Echinodermata: Holothuroidea) on a wind- Pacific Commission Handbook no.18. 52 p. ward and leeward fringing coral reef, Guam, Mariana Islands. Bull. Mar. Sci. 52(2):780–791. SPC. 1997. Improved utilisation and marketing of marine resources from the Pacific region. Preston, G.L. 1993. Beche-de-mer. In: A. Wright and Beche-de-mer, shark fins and other cured ma- L. Hill, eds. Nearshore marine resources of the rine products purchased by Chinese and Asian South Pacific, Suva: Institute of Pacific traders. 36 p. Studies, Honiara: FFA and Halifax: International Centre for Ocean Development. Smith, R.O. 1947. Survey of the fisheries of the for- 371–407. mer Japanese Mandated Islands. USFWS Fishery Leaflet 273. 106 p. Richmond, R. 1995. Introduction and overview. In: A regional management plan for a sustainable Veikila, C.V and F. Viala. 1990. Shrinkage and sea cucumber fishery for Micronesia, March weight loss of nine commercial holothurian 3–5, 1993. 2–6. species from Fijian waters. Fiji Fisheries Division unpublished report. 9 p. Rowe, F.W.E. and J.E. Doty. 1977. The shallow- water holothurians of Guam. Micronesica Zoutendyk, D. 1989. Trial processing and market- 13(2):217–250. ing of surf redfish (Actinopyga mauritiana) beche-de-mer on Rarotonga, and its export po- Rowe, F.W.E. and J. Gates.
    [Show full text]
  • Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria Scabra
    Article Evidence for a Saponin Biosynthesis Pathway in the Body Wall of the Commercially Significant Sea Cucumber Holothuria scabra Shahida Akter Mitu 1, Utpal Bose 1,2,3, Saowaros Suwansa-ard 1, Luke H. Turner 1, Min Zhao 1, Abigail Elizur 1, Steven M. Ogbourne 1, Paul Nicholas Shaw 3 and Scott F. Cummins 1,* 1 Genecology Research Center, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia; [email protected] (S.A.M.); [email protected] (U.B.); [email protected] (S.S.); [email protected] (L.H.T.); [email protected] (M.Z.); [email protected] (A.E.); [email protected] (S.M.O.) 2 CSIRO Agriculture and Food, St Lucia, Brisbane 4067, Queensland, Australia 3 School of Pharmacy, The University of Queensland, Brisbane 4067, Queensland, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-7-5456-5501 Received: 9 August 2017; Accepted: 31 October 2017; Published: 7 November 2017 Abstract: The sea cucumber (phylum Echinodermata) body wall is the first line of defense and is well known for its production of secondary metabolites; including vitamins and triterpenoid glycoside saponins that have important ecological functions and potential benefits to human health. The genes involved in the various biosynthetic pathways are unknown. To gain insight into these pathways in an echinoderm, we performed a comparative transcriptome analysis and functional annotation of the body wall and the radial nerve of the sea cucumber Holothuria scabra; to define genes associated with body wall metabolic functioning and secondary metabolite biosynthesis.
    [Show full text]
  • Black Teatfish Listing Petition
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle, WA 98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • Assessment of Processing Methods for Sandfish (Holothuria Scabra) in Pangasinan, Palawan, and Davao, Philippines
    Bassig et al. / The Philippine Journal of Fisheries 28(1): 44-59 January - June 2021 DOI: 10.31398/tpjf/28.1.2020A00013 RESEARCH ARTICLE Assessment of Processing Methods for Sandfish (Holothuria scabra) in Pangasinan, Palawan, and Davao, Philippines Rosa A. Bassig* , Adoracion V. Obinque, Vivian T. Nebres, Virginia H. Delos Santos, Rosario J. Ragaza, Charlotte Ann M. Ramos, Ariel Joshua J. Madrid, Ulysses M. Montojo Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute. Quezon City, Philippines ABSTRACT The Philippine beche-de-mer is reported to get the lowest prices compared to Indo-Pacific Islands competitors, mainly due to small sizes, inferior end-product quality, and use of low-value species. With this, the traditional methods of processing sandfish (Holothuria scabra), a high-value sea cucumber species, were assessed through survey questionnaires (n > 30) and documentation. The identified study sites were coastal areas where sandfish production and processing are abundant, namely: Anda and Bolinao, Pangasinan; Palawan; and Davao and Compostela Valley. Processing sea cucumbers into beche-de-mer involves the primary steps of cleaning, boiling, and smoke or sun-drying. Variations were observed in the order and number of doing each primary step, as well as in the specific manner of cleaning (slitting, gutting, brushing), boiling, and smoke or sun-drying. Quality evaluation of the products from these different processing methods is recommended to theorize how to improve the overall status of Philippine beche-de-mer, as well as the updating of these findings. *Corresponding Author: [email protected] Keywords: sea cucumber, beche-de-mer, Received: June 5, 2020 trepang, balat/balatan, traditional processing Accepted: December 1, 2020 1.
    [Show full text]
  • Reproduction of the Commercial Sea Cucumber Holothuria Scabra (Echinodermata: Holothuroidea) in the Solomon Islands
    Marine Biology (2003) 142: 281–288 DOI 10.1007/s00227-002-0947-x C. Ramofafia Æ M. Byrne Æ C.S. Battaglene Reproduction of the commercial sea cucumber Holothuria scabra (Echinodermata: Holothuroidea) in the Solomon Islands Received: 26 September 2001 / Accepted: 18 January 2002 / Published online: 12 November 2002 Ó Springer-Verlag 2002 Abstract Over a 3-year period (1996–1998), reproduc- tubule recruitment model described for holothurian tion of the commercial sea cucumber Holothuria scabra oogenesis. Continuous reproduction in H. scabra and (Jaeger, 1833) was investigated in the Solomon Islands prolonged availability of mature gametes would facili- to determine the spawning pattern and whether ga- tate use of this species for aquaculture. metogenesis is continuous or seasonal. The gonad con- sisted of a single cohort of tubules that developed uniformly. Macroscopic examination of the gonads re- vealed that mature gametes were present throughout the Introduction year. Individuals with gonads at different stages of ma- turity were present in most samples. Partly spawned Holothuria scabra (commonly known as sandfish) is an gonads were prevalent in females, whereas mature go- aspidochirote holothurian widely distributed in coastal nads were prevalent in males. The time at which the regions throughout the Indo-Pacific region (Conand peak gonad index was recorded differed among years. 1998). H. scabra is often found on inner reef flats and Although gametogenesis was continuous, with a poten- near estuaries, half buried in the silty sand during the tial for prolonged gamete release, a period of enhanced day and emerging at night to feed (Mercier et al. 1999). spawning occurred during the dry season, from Sep- Two colour morphs, black and grey, are known, and tember to December.
    [Show full text]